Как найти дельту в линейном уравнении

Метод Крамера. Примеры решения систем линейных алгебраических уравнений методом Крамера.

Метод Крамера предназначен для решения тех систем линейных алгебраических уравнений (СЛАУ), у которых определитель матрицы системы отличен от нуля. Естественно, при этом подразумевается, что матрица системы квадратна (понятие определителя существует только для квадратных матриц). Решение системы уравнений методом Крамера проходит за три шага простого алгоритма:

  1. Составить определитель матрицы системы (его называют также определителем системы), и убедиться, что он не равен нулю, т.е. $Deltaneq 0$.
  2. Для каждой переменной $x_i$($i=overline<1,n>$) необходимо составить определитель $Delta_$, полученный из определителя $Delta$ заменой i-го столбца столбцом свободных членов заданной СЛАУ.
  3. Найти значения неизвестных по формуле $x_i=frac<Delta_>><Delta>$ ($i=overline<1,n>$).

Перед переходом к чтению примеров рекомендую ознакомиться с правилами вычисления определителей второго и третьего порядка, изложенными здесь.

Матрица системы такова: $ A=left( begin 3 & 2\ -1 & 5 end right)$. Определитель этой матрицы:

$$Delta=left| begin 3 & 2\ -1 & 5 endright|=3cdot 5-2cdot(-1)=17.$$

Как вычисляется определитель второго порядка можете глянуть здесь.

Так как определитель системы не равен нулю, то продолжаем решение методом Крамера. Вычислим значения двух определителей: $Delta_$ и $Delta_$. Определитель $Delta_$ получаем из определителя $Delta=left| begin 3 & 2\ -1 & 5 endright|$ заменой первого столбца (именно этот столбец содержит коэффициенты при $x_1$) столбцом свободных членов $left(begin -11\ 15endright)$:

Аналогично, заменяя второй столбец в $Delta=left|begin3&2\-1&5endright|$ столбцом свободных членов, получим:

Теперь можно найти значения неизвестных $x_1$ и $x_2$.

В принципе, можно ещё проверить, правильно ли решена система методом Крамера. Подставим в заданную СЛАУ $x_1=-5$, $x_2=2$:

Проверка пройдена, решение системы уравнений методом Крамера найдено верно. Осталось лишь записать ответ.

$$Delta=left| begin 2 & 1 & -1\ 3 & 2 & 2 \ 1 & 0 & 1 endright|=4+2+2-3=5.$$

Как вычисляется определитель третьего порядка можете глянуть здесь.

Заменяя первый столбец в $Delta$ столбцом свободных членов, получим $Delta_$:

$$ Delta_=left| begin 3 & 1 & -1\ -7 & 2 & 2 \ -2 & 0 & 1 endright|=6-4-4+7=5. $$

Заменяя второй столбец в $Delta$ столбцом свободных членов, получим $Delta_$:

$$ Delta_=left| begin 2 & 3 & -1\ 3 & -7 & 2 \ 1 & -2 & 1 endright|=-14+6+6-7-9+8=-10. $$

Заменяя третий столбец в $Delta$ столбцом свободных членов, получим $Delta_$:

$$ Delta_=left| begin 2 & 1 & 3\ 3 & 2 & -7 \ 1 & 0 & -2 endright|=-8-7-6+6=-15. $$

Учитывая все вышеизложенное, имеем:

Метод Крамера завершён. Можно проверить, верно ли решена система уравнений методом Крамера, подставив значения $x_1=1$, $x_2=-2$ и $x_3=-3$ в заданную СЛАУ:

Проверка пройдена, решение системы уравнений методом Крамера найдено верно.

Решить СЛАУ $left <begin& 2x_1+3x_2-x_3=15;\ & -9x_1-2x_2+5x_3=-7. endright.$ используя метод Крамера.

Матрица системы $ left( begin 2 & 3 & -1\ -9 & -2 & 5 end right) $ не является квадратной. Однако это вовсе не означает, что решение системы уравнений методом Крамера невозможно. Преобразуем заданную СЛАУ, перенеся переменную $x_3$ в правые части уравнений:

Теперь матрица системы $ left( begin 2 & 3 \ -9 & -2 end right) $ стала квадратной, и определитель её $Delta=left| begin 2 & 3\ -9 & -2 endright|=-4+27=23$ не равен нулю. Применим метод Крамера аналогично предыдущим примерам:

Ответ можно записать в таком виде: $left <begin& x_1=frac<13x_3-9><23>;\ & x_2=frac<-x_3+121><23>;\ & x_3in R. endright.$ Переменные $x_1$, $x_2$ – базисные (в иной терминологии – основные), а переменная $x_3$ – свободная (в иной терминологии – неосновная). Проверка, при необходимости, проводится так же, как и в предыдущих примерах.

Матрица системы $left(begin 1 & -5 & -1 & -2 & 3 \ 2 & -6 & 1 & -4 & -2 \ -1 & 4 & 5 & -3 & 0 endright)$ не является квадратной. Преобразуем заданную СЛАУ, перенеся переменные $x_4$, $x_5$ в правые части уравнений, и применим метод Крамера:

Естественно, что применение метода Крамера в случаях вроде того, что рассмотрен в примере №4, не всегда оправдано с точки зрения временных затрат. Мы ведь не можем гарантировать, что после переноса каких-либо переменных в правые части уравнений, определитель системы не будет равен нулю. А перебирать различные варианты – слишком долгий процесс. Гораздо удобнее в таком случае применить метод Гаусса. Я привёл пример №4 лишь с одной целью – показать, что метод Крамера применим вне зависимости от содержимого правых частей уравнений заданной СЛАУ (числа, переменные, функции – не имеет значения). Главное, чтобы определитель матрицы системы был отличен от нуля.

Заметили ошибку, опечатку, или некорректно отобразилась формула? Отпишите, пожалуйста, об этом в данной теме на форуме (регистрация не требуется).

Метод Крамера решения систем линейных уравнений

Формулы Крамера

Метод Крамера основан на использовании определителей в решении систем линейных уравнений. Это значительно ускоряет процесс решения.

Метод Крамера может быть использован в решении системы стольких линейных уравнений, сколько в каждом уравнении неизвестных. Если определитель системы не равен нулю, то метод Крамера может быть использован в решении, если же равен нулю, то не может. Кроме того, метод Крамера может быть использован в решении систем линейных уравнений, имеющих единственное решение.

Определение. Определитель, составленный из коэффициентов при неизвестных, называется определителем системы и обозначается (дельта).

Определители

получаются путём замены коэффициентов при соответствующих неизвестных свободными членами:

;

.

Формулы Крамера для нахождения неизвестных:

.

Найти значения и возможно только при условии, если

.

Этот вывод следует из следующей теоремы.

Теорема Крамера . Если определитель системы отличен от нуля, то система линейных уравнений имеет одно единственное решение, причём неизвестное равно отношению определителей. В знаменателе – определитель системы, а в числителе – определитель, полученный из определителя системы путём замены коэффициентов при этом неизвестном свободными членами. Эта теорема имеет место для системы линейных уравнений любого порядка.

Пример 1. Решить систему линейных уравнений:

. (2)

Согласно теореме Крамера имеем:

Итак, решение системы (2):

Для проверки решений систем уравнений 3 Х 3 и 4 Х 4 можно воспользоваться онлайн-калькулятором, решающим методом Крамера.

Три случая при решении систем линейных уравнений

Как явствует из теоремы Крамера, при решении системы линейных уравнений могут встретиться три случая:

Первый случай: система линейных уравнений имеет единственное решение

(система совместна и определённа)

*

Второй случай: система линейных уравнений имеет бесчисленное множество решений

(система совместна и неопределённа)

* ,

** ,

т.е. коэффициенты при неизвестных и свободные члены пропорциональны.

Третий случай: система линейных уравнений решений не имеет

*

** .

Итак, система m линейных уравнений с n переменными называется несовместной, если у неё нет ни одного решения, и совместной, если она имеет хотя бы одно решение. Совместная система уравнений, имеющая только одно решение, называется определённой, а более одного – неопределённой.

Примеры решения систем линейных уравнений методом Крамера

Пусть дана система

.

На основании теоремы Крамера

………….
,

где

определитель системы. Остальные определители получим, заменяя столбец с коэффициентами соответствующей переменной (неизвестного) свободными членами:

Пример 2. Решить систему линейных уравнений методом Крамера:

.

Решение. Находим определитель системы:

Следовательно, система является определённой. Для нахождения её решения вычисляем определители

По формулам Крамера находим:

Итак, (1; 0; -1) – единственное решение системы.

Для проверки решений систем уравнений 3 Х 3 и 4 Х 4 можно воспользоваться онлайн-калькулятором, решающим методом Крамера.

Если в системе линейных уравнений в одном или нескольких уравнениях отсутствуют какие-либо переменные, то в определителе соответствующие им элементы равны нулю! Таков следующий пример.

Пример 3. Решить систему линейных уравнений методом Крамера:

.

Решение. Находим определитель системы:

Посмотрите внимательно на систему уравнений и на определитель системы и повторите ответ на вопрос, в каких случаях один или несколько элементов определителя равны нулю. Итак, определитель не равен нулю, следовательно, система является определённой. Для нахождения её решения вычисляем определители при неизвестных

По формулам Крамера находим:

Итак, решение системы — (2; -1; 1).

Для проверки решений систем уравнений 3 Х 3 и 4 Х 4 можно воспользоваться онлайн-калькулятором, решающим методом Крамера.

Применить метод Крамера самостоятельно, а затем посмотреть решения

Пример 4. Решить систему линейных уравнений:

.

Пример 5. Решить систему линейных уравнений методом Крамера:

.

К началу страницы

Пройти тест по теме Системы линейных уравнений

Продолжаем решать системы методом Крамера вместе

Как уже говорилось, если определитель системы равен нулю, а определители при неизвестных не равны нулю, система несовместна, то есть решений не имеет. Проиллюстрируем следующим примером.

Пример 6. Решить систему линейных уравнений методом Крамера:

Решение. Находим определитель системы:

Определитель системы равен нулю, следовательно, система линейных уравнений либо несовместна и определённа, либо несовместна, то есть не имеет решений. Для уточнения вычисляем определители при неизвестных

Определители при неизвестных не равны нулю, следовательно, система несовместна, то есть не имеет решений.

Для проверки решений систем уравнений 3 Х 3 и 4 Х 4 можно воспользоваться онлайн-калькулятором, решающим методом Крамера.

В задачах на системы линейных уравнений встречаются и такие, где кроме букв, обозначающих переменные, есть ещё и другие буквы. Эти буквы обозначают некоторое число, чаще всего действительное. На практике к таким уравнениям и системам уравнений приводят задачи на поиск общих свойств каких-либо явлений и предметов. То есть, изобрели вы какой-либо новый материал или устройство, а для описания его свойств, общих независимо от величины или количества экземпляра, нужно решить систему линейных уравнений, где вместо некоторых коэффициентов при переменных — буквы. За примерами далеко ходить не надо.

Пример 7. Решить систему линейных уравнений методом Крамера:

Здесь a — некоторое вещественное число. Решение. Находим определитель системы:

Находим определители при неизвестных

По формулам Крамера находим:

,

.

Следующий пример — на аналогичную задачу, только увеличивается количество уравнений, переменных, и букв, обозначающих некоторое действительное число.

Пример 8. Решить систему линейных уравнений методом Крамера:

Решение. Находим определитель системы:

Находим определители при неизвестных

По формулам Крамера находим:

,

,

.

И, наконец, система четырёх уравнений с четырьмя неизвестными.

Пример 9. Решить систему линейных уравнений методом Крамера:

.

Внимание! Методы вычисления определителей четвёртого порядка здесь объясняться не будут. За этим — на соответствующий раздел сайта. Но небольшие комментарии будут. Решение. Находим определитель системы:

Небольшой комментарий. В первоначальном определителе из элементов второй строки были вычтены элементы четвёртой строки, из элементов третьей строки — элементы четвёртой строки, умноженной на 2, из элементов четвёртой строки — элементы первой строки, умноженной на 2. Преобразования первоначальных определителей при трёх первых неизвестных произведены по такой же схеме. Находим определители при неизвестных

Для преобразований определителя при четвёртом неизвестном из элементов первой строки были вычтены элементы четвёртой строки.

По формулам Крамера находим:

,

,

,

.

Итак, решение системы — (1; 1; -1; -1).

Для проверки решений систем уравнений 3 Х 3 и 4 Х 4 можно воспользоваться онлайн-калькулятором, решающим методом Крамера.

Самые внимательные, наверное, заметили, что в статье не было примеров решения неопределённых систем линейных уравнений. А всё потому, что методом Крамера решить такие системы невозможно, можно лишь констатировать, что система неопределённа. Решения таких систем даёт метод Гаусса.

Онлайн калькулятор. Решение систем линейных уравнений методом Крамера

Используя этот онлайн калькулятор для решения систем линейных уравнений (СЛУ) методом Крамера, вы сможете очень просто и быстро найти решение системы.

Воспользовавшись онлайн калькулятором для решения систем линейных уравнений методом Крамера, вы получите детальное решение вашей задачи, которое позволит понять алгоритм решения задач на решения систем линейных уравнений, а также закрепить пройденный материал.

Решить систему линейных уравнений методом Крамера

Изменить названия переменных в системе

Заполните систему линейных уравнений:

Ввод данных в калькулятор для решения систем линейных уравнений методом Крамера

  • В онлайн калькулятор вводить можно числа или дроби. Более подробно читайте в правилах ввода чисел.
  • Для изменения в уравнении знаков с «+» на «-» вводите отрицательные числа.
  • Если в уравнение отсутствует какая-то переменная, то в соответствующем поле ввода калькулятора введите ноль.
  • Если в уравнение перед переменной отсутствуют числа, то в соответствующем поле ввода калькулятора введите единицу.

Например, линейное уравнение x 1 — 7 x 2 — x 4 = 2

будет вводится в калькулятор следующим образом:

Дополнительные возможности калькулятора для решения систем линейных уравнений методом Крамера

  • Между полями для ввода можно перемещаться нажимая клавиши «влево», «вправо», «вверх» и «вниз» на клавиатуре.
  • Вместо x 1, x 2, . вы можете ввести свои названия переменных.

Вводить можно числа или дроби (-2.4, 5/7, . ). Более подробно читайте в правилах ввода чисел.

источники:

http://function-x.ru/systems_kramer.html

http://ru.onlinemschool.com/math/assistance/equation/kramer/

Метод Крамера. Примеры решения систем линейных алгебраических уравнений методом Крамера.

Метод Крамера предназначен для решения тех систем линейных алгебраических уравнений (СЛАУ), у которых определитель матрицы системы отличен от нуля. Естественно, при этом подразумевается, что матрица системы квадратна (понятие определителя существует только для квадратных матриц). Решение системы уравнений методом Крамера проходит за три шага простого алгоритма:

  1. Составить определитель матрицы системы (его называют также определителем системы), и убедиться, что он не равен нулю, т.е. $Deltaneq 0$.
  2. Для каждой переменной $x_i$($i=overline{1,n}$) необходимо составить определитель $Delta_{x_i}$, полученный из определителя $Delta$ заменой i-го столбца столбцом свободных членов заданной СЛАУ.
  3. Найти значения неизвестных по формуле $x_i=frac{Delta_{x_{i}}}{Delta}$ ($i=overline{1,n}$).

Перед переходом к чтению примеров рекомендую ознакомиться с правилами вычисления определителей второго и третьего порядка, изложенными здесь.

Пример №1

Решить СЛАУ $left{begin{aligned}
& 3x_1+2x_2=-11;\
& -x_1+5x_2=15.
end{aligned}right.$ методом Крамера.

Решение

Матрица системы такова: $ A=left( begin{array} {cc} 3 & 2\ -1 & 5 end{array} right)$. Определитель этой матрицы:

$$Delta=left| begin{array} {cc} 3 & 2\ -1 & 5 end{array}right|=3cdot 5-2cdot(-1)=17.$$

Как вычисляется определитель второго порядка можете глянуть здесь.

Так как определитель системы не равен нулю, то продолжаем решение методом Крамера. Вычислим значения двух определителей: $Delta_{x_1}$ и $Delta_{x_2}$. Определитель $Delta_{x_1}$ получаем из определителя $Delta=left| begin{array} {cc} 3 & 2\ -1 & 5 end{array}right|$ заменой первого столбца (именно этот столбец содержит коэффициенты при $x_1$) столбцом свободных членов $left(begin{array} {c} -11\ 15end{array}right)$:

$$
Delta_{x_1}=left|begin{array}{cc}-11&2\15&5end{array}right|=-55-30=-85.
$$

Аналогично, заменяя второй столбец в $Delta=left|begin{array}{cc}3&2\-1&5end{array}right|$ столбцом свободных членов, получим:

$$
Delta_{x_2}=left|begin{array} {cc} 3 & -11\ -1 & 15end{array}right|=45-11=34.
$$

Теперь можно найти значения неизвестных $x_1$ и $x_2$.

$$x_1=frac{Delta_{x_1}}{Delta}=frac{-85}{17}=-5;;x_2=frac{Delta_{x_2}}{Delta}=frac{34}{17}=2.$$

В принципе, можно ещё проверить, правильно ли решена система методом Крамера. Подставим в заданную СЛАУ $x_1=-5$, $x_2=2$:

$$left{begin{aligned}
& 3x_1+2x_2=3cdot(-5)+2cdot{2}=-11;\
& -x_1+5x_2=-(-5)+5cdot{2}=15.
end{aligned}right.$$

Проверка пройдена, решение системы уравнений методом Крамера найдено верно. Осталось лишь записать ответ.

Ответ: $x_1=-5$, $x_2=2$.

Пример №2

Решить СЛАУ $
left{begin{aligned}
& 2x_1+x_2-x_3=3;\
& 3x_1+2x_2+2x_3=-7;\
& x_1+x_3=-2.
end{aligned} right.$, используя метод Крамера.

Решение

Определитель системы:

$$Delta=left| begin{array} {ccc} 2 & 1 & -1\ 3 & 2 & 2 \ 1 & 0 & 1 end{array}right|=4+2+2-3=5.$$

Как вычисляется определитель третьего порядка можете глянуть здесь.

Заменяя первый столбец в $Delta$ столбцом свободных членов, получим $Delta_{x_1}$:

$$
Delta_{x_1}=left| begin{array} {ccc} 3 & 1 & -1\ -7 & 2 & 2 \ -2 & 0 & 1 end{array}right|=6-4-4+7=5.
$$

Заменяя второй столбец в $Delta$ столбцом свободных членов, получим $Delta_{x_2}$:

$$
Delta_{x_2}=left| begin{array} {ccc} 2 & 3 & -1\ 3 & -7 & 2 \ 1 & -2 & 1 end{array}right|=-14+6+6-7-9+8=-10.
$$

Заменяя третий столбец в $Delta$ столбцом свободных членов, получим $Delta_{x_3}$:

$$
Delta_{x_3}=left| begin{array} {ccc} 2 & 1 & 3\ 3 & 2 & -7 \ 1 & 0 & -2 end{array}right|=-8-7-6+6=-15.
$$

Учитывая все вышеизложенное, имеем:

$$
x_1=frac{Delta_{x_1}}{Delta}=frac{5}{5}=1;; x_2=frac{Delta_{x_2}}{Delta}=frac{-10}{5}=-2; ; x_3=frac{Delta_{x_3}}{Delta}=frac{-15}{5}=-3.
$$

Метод Крамера завершён. Можно проверить, верно ли решена система уравнений методом Крамера, подставив значения $x_1=1$, $x_2=-2$ и $x_3=-3$ в заданную СЛАУ:

$$left{begin{aligned}
& 2x_1+x_2-x_3=2cdot{1}+(-2)-(-3)=3;\
& 3x_1+2x_2+2x_3=3cdot{1}+2cdot(-2)+2cdot(-3)=-7;\
& x_1+x_3=1+(-3)=-2.
end{aligned} right.$$

Проверка пройдена, решение системы уравнений методом Крамера найдено верно.

Ответ: $x_1=1$, $x_2=-2$, $x_3=-3$.

Пример №3

Решить СЛАУ $left{begin{aligned}
& 2x_1+3x_2-x_3=15;\
& -9x_1-2x_2+5x_3=-7.
end{aligned}right.$ используя метод Крамера.

Решение

Матрица системы $ left( begin{array} {ccc} 2 & 3 & -1\ -9 & -2 & 5 end{array} right) $ не является квадратной. Однако это вовсе не означает, что решение системы уравнений методом Крамера невозможно. Преобразуем заданную СЛАУ, перенеся переменную $x_3$ в правые части уравнений:

$$

left { begin{aligned}
& 2x_1+3x_2=x_3+15;\
& -9x_1-2x_2=-5x_3-7.

end{aligned} right.

$$

Теперь матрица системы $ left( begin{array} {cc} 2 & 3 \ -9 & -2 end{array} right) $ стала квадратной, и определитель её $Delta=left| begin{array} {cc} 2 & 3\ -9 & -2 end{array}right|=-4+27=23$ не равен нулю. Применим метод Крамера аналогично предыдущим примерам:

$$
begin{aligned}
& Delta_{x_1}
=left| begin{array} {cc} x_3+15 & 3\ -5x_3-7 & -2 end{array}right|
=-2x_3-30-left(-15x_3-21right)
=13x_3-9;\
\
& Delta_{x_2}
=left| begin{array} {cc} 2 & x_3+15\ -9 & -5x_3-7 end{array}right|
=-10x_3-14-left(-9x_3-135right)
=-x_3+121.
end{aligned}
$$

$$
x_1=frac{Delta_{x_1}}{Delta}=frac{13x_3-9}{23};;
x_2=frac{Delta_{x_2}}{Delta}=frac{-x_3+121}{23}.
$$

Ответ можно записать в таком виде: $left{begin{aligned}
& x_1=frac{13x_3-9}{23};\
& x_2=frac{-x_3+121}{23};\
& x_3in R.
end{aligned}right.$ Переменные $x_1$, $x_2$ – базисные (в иной терминологии – основные), а переменная $x_3$ – свободная (в иной терминологии – неосновная). Проверка, при необходимости, проводится так же, как и в предыдущих примерах.

Примечание

В подобных примерах возможна ситуация, когда после переноса переменной (или переменных) в правые части уравнений, определитель системы равняется нулю. В этом случае можно перенести в правую часть иную переменную (или переменные). Например, рассмотрим СЛАУ
$left{begin{aligned}
& 2x_1-5x_2+10x_3=14;\
& -4x_1+10x_2-7x_3=5.
end{aligned}right.$. Если перенести в правые части уравнений $x_3$, получим: $
left{begin{aligned}
&2x_1-5x_2=-10x_3+14;\
&-4x_1+10x_2=7x_3+5.
end{aligned}right.$. Определитель данной системы $Delta=left| begin{array} {cc} 2 & -5\ -4 & 10 end{array}right|=20-20=0$. Однако если перенести в правые части уравнений переменную $x_2$, то получим систему $
left{begin{aligned}
&2x_1+10x_3=5x_2+14;\
&-4x_1-7x_3=-10x_2+5.
end{aligned}right.$, определитель которой $Delta=left| begin{array} {cc} 2 & 10\ -4 & -7 end{array}right|=-14+40=26$ не равен нулю. Дальнейшее решение аналогично рассмотренному в примере №3.

Пример №4

Решить СЛАУ

$$left{begin{aligned}
&x_1-5x_2-x_3-2x_4+3x_5=0;\
&2x_1-6x_2+x_3-4x_4-2x_5=0; \
&-x_1+4x_2+5x_3-3x_4=0.
end{aligned}right.$$

методом Крамера.

Решение

Матрица системы $left(begin{array} {ccccc} 1 & -5 & -1 & -2 & 3 \
2 & -6 & 1 & -4 & -2 \
-1 & 4 & 5 & -3 & 0
end{array}right)$ не является квадратной. Преобразуем заданную СЛАУ, перенеся переменные $x_4$, $x_5$ в правые части уравнений, и применим метод Крамера:

$$
left{begin{aligned}
& x_1-5x_2-x_3=2x_4-3x_5;\
& 2x_1-6x_2+x_3=4x_4+2x_5; \
& -x_1+4x_2+5x_3=3x_4.
end{aligned}right.$$

$$
begin{aligned}
& Delta
=left| begin{array} {ccc} 1 & -5 & -1\ 2 & -6 & 1\-1 & 4 & 5 end{array}right|
=19;\
\
& Delta_{x_1}
=left| begin{array} {ccc} 2x_4-3x_5 & -5 & -1\ 4x_4+2x_5 & -6 & 1\3x_4 & 4 & 5 end{array}right|
=-17x_4+144x_5;\
\
& Delta_{x_2}
=left| begin{array} {ccc} 1 & 2x_4-3x_5 & -1\ 2 & 4x_4+2x_5 & 1\-1 & 3x_4 & 5 end{array}right|
=-15x_4+41x_5;\
\
& Delta_{x_3}
=left| begin{array} {ccc} 1 & -5 & 2x_4-3x_5\ 2 & -6 & 4x_4+2x_5\-1 & 4 & 3x_4 end{array}right|
=20x_4-4x_5.
end{aligned}
$$

Ответ таков: $left{begin{aligned}
& x_1=frac{-17x_4+144x_5}{19};\
& x_2=frac{-15x_4+41x_5}{19};\
& x_3=frac{20x_4-4x_5}{19}; \
& x_4in R; ; x_5in R.
end{aligned}right.$ Переменные $x_1$, $x_2$, $x_3$ – базисные, переменные $x_4$, $x_5$ – свободные.

Естественно, что применение метода Крамера в случаях вроде того, что рассмотрен в примере №4, не всегда оправдано с точки зрения временных затрат. Мы ведь не можем гарантировать, что после переноса каких-либо переменных в правые части уравнений, определитель системы не будет равен нулю. А перебирать различные варианты – слишком долгий процесс. Гораздо удобнее в таком случае применить метод Гаусса. Я привёл пример №4 лишь с одной целью – показать, что метод Крамера применим вне зависимости от содержимого правых частей уравнений заданной СЛАУ (числа, переменные, функции – не имеет значения). Главное, чтобы определитель матрицы системы был отличен от нуля.

(схема 16)

Дадим ряд необходимых определений.

Система линейных уравнений называется неоднородной,
если хотя бы один ее свободный член отличен от нуля, и однородной, если все ее
свободные члены равны нулю.

Решением системы уравнений называется упорядоченный набор чисел, который, будучи
подставленным вместо переменных в систему, обращает каждое ее уравнение в тождество.

Система уравнений называется совместной, если она
имеет хотя бы одно решение, и несовместной, если она решений не
имеет.

Совместная система уравнений называется определенной,
если она имеет единственное решение, и неопределенной, если она имеет более
одного решения.

Рассмотрим неоднородную систему линейных
алгебраических уравнений, имеющую при n=m следующий
общий вид:

.                                                                                                                                                  (1.5) 

Главной матрицей A системы
линейных алгебраических уравнений называется матрица, составленная из
коэффициентов, стоящих при неизвестных:

.

Определитель главной матрицы системы называется главным
определителем
и обозначается ∆.

Вспомогательный определитель ∆i  получается
из главного определителя путем замены i-го
столбца на столбец свободных членов
.

Теорема 1.1
(теорема Крамера).
Если главный
определитель системы линейных алгебраических уравнений отличен от нуля, то
система имеет единственное решение, вычисляемое по формулам:

.                                                                                                                                                                        (1.6)

 Если
главный определитель ∆=0, то система либо 
имеет бесконечное множество решений (при всех нулевых вспомогательных
определителях), либо вообще решения не имеет (при отличии от нуля хотя бы одного
из вспомогательных определителей).

В свете приведенных выше определений, теорема Крамера может быть сформулирована иначе: если
главный определитель системы линейных алгебраических уравнений отличен от нуля,
то система является совместной определенной и при этом 
; если главный определитель нулевой, то система является
либо совместной неопределенной (при всех ∆
i=0),
либо несовместной (при отличии хотя бы одного из ∆
i от нуля).

После этого следует провести проверку полученного
решения.

Пример 1.4.  Решить
систему методом Крамера 

Решение.  Так
как главный определитель системы

 отличен от нуля, то система имеет единственное
решение. Вычислим вспомогательные определители

Воспользуемся
формулами Крамера (1.6):

 

Пример 1.5. Данные дневной выручки молочного цеха от реализации молока, сливочного масла
и творога за три дня продаж (на 2017 год) занесены в таблицу 1.4.

                                                                   
                                     Таблица 1.4                                 

Определить стоимость 1 единицы продукции молокоцеха
каждого вида.

Решение. Обозначим через x – стоимость 1 литра молока, y – 1 кг сливочного масла, z
1 кг
творога. Тогда, учитывая данные таблицы 1.4, выручку молочного цеха каждого из
трех дней реализации можно отобразить следующей системой:

.

Решим систему методом Крамера. Найдем главный
определитель системы по формуле (1.2):

         

     Так
как он отличен от нуля, то система имеет единственное решение. Вычислим
вспомогательные определители с помощью формулы (1.2):

        

По формулам Крамера (1.6) имеем:

Вернувшись к обозначениям, видим, что стоимость 1
литра молока равна 44 рубля, 1
кг масла – 540 рублей, 1 кг творога – 176 рублей

Примечание. Как видно, процесс вычисления определителей вручную с
помощью калькулятора трудоемок, поэтому на практике используют персональный
компьютер. Так, для решения систем линейных алгебраических уравнений методом
Крамера в
MS Excel высчитывают ее главный и вспомогательные определители
с использованием функции МОПРЕД( ), где аргументом является диапазон ячеек
и элементы матрицы, определитель которой находится.

В MathCAD для
нахождения определителя пользуются палитрой оператора
Matrix

Вопросы для
самопроверки

Заказать задачи по любым предметам можно здесь от 10 минут

Метод Крамера

Одним из методов решения систем линейных уравнений является метод Крамера. Используется для нахождения решения систем, в которых количество строк равно количеству неизвестных. То есть для квадратных систем уравнений. Основан он на вычислении определителей матрицы: основного и дополнительных, получающихся замещением одного из столбца основного определителя на столбец свободных членов системы алгебраических уравнений. Рассмотрим сам алгоритм метода Крамера и примеры с решением.

Дано СЛАУ $ begin{cases} a_{11}x_1+a_{12}x_2+a_{13}x_3 = b_1\a_{21}x_1+a_{22}x_2+a_{23}x_3 = b_2\a_{31}x_1+a_{32}x_2+a_{33}x_3=b_3 end{cases} $

Найти неизвестные $ begin{pmatrix}x_1\x_2\x_3 end{pmatrix} $

Алгоритм решения заключается в том, что  составляется из системы матрица $ A = begin{pmatrix} a_{11}&a_{12}&a_{13}\a_{21}&a_{22}&a_{23}\a_{31}&a_{32}&a_{33} end{pmatrix} $ и столбец свободных членов $ B = begin{pmatrix} b_1\b_2\b_3 end{pmatrix} $

Далее вычисляется основной определитель матрицы $ Delta = |A| $ и дополнительные $ Delta_i $, получающиеся из основного определителя путем поочередного замещения столбцов на столбец свободных членов$ begin{pmatrix}b_1\b_2\b_3 end{pmatrix} $

Если получается $ Delta = 0 $, тогда система не может быть решена методом Крамера! 

В итоге по формуле метода Крамера находим неизвестные в системе линейных уравнений: $$ x_1 = frac{Delta_1}{Delta}, x_2 = frac{Delta_2}{Delta}, x_3 = frac{Delta_3}{Delta} $$

Примеры с решением

Пример 1
Решить систему линейных уравнений методом Крамера: $$ begin{cases} 3x_1+x_2+2x_3 = 4\-x_1+2x_2-3x_3 = 1\-2x_1+x_2+x_3=-2 end{cases} $$
Решение

Составляем матрицу $ A = begin{pmatrix} 3&1&2\-1&2&-3\-2&1&1 end{pmatrix}  $ и выписываем столбец свободных членов $ b = begin{pmatrix} 4\1\-2 end{pmatrix} $

Вычисляем главный определитель матрицы:

$$ Delta = |A| = begin{vmatrix} 3&1&2\-1&2&-3\-2&1&1 end{vmatrix} = 6 + 6 -2 +8 + 1 + 9 = 28 $$

Замечаем, что  $ Delta = 28 ne 0 $, то систему можно решить методом Крамера.

Вычисляем первый дополнительный определитель  $ Delta_1 $. Подставляем столбец свободных членов $ b = begin{pmatrix} 4\1\-2 end{pmatrix} $ на место первого столбца в основной матрице:

$$ Delta_1 = begin{vmatrix} 4&1&2\1&2&-3\-2&1&1 end{vmatrix} = 8 +6 +2 + 8 -1 +12 = 35 $$

Аналогично вычислим $ Delta_2 $:

$$ Delta_2 = begin{vmatrix} 3&4&2\-1&1&-3\-2&-2&1 end{vmatrix} = 3 + 24 + 4 +4 -18 +4 = 21 $$

Точно также находим $ Delta_3 $:

$$ Delta_3 = begin{vmatrix} 3&1&4\-1&2&1\-2&1&-2 end{vmatrix} = -12 -2 -4 +16 -3 -2 = -7 $$

По формуле Крамера:

$$ x_1 = frac{Delta_1}{Delta} = frac{35}{28} = frac{5}{4} $$

$$ x_2 = frac{Delta_2}{Delta} = frac{21}{28} = frac{3}{4} $$

$$ x_3 = frac{Delta_3}{Delta} = frac{-7}{28} = -frac{1}{4} $$

Если не получается решить свою задачу, то присылайте её к нам. Мы предоставим подробное решение онлайн. Вы сможете ознакомиться с ходом вычисления и почерпнуть информацию. Это поможет своевременно получить зачёт у преподавателя!

Ответ
$$ x_1 = frac{5}{4}; x_2 = frac{3}{4}; x_3 = -frac{1}{4} $$
Пример 2

Решить систему уравнений методом Крамера:

$$ begin{cases} x+y-2z = 2\2x-3y-z = 1\x-4y+z=3 end{cases} $$

Решение

Попробуем  решить методом Крамера. Найдем основной определитель системы уравнений:

$$ Delta = begin{vmatrix} 1&1&-2\2&-3&-1\1&-4&1 end{vmatrix} = -3 -1 +16 -6 -4 -2 = 0 $$

Внимание! Получили $ Delta = 0 $, а это означает, что данную систему нельзя решить методом Крамера. Алгоритм завершает  свою работу. Советуем воспользоваться другим методом для решения, например, матричным  методом или Гаусса.

Ответ
Метод Крамера нельзя применить к данной системе линейных уравнений

Метод Крамера

Пусть
дана система трех линейных уравнений:

(1)

Для
решения системы линейных уравнений
методом Крамера из коэффициентов при
неизвестных составляется главный
определитель
системы .
Для системы (1) главный определитель
имеет вид
.

Далее
составляются определители по переменным
,,.
Для этого в главном определителе вместо
столбца коэффициентов при соответствующей
переменной записывается столбец
свободных членов, то есть

,
,.

Тогда решение
системы находится по формулам Крамера

,

,

Следует
отметить, что система имеет единственное
решение
,
если главный определитель.Если же

и
=
0,=
0,=
0, то система имеет бесчисленное множество
решений, найти которые по формулам
Крамера нельзя. Если же

и
0,
или0,или0,
то система уравнений несовместна, то
есть решений не имеет.

Пример

Решить
систему уравнений методом Крамера:

Решение:

1)
Составим и вычислим главный определитель
системы, состоящий из коэффициентов
при неизвестных.

.

Следовательно,
система имеет единственное решение.

2)
Составим и вычислим вспомогательные
определители, заменяя соответствующий
столбец в 
столбцом из свободных членов.

По формулам Крамера
находим неизвестные:

,
,.

Сделаем проверку,
чтобы убедиться в правильности решения

,
т.е.
.

,
т.е.

,
т.е.

Ответ:
.

Пример

Решить
систему уравнений методом Крамера:

Решение:

1)
Составим и вычислим главный определитель
системы из коэффициентов при неизвестных:

.

Следовательно,
система не имеет единственного решения.

2)
Составим и вычислим вспомогательные
определители, заменяя соответствующий
столбец в 
столбцом из свободных членов:

.

,
,
следовательно, система несовместна.

Ответ:
система
несовместна
.

Метод Гаусса

Метод
Гаусса состоит из двух этапов. Первый
этап заключается в последовательном
исключении переменных из уравнений
системы при помощи действий, не нарушающих
равносильности системы. Например,
рассмотрим два первых уравнения системы
(1).

(1)

Необходимо
путем сложения этих двух уравнений
получить уравнение, в котором отсутствует
переменная
.
Умножим первое уравнение на,
а второе на ()
и сложим полученные уравнения


+

Заменим
коэффициент перед y,
z
и свободный член на
,исоответственно,
получим новую пару уравнений

Заметим,
что во втором уравнении отсутствует
переменная x.

Проведя
аналогичные действия над первым и
третьим уравнениями системы (1), а затем
над полученными в результате сложения
вторым и третьим уравнениями, преобразуем
систему (1) к виду

(2)

Такой
результат возможен, если система имеет
единственное решение. В этом случае
решение находится при помощи обратного
хода метода Гаусса (второй этап). Из
последнего уравнения системы (2) находим
неизвестную переменную z,
затем из второго уравнения находим y,
а x
соответственно из первого, подставляя
в них уже найденные неизвестные.

Иногда в результате
сложения двух уравнений суммарное
уравнение может принять один из видов:

А)
,
где.
Это означает, что решаемая система
несовместна.

Б)
,
то есть.
Такое уравнение исключается из системы,
в результате число уравнений в системе
становится меньше, чем число переменных,
и система имеет бесчисленное множество
решений, нахождение которых будет
показано на примере.

Пример

Решить
систему методом Гаусса:

Решение:

Рассмотрим
следующий способ осуществления первого
этапа решения методом Гаусса. Запишем
три строки коэффициентов при неизвестных
и свободных членов, соответствующих
трем уравнениям системы. Свободные
члены отделим от коэффициентов
вертикальной линией, а под третьей
строкой проведем горизонтальную прямую.

Первую
строку, которая соответствует первому
уравнению системы, обведем – коэффициенты
в этом уравнении останутся неизменными.
Вместо второй строки (уравнения) надо
получить строку (уравнение), где
коэффициент при
равен нулю. Для этого все числа первой
строки умножим на (–2) и сложим с
соответствующими числами второй строки.
Полученные суммы запишем под горизонтальной
чертой (четвертая строка). Для того чтобы
вместо третьей строки (уравнения) также
получить строку (уравнение), в которой
коэффициент приравен нулю, умножим все числа первой
строки на (–5) и сложим с соответствующими
числами третьей строки. Полученные
суммы запишем пятой строкой и проведем
под ней новую горизонтальную черту.
Четвертую строку (или пятую – по выбору)
обведем. Выбирается строка с меньшими
коэффициентами. В этой строке коэффициенты
останутся неизменными. Вместо пятой
строки надо получить строку, где уже
два коэффициента равны нулю. Умножим
четвертую строку на 3 и сложим с пятой.
Сумму запишем под горизонтальной чертой
(шестая строка) и обведем ее.

Все
описанные действия изображены в таблице
1 при помощи арифметических знаков и
стрелок. Обведенные в таблице строки
запишем снова в виде уравнений (3) и,
применив обратный ход метода Гаусса,
найдем значения переменных x,
y
и z.

Таблица 1

1

1

-2

6

*(-2)

*(-5)

2

3

-7

16

5

2

1

16

0

1

-3

4

*( 3)

0

-3

11

-14

0

0

2

-2

Восстанавливаем
систему уравнений, полученную в результате
наших преобразований:

(3)

Обратный ход
метода Гаусса

Из
третьего уравнения
находим.

Во
второе уравнение системы
подставим найденное значение,
получимили.

Из
первого уравнения
,
подставляя уже найденные значения
переменных, получаем,
то есть.

Чтобы убедиться
в правильности решения, проверку
необходимо сделать во всех трех уравнениях
системы.

Проверка:

,
получим

,
получим

,
получим

значит, система
решена верно.

Ответ:
,,.

Пример

Решить
систему методом Гаусса:

Решение:

Порядок
действий в этом примере аналогичен
порядку в предыдущем примере, а конкретные
действия указаны в таблице 2.

Таблица2

2

2

1

1

*(-3)

*(-5)

3

5

-2

0

*2

5

3

6

-2

*2

0

4

-7

-3

0

-4

7

-9

0

0

0

-12

В
результате преобразований получим
уравнение вида
,
следовательно, заданная система
несовместна.

Ответ:
система
несовместна
.

Пример

Решить
систему методом Гаусса:

Решение:

Таблица
3

1

2

-1

0

*(-2)

*(-4)

2

-1

3

1

4

3

1

1

0

-5

5

1

*(-1)

0

-5

5

1

0

0

0

0

В
результате преобразований получим
уравнение вида
,
которое исключается из рассмотрения.
Таким образом, имеем систему уравнений,
в которой число неизвестных 3, а число
уравнений 2.

Система
имеет бесчисленное множество решений.
Чтобы отыскать эти решения, введем одну
свободную переменную. (Число свободных
переменных всегда равно разности между
числом неизвестных и числом уравнений,
оставшихся после преобразования системы.
В нашем случае 3 – 2 = 1).

Пусть
– свободная переменная.

Тогда
из второго уравнения найдем
,
откуда,
а затем найдемx
из первого уравнения
или.

Таким
образом,
;;.

Сделаем
проверку в уравнениях, которые не
участвовали в нахождении
и,
то есть во втором и в третьем уравнениях
первоначальной системы.

Проверка:

или
,
получаем.

или
,
получаем.

Система
решена верно. Давая произвольной
постоянной
различные значения, будем получать
различные значенияx,
y
и z.

Ответ:

;;.

21

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]

  • #
  • #
  • #
  • #
  • #
  • #
  • #
  • #
  • #
  • #
  • #

Понравилась статья? Поделить с друзьями:
  • Как найти диаметр окружности через площадь круга
  • Как найти напарников фортнайт
  • Как найти посылку сдэк по номеру телефону
  • Как составить схему организационной структуры управлением организации
  • Как найти длинну тени человека