Как найти дельту внутренней энергии

Содержание

  • 1 Внутренняя энергия тел

    • 1.1 *Вывод формулы
    • 1.2 Изменение внутренней энергии
  • 2 Механическая работа

    • 2.1 Изобарный процесс
    • 2.2 Не изобарный процесс
  • 3 Количество теплоты

    • 3.1 Нагревание (охлаждение)
    • 3.2 Парообразование (конденсация)
    • 3.3 Плавление (кристаллизация)
    • 3.4 Сгорание топлива
  • 4 Литература

Внутренняя энергия тел

Согласно MKT все вещества состоят из частиц, которые находятся в непрерывном тепловом движении и взаимодействуют друг с другом. Поэтому, даже если тело неподвижно и имеет нулевую потенциальную энергию, оно обладает энергией (внутренней энергией), представляющей собой суммарную энергию движения и взаимодействия микрочастиц, составляющих тело. В состав внутренней энергии входят:

  1. кинетическая энергия поступательного, вращательного и колебательного движения молекул;
  2. потенциальная энергия взаимодействия атомов и молекул;
  3. внутриатомная и внутриядерная энергии.

В термодинамике рассматриваются процессы при температурах, при которых не возбуждается колебательное движение атомов в молекулах, т.е. при температурах, не превышающих 1000 К. В этих процессах изменяются только первые две составляющие внутренней энергии. Поэтому

под внутренней энергией в термодинамике понимают сумму кинетической энергии всех молекул и атомов тела и потенциальной энергии их взаимодействия.

Внутренняя энергия тела определяет его тепловое состояние и изменяется при переходе из одного состояния в другое. В данном состоянии тело обладает вполне определенной внутренней энергией, не зависящей от того, в результате какого процесса оно перешло в данное состояние. Поэтому внутреннюю энергию очень часто называют функцией состояния тела.

Рассчитать внутреннюю энергию можно только для идеального газа, т.к. молекулы не взаимодействуют между собой и потенциальная энергия их равна нулю:

(~U = dfrac {i}{2} cdot dfrac {m}{M} cdot R cdot T,)

где i — степень свободы. Для одноатомного газа (например, инертные газы) i = 3, для двухатомного — i = 5.

Из этих формул видно, что внутренняя энергия идеального газа зависит только от температуры и числа молекул и не зависит ни от объема, ни от давления. Поэтому изменение внутренней энергии идеального газа определяется только изменением его температуры и не зависит от характера процесса, в котором газ переходит из одного состояния в другое:

(~Delta U = U_2 — U_1 = dfrac {i}{2} cdot dfrac{m}{M} cdot R cdot Delta T ,)

где ΔT = T2T1.

  • Молекулы реальных газов взаимодействуют между собой и поэтому обладают потенциальной энергией Wp, которая зависит от расстояния между молекулами и, следовательно, от занимаемого газом объема. Таким образом, внутренняя энергия реального газа зависит от его температуры, объема и структуры молекул.

*Вывод формулы

Средняя кинетическая энергия молекулы (~leftlangle W_k rightrangle = dfrac {i}{2} cdot k cdot T).

Число молекул в газе (~N = dfrac {m}{M} cdot N_A).

Следовательно, внутренняя энергия идеального газа

(~U = N cdot leftlangle W_k rightrangle = dfrac {m}{M} cdot N_A cdot dfrac {i}{2} cdot k cdot T .)

Учитывая, что k⋅NA = R — универсальная газовая постоянная, имеем

(~U = dfrac {i}{2} cdot dfrac {m}{M} cdot R cdot T) — внутренняя энергия идеального газа.

Изменение внутренней энергии

Для решения практических вопросов существенную роль играет не сама внутренняя энергия, а ее изменение ΔU = U2U1. Изменение же внутренней энергии рассчитывают, исходя из законов сохранения энергии.

Внутренняя энергия тела может изменяться двумя способами:

  1. При совершении механической работы.
    а) Если внешняя сила вызывает деформацию тела, то при этом изменяются расстояния между частицами, из которых оно состоит, а следовательно, изменяется потенциальная энергия взаимодействия частиц. При неупругих деформациях, кроме того, изменяется температура тела, т.е. изменяется кинетическая энергия теплового движения частиц. Но при деформации тела совершается работа, которая и является мерой изменения внутренней энергии тела.
    б) Внутренняя энергия тела изменяется также при его неупругом соударении с другим телом. Как мы видели раньше, при неупругом соударении тел их кинетическая энергия уменьшается, она превращается во внутреннюю (например, если ударить несколько раз молотком по проволоке, лежащей на наковальне, — проволока нагреется). Мерой изменения кинетической энергии тела является, согласно теореме о кинетической энергии, работа действующих сил. Эта работа может служить и мерой изменения внутренней энергии.
    в) Изменение внутренней энергии тела происходит под действием силы трения, поскольку, как известно из опыта, трение всегда сопровождается изменением температуры трущихся тел. Работа силы трения может служить мерой изменения внутренней энергии.
  2. При помощи теплообмена. Например, если тело поместить в пламя горелки, его температура изменится, следовательно, изменится и его внутренняя энергия. Однако никакая работа здесь не совершалась, ибо не происходило видимого перемещения ни самого тела, ни его частей.

Изменение внутренней энергии системы без совершения работы называется теплообменом (теплопередачей).

Существует три вида теплообмена: теплопроводность, конвекция и излучение.

а) Теплопроводностью называется процесс теплообмена между телами (или частями тела) при их непосредственном контакте, обусловленный тепловым хаотическим движением частиц тела. Амплитуда колебаний молекул твердого тела тем больше, чем выше его температура. Теплопроводность газов обусловлена обменом энергией между молекулами газа при их столкновениях. В случае жидкостей работают оба механизма. Теплопроводность вещества максимальна в твердом и минимальна в газообразном состоянии.

б) Конвекция представляет собой теплопередачу нагретыми потоками жидкости или газа от одних участков занимаемого ими объема в другие.

в) Теплообмен при излучении осуществляется на расстоянии посредством электромагнитных волн.

Рассмотрим более подробно способы изменения внутренней энергии.

Механическая работа

При рассмотрении термодинамических процессов механическое перемещение макротел в целом не рассматривается. Понятие работы здесь связывается с изменением объема тела, т.е. перемещением частей макротела друг относительно друга. Процесс этот приводит к изменению расстояния между частицами, а также часто к изменению скоростей их движения, следовательно, к изменению внутренней энергии тела.

Изобарный процесс

Рассмотрим вначале изобарный процесс. Пусть в цилиндре с подвижным поршнем находится газ при температуре T1 (рис. 1).

Рис. 1

Будем медленно нагревать газ до температуры T2. Газ будет изобарически расширяться, и поршень переместится из положения 1 в положение 2 на расстояние Δl. Сила давления газа при этом совершит работу над внешними телами. Так как p = const, то и сила давления F = p⋅S тоже постоянная. Поэтому работу этой силы можно рассчитать по формуле

(~A = F cdot Delta l = p cdot S cdot Delta l = p cdot Delta V,)

где ΔV — изменение объема газа.

  • Если объем газа не изменяется (изохорный процесс), то работа газа равна нулю.
  • Газ выполняет работу только в процессе изменения своего объема.

При расширении (ΔV > 0) газа совершается положительная работа (А > 0); при сжатии (ΔV < 0) газа совершается отрицательная работа (А < 0).

  • Если рассматривать работу внешних сил A ‘ (А ‘ = –А), то при расширении (ΔV > 0) газа А ‘ < 0); при сжатии (ΔV < 0) А ‘ > 0.

Запишем уравнение Клапейрона—Менделеева для двух состояний газа:

(~p cdot V_1 = nu cdot R cdot T_1, ; ; p cdot V_2 = nu cdot R cdot T_2,)

(~p cdot (V_2 — V_1) = nu cdot R cdot (T_2 — T_1) .)

Следовательно, при изобарном процессе

(~A = nu cdot R cdot Delta T .)

Если ν = 1 моль, то при ΔΤ = 1 К получим, что R численно равна A.

Отсюда вытекает физический смысл универсальной газовой постоянной: она численно равна работе, совершаемой 1 моль идеального газа при его изобарном нагревании на 1 К.

Не изобарный процесс

На графике p (V) при изобарном процессе работа равна площади заштрихованного на рисунке 2, а прямоугольника.

Рис. 2

Если процесс не изобарный (рис. 2, б), то кривую функции p = f(V) можно представить как ломаную, состоящую из большого количества изохор и изобар. Работа на изохорных участках равна нулю, а суммарная работа на всех изобарных участках будет равна

(~A = lim_{Delta V to 0} sum^n_{i=1} p_i cdot Delta V_i), или (~A = int p(V) cdot dV,)

т.е. будет равна площади заштрихованной фигуры.

При изотермическом процессе (Т = const) работа равна площади заштрихованной фигуры, изображенной на рисунке 2, в.

Определить работу, используя последнюю формулу, можно только в том случае, если известно, как изменяется давление газа при изменении его объема, т.е. известен вид функции p = f(V).

Таким образом, видно, что даже при одном и том же изменении объема газа работа будет зависеть от способа перехода (т.е. от процесса: изотермический, изобарный …) из начального состояния газа в конечное. Следовательно, можно сделать вывод, что

  • Работа в термодинамике является функцией процесса и не является функцией состояния.

Количество теплоты

Как известно, при различных механических процессах происходит изменение механической энергии W. Мерой изменения механической энергии является работа сил, приложенных к системе:

(~Delta W = A.)

При теплообмене происходит изменение внутренней энергии тела. Мерой изменения внутренней энергии при теплообмене является количество теплоты.

Количество теплоты — это мера изменения внутренней энергии в процессе теплообмена.

Таким образом, и работа, и количество теплоты характеризуют изменение энергии, но не тождественны внутренней энергии. Они не характеризуют само состояние системы (как это делает внутренняя энергия), а определяют процесс перехода энергии из одного вида в другой (от одного тела к другому) при изменении состояния и существенно зависят от характера процесса.

Основное различие между работой и количеством теплоты состоит в том, что

  • работа характеризует процесс изменения внутренней энергии системы, сопровождающийся превращением энергии из одного вида в другой (из механической во внутреннюю);
  • количество теплоты характеризует процесс передачи внутренней энергии от одних тел к другим (от более нагретых к менее нагретым), не сопровождающийся превращениями энергии.

Нагревание (охлаждение)

Опыт показывает, что количество теплоты, необходимое для нагревания тела массой m от температуры T1 до температуры T2, рассчитывается по формуле

(~Q = c cdot m cdot (T_2 — T_1) = c cdot m cdot Delta T,)

где c — удельная теплоемкость вещества (табличная величина);

(~c = dfrac{Q}{m cdot Delta T}.)

Единицей удельной теплоемкости в СИ является джоуль на килограмм-Кельвин (Дж/(кг·К)).

Удельная теплоемкость c численно равна количеству теплоты, которое необходимо сообщить телу массой 1 кг, чтобы нагреть его на 1 К.

Кроме удельной теплоемкости рассматривают и такую величину, как теплоемкость тела.

Теплоемкость тела C численно равна количеству теплоты, необходимому для изменения температуры тела на 1 К:

(~C = dfrac{Q}{Delta T} = c cdot m.)

Единицей теплоемкости тела в СИ является джоуль на Кельвин (Дж/К).

Парообразование (конденсация)

Для превращения жидкости в пар при неизменной температуре необходимо затратить количество теплоты

(~Q = L cdot m,)

где L — удельная теплота парообразования (табличная величина). При конденсации пара выделяется такое же количество теплоты.

Единицей удельной теплоты парообразования в СИ является джоуль на килограмм (Дж/кг).

Плавление (кристаллизация)

Для того чтобы расплавить кристаллическое тело массой m при температуре плавления, необходимо телу сообщить количество теплоты

(~Q = lambda cdot m,)

где λ — удельная теплота плавления (табличная величина). При кристаллизации тела такое же количество теплоты выделяется.

Единицей удельной теплоты плавления в СИ является джоуль на килограмм (Дж/кг).

Сгорание топлива

Количество теплоты, которое выделяется при полном сгорании топлива массой m,

(~Q = q cdot m,)

где q — удельная теплота сгорания (табличная величина).

Единицей удельной теплоты сгорания в СИ является джоуль на килограмм (Дж/кг).

Литература

Аксенович Л. А. Физика в средней школе: Теория. Задания. Тесты: Учеб. пособие для учреждений, обеспечивающих получение общ. сред, образования / Л. А. Аксенович, Н.Н.Ракина, К. С. Фарино; Под ред. К. С. Фарино. — Мн.: Адукацыя i выхаванне, 2004. — C. 129-133, 152-161.

Термодинамика

Термодинамика – это раздел физики, изучающий тепловые свойства макроскопических тел и систем тел, находящихся в состоянии теплового равновесия, на основе закона сохранения энергии, без учета внутреннего строения тел, составляющих систему.

Термодинамика не рассматривает микроскопические величины – размеры атомов и молекул, их массы и количество.

Законы термодинамики устанавливают связи между непосредственно наблюдаемыми физическими величинами, характеризующими состояние системы, такими как давление ​( p )​, объем ​( V )​, температура ​( T )​.

Содержание

  • Внутренняя энергия
  • Тепловое равновесие
  • Теплопередача
  • Количество теплоты. Удельная теплоемкость вещества
  • Работа в термодинамике
  • Уравнение теплового баланса
  • Первый закон термодинамики
  • Второй закон термодинамики
  • КПД тепловой машины
  • Принципы действия тепловых машин
  • Проблемы энергетики и охрана окружающей среды

Внутренняя энергия

Внутренняя энергия – это физическая величина, равная сумме кинетической энергии теплового движения частиц тела и потенциальной энергии их взаимодействия друг с другом.

Обозначение – ​( U )​, в СИ единица измерения – Джоуль (Дж).

В термодинамике внутренняя энергия зависит от температуры и объема тела.

Внутренняя энергия тел зависит от их температуры, массы и агрегатного состояния. С ростом температуры внутренняя энергия увеличивается. Наибольшая внутренняя энергия у вещества в газообразном состоянии, наименьшая – в твердом.

Внутренняя энергия идеального газа представляет собой только кинетическую энергию теплового движения его частиц; потенциальная энергия взаимодействия частиц равна нулю.

Внутренняя энергия идеального газа прямо пропорциональна его температуре, а от объема не зависит (молекулы идеального газа не взаимодействуют друг с другом):

где ​( i )​ – коэффициент, равный числу степеней свободы молекулы, ​( nu )​ – количество вещества, ​( R )​ – универсальная газовая постоянная, ​( T )​ – абсолютная температура.

Число степеней свободы равно числу возможных движений частицы.

Важно!
Для одноатомных газов коэффициент ​( i )​ = 3, для двухатомных газов ​( i )​ = 5.

На практике часто важно уметь находить изменение внутренней энергии:

При решении задач можно записать формулу для вычисления внутренней энергии, используя уравнение Менделеева–Клапейрона:

где ​( p )​ – давление, ​( V )​ – объем газа.

Внутренняя энергия реальных газов зависит как от температуры, так и от объема.

Изменить внутреннюю энергию можно за счет изменения температуры (при теплопередаче) и за счет изменения давления и объема (при совершении работы).

Тепловое равновесие

Тепловое равновесие – это состояние системы, при котором все ее макроскопические параметры остаются неизменными сколь угодно долго.

Величины, характеризующие состояние макроскопических тел без учета их молекулярного строения, называются макроскопическими параметрами. К ним относятся давление и температура, объем, масса, концентрация отдельных компонентов смеси газа и др. В состоянии теплового равновесия отсутствует теплообмен с окружающими телами, отсутствуют переходы вещества из одного агрегатного состояния в другое, не меняются температура, давление, объем.

Любая термодинамическая система переходит самопроизвольно в состояние теплового равновесия. Каждому состоянию теплового равновесия, в которых может находиться термодинамическая система, соответствует определенная температура.

Важно!
В состоянии теплового равновесия объем, давление могут быть различными в разных частях термодинамической системы, и только температура во всех частях термодинамической системы, находящейся в состоянии теплового равновесия, является одинаковой. Микроскопические процессы внутри тела не прекращаются и при тепловом равновесии: меняются положения молекул, их скорости при столкновениях.

Теплопередача

Теплопередача – процесс изменения внутренней энергии тела без совершения работы.

Существуют три вида теплопередачи: теплопроводность, конвекция и излучение (лучистый теплообмен). Теплопередача происходит между телами, имеющими разную температуру. Тепло передается от тела с более высокой температурой к телу с более низкой температурой.

Теплопроводность – это процесс переноса энергии от более нагретых тел (частей тела) к менее нагретым в результате движения и взаимодействия частиц тела. Высокую теплопроводность имеют металлы – так, лучшие проводники тепла – медь, золото, серебро. Теплопроводность жидкостей меньше, а газы являются плохими проводниками тепла. Пористые тела плохо проводят тепло, так как в порах содержится воздух. Вещества с низкой теплопроводностью используют в качестве теплоизоляторов. Теплопроводность невозможна в вакууме. При теплопроводности не происходит переноса вещества.

Явление теплопроводности газов аналогично явлению диффузии. Быстрые молекулы из слоя с более высокой температурой перемещаются в более холодный слой, а молекулы из холодного слоя перемещаются в более нагретый. За счет этого средняя кинетическая энергия молекул более теплого слоя уменьшается, и его температура становится ниже.

В жидкостях и твердых телах при повышении температуры какого-либо участка твердого тела или жидкости его частицы начинают колебаться сильнее. Соударяясь с соседними частицами, где температура ниже, эти частицы передают им часть своей энергии, и температура этого участка возрастает.

Конвекция – перенос энергии потоками жидкости или газа.

Объяснить механизм конвекции можно на основе теплового расширения тел и закона Архимеда. При нагревании объем жидкости увеличивается, а плотность уменьшается. Нагретый слой под действием силы Архимеда поднимается вверх, а холодный опускается вниз. Это естественная конвекция. Она возникает при неравномерном нагревании жидкости или газа снизу в поле тяготения.

При вынужденной конвекции перемещение вещества происходит под действием насосов, лопастей вентилятора. Такая конвекция применяется в состоянии невесомости. Интенсивность конвекции зависит от разности температур слоев среды и агрегатного состояния вещества. Конвекционные потоки поднимаются вверх. При конвекции происходит перенос вещества.

В твердых телах конвекция невозможна, так как частицы не могут из-за сильного взаимодействия покидать свои места. В вакууме конвекция также невозможна.

Примером конвективных потоков в природе являются ветры (бризы дневной и ночной, муссоны).

Излучение (лучистый теплообмен) – перенос энергии электромагнитными волнами. Перенос тепла излучением возможен в вакууме. Источником излучения является любое тело, температура которого отлична от нуля К. При поглощении энергия теплового излучения переходит во внутреннюю энергию. Темные тела быстрее нагреваются излучением, чем тела с блестящей поверхностью, но и остывают быстрее. Мощность излучения зависит от температуры тела. С увеличением температуры тела энергия излучения увеличивается. Чем больше площадь поверхности тела, тем интенсивнее излучение.

Количество теплоты. Удельная теплоемкость вещества

Количество теплоты – это скалярная физическая величина, равная энергии, которую тело получило или отдало при теплопередаче.

Обозначение – ​( Q )​, в СИ единица измерения – Дж.

Удельная теплоемкость – это скалярная физическая величина, численно равная количеству теплоты, которое тело массой 1 кг получает или отдает при изменении его температуры на 1 К.

Обозначение – ​( c )​, в СИ единица измерения – Дж/(кг·К).

Удельная теплоемкость определяется не только свойствами вещества, но и тем, в каком процессе осуществляется теплопередача. Поэтому выделяют удельную теплоемкость газа при постоянном давлении – ​( c_P )​ и удельную теплоемкость газа при постоянном объеме – ​( c_V )​. Для нагревания газа на 1 К при постоянном давлении требуется большее количество теплоты, чем при постоянном объеме – ​( c_P > c_V )​.

Формула для вычисления количества теплоты, которое получает тело при нагревании или отдает при охлаждении:

где ​( m )​ – масса тела, ​( c )​ – удельная теплоемкость, ​( T_2 )​ – конечная температура тела, ​( T_1 )​ – начальная температура тела.

Важно!
При решении задач на расчет количества теплоты при нагревании или охлаждении можно не переводить температуру в кельвины. Так как 1К=1°С, то​( Delta T=Delta t )​.

Работа в термодинамике

Работа в термодинамике равна изменению внутренней энергии тела.

Обозначение работы газа – ​( A’ )​, единица измерения в СИ – джоуль (Дж). Обозначение работы внешних сил над газом – ​( A )​.

Работа газа ​( A’ =-A )​.

Работой расширения идеального газа называют работу, которую газ совершает против внешнего давления.

Работа газа положительна при расширении и отрицательна при его сжатии. Если объем газа не изменяется (изохорный процесс), то работы газ не совершает.

Графически работа газа может быть вычислена как площадь фигуры под графиком зависимости давления от объема в координатных осях ​( (p,V) )​, ограниченная графиком, осью ​( V )​ и перпендикулярами, проведенными из точек начального и конечного значений объема.

Формула для вычисления работы газа:

в изобарном процессе ​( A’=pcdotDelta V. )

в изотермическом процессе ( A’=frac{m}{M}RTlnfrac{V_2}{V_1}. )

Уравнение теплового баланса

Если система тел является теплоизолированной, то ее внутренняя энергия не будет изменяться несмотря на изменения, происходящие внутри системы. Если ​( A )​ = 0, ​( Q )​ = 0, то и ​( Delta U )​ = 0 .

При любых процессах, происходящих в теплоизолированной системе, ее внутренняя энергия не изменяется (закон сохранения внутренней энергии).

Рассмотрим теплоизолированную систему из двух тел с разными температурами. При контакте между ними будет проходить теплообмен. Тело с большей температурой будет отдавать некоторое количество теплоты, а тело с меньшей температурой – получать, пока температуры тел не станут равными. Так как суммарная внутренняя энергия не должна изменяться, то, на сколько уменьшится внутренняя энергия более нагретого тела, на столько должна увеличиться внутренняя энергия второго тела. Так как работа не совершается, то изменение внутренней энергии равно количеству теплоты.

Количество теплоты, отданное при теплообмене телом с большей температурой, равно по модулю количеству теплоты, полученному телом с меньшей температурой:

Другая формулировка: если тела образуют замкнутую систему и между ними происходит только теплообмен, то алгебраическая сумма отданных ​( Q_{отд} )​ и полученных ( Q_{пол} ) количеств теплоты равна нулю:

Первый закон термодинамики

Закон сохранения и превращения энергии, распространенный на тепловые явления, называется первым законом (началом) термодинамики.

Можно дать формулировку этого закона исходя из способов изменения внутренней энергии.

Изменение внутренней энергии системы при переходе ее из одного состояния в другое равно сумме работы внешних сил и количества теплоты, переданного системе:

Если рассматривать работу самой системы над внешними телами, то закон может быть сформулирован так:

количество теплоты, переданное системе, идет на изменение ее внутренней энергии и совершение системой работы над внешними телами:

Если система изолирована и над ней не совершается работа и нет теплообмена с внешними телами, то в этом случае внутренняя энергия не изменяется. Если к системе не поступает теплота, то работа системой может совершаться только за счет уменьшения внутренней энергии. Это значит, что невозможно создать вечный двигатель – устройство, способное совершать работу без каких-либо затрат топлива.

Первый закон термодинамики для изопроцессов

Изотермический процесс: ( Q=A’,(T=const, Delta U=0) )
Физический смысл: все переданное газу тепло идет на совершение работы.

Изобарный процесс: ( Q=Delta U+A’ )
Физический смысл: подводимое к газу тепло идет на увеличение его внутренней энергии и на совершение газом работы.

Изохорный процесс: ( Q=Delta U,(V=const, A’=0) )
Физический смысл: внутренняя энергия газа увеличивается за счет подводимого тепла.

Адиабатный процесс: ​( Delta U=-A’ )​ или ​( A=Delta U,mathbf{(Q=0)} )
Физический смысл: внутренняя энергия газа уменьшается за счет совершения газом работы. Температура газа при этом понижается.

Задачи об изменении внутренней энергии тел

Такие задачи можно разделить на группы:

  • При взаимодействии тел изменяется их внутренняя энергия без совершения работы над внешней средой.
  • Рассматриваются явления, связанные с превращением одного вида энергии в другой при взаимодействии двух тел. В результате происходит изменение внутренней энергии одного тела вследствие совершенной им или над ним работы.

При решении задач первой группы:

  • установить, у каких тел внутренняя энергия уменьшается, а у каких – возрастает;
  • составить уравнение теплового баланса ​( (Delta U=0) ), при записи которого в выражении ​( Q =cm(t_2 – t_1) )​ для изменения внутренней энергии нужно вычитать из конечной температуры тела начальную и суммировать члены с учетом получающегося знака;
  • решить полученное уравнение относительно искомой величины;
  • проверить решение.

При решении задач второй группы:

  • убедиться, что в процессе взаимодействия тел теплота извне к ним не подводится, т.е. действительно ли ​( Q = 0 )​;
  • установить, у какого из двух взаимодействующих тел изменяется внутренняя энергия и что является причиной этого изменения – работа, совершенная самим телом, или работа, совершенная над телом;
  • записать уравнение ​( Q = Delta U + A )​ для тела, у которого изменяется внутренняя энергия, учитывая знак перед работой и КПД рассматриваемого процесса;
  • если работа совершается за счет уменьшения внутренней энергии одного из тел, то ​( А= -Delta U )​, а если внутренняя энергия тела увеличивается за счет работы, совершенной над телом, то ​( A=Delta U )​;
  • найти выражения для ​( Delta U )​ и ​( A )​;
  • подставить в исходное уравнение вместо ( Delta U ) и ( A ) выражения для них, получить окончательное соотношение для определения искомой величины;
  • решить полученное уравнение относительно искомой величины;
  • проверить решение.

Второй закон термодинамики

Все процессы в природе протекают только в одном направлении. В обратном направлении самопроизвольно они протекать не могут. Необратимым называется процесс, обратный которому может протекать только как составляющая более сложного процесса.

Примеры необратимых процессов:

  • переход тепла от более нагретого тела к менее нагретому телу;
  • переход механической энергии во внутреннюю энергию.

Первый закон термодинамики ничего не говорит о направлении процессов в природе.

Второй закон термодинамики выражает необратимость процессов, происходящих в природе. Существует несколько его формулировок.

Второй закон термодинамики (формулировка Клаузиуса):
невозможно перевести тепло от более холодной системы к более горячей при отсутствии одновременных изменений в обеих системах или окружающих телах.

Второй закон термодинамики (формулировка Кельвина):
невозможно осуществить такой периодический процесс, единственным результатом которого было бы получение работы за счет теплоты, взятой от одного источника.

Эта формулировка говорит также и о том, что невозможно построить вечный двигатель второго рода, то есть двигатель, совершающий работу за счет охлаждения какого-либо одного тела.

Важно!
В формулировке второго закона термодинамики большое значение имеют слова «единственным результатом». Если процессы, о которых идет речь, не являются единственными, то запреты снимаются. Например, в холодильнике происходит передача тепла от более холодного тела к нагретому и при этом осуществляется компенсирующий процесс превращения механической энергии окружающих тел во внутреннюю энергию.

Второй закон термодинамики выполняется для систем с огромным числом частиц. В системах с малым количеством частиц возможны флуктуации – отклонения от равновесия.

КПД тепловой машины

Коэффициентом полезного действия (КПД) тепловой машины (двигателя) называется отношение работы ​( A )​, совершаемой двигателем за цикл, к количеству теплоты ​( Q_1 )​, полученному за цикл от нагревателя:

Тепловая машина с максимальным КПД была создана Карно. В машине осуществляется круговой процесс (цикл Карно), при котором после ряда преобразований система возвращается в начальное состояние.

Цикл Карно состоит из четырех стадий:

  1. Изотермическое расширение (на рисунке — процесс 1–2). В начале процесса рабочее тело имеет температуру ​( T_1 )​, то есть температуру нагревателя. Затем тело приводится в контакт с нагревателем, который изотермически (при постоянной температуре) передает ему количество теплоты ​( Q_1 )​. При этом объем рабочего тела увеличивается.
  2. Адиабатное расширение (на рисунке — процесс 2–3). Рабочее тело отсоединяется от нагревателя и продолжает расширяться без теплообмена с окружающей средой. При этом его температура уменьшается до температуры холодильника ​( T_2 )​.
  3. Изотермическое сжатие (на рисунке — процесс 3–4). Рабочее тело, имеющее к тому времени температуру ​( T_2 )​, приводится в контакт с холодильником и начинает изотермически сжиматься, отдавая холодильнику количество теплоты ​( Q_2 )​.
  4. Адиабатное сжатие (на рисунке — процесс 4–1). Рабочее тело отсоединяется от холодильника. При этом его температура увеличивается до температуры нагревателя ​( T_1 )​.

КПД цикла Карно:

Отсюда видно, что КПД цикла Карно с идеальным газом зависит только от температуры нагревателя ​( (T_1) )​ и холодильника ( (T_2) ).

Из уравнения следуют выводы:

  • для повышения КПД тепловой машины нужно увеличить температуру нагревателя и уменьшить температуру холодильника;
  • КПД тепловой машины всегда меньше 1.

Цикл Карно обратим, так как все его составные части являются равновесными процессами.

КПД тепловых двигателей: двигатель внутреннего сгорания — 30%, дизельный двигатель — 40%, паровая турбина — 40%, газовая турбина — 25–30%.

Принципы действия тепловых машин

Тепловым двигателем называют устройство, преобразующее внутреннюю энергию топлива в механическую энергию.

Основные части теплового двигателя:

  • Нагреватель – тело с постоянной температурой, преобразующее внутреннюю энергию топлива в энергию газа. В каждом цикле работы двигателя нагреватель передает рабочему телу некоторое количество теплоты.
  • Рабочее тело – это газ, совершающий работу при расширении.
  • Холодильник – тело с постоянной температурой, которому рабочее тело передает часть тепла.

Любая тепловая машина получает от нагревателя некоторое количество теплоты ​( Q_1 )​ и передает холодильнику количество теплоты ​( Q_2 )​. Так как ​( Q_1 > Q_2 )​, то совершается работа ​( A’ = Q_1 – Q_2 )​.

Тепловой двигатель должен работать циклически, поэтому расширение рабочего тела должно сменяться его сжатием. Работа расширения газа должна быть больше работы сжатия, совершаемой внешними силами (условие совершения полезной работы). Температура газа при расширении должна быть выше, чем температура при сжатии. Тогда давление газа во всех промежуточных состояниях при сжатии будет меньше, чем при расширении.

В реальных тепловых машинах нагревателем является камера сгорания. В них рабочее тело нагревается за счет тепла, выделяющегося при сгорании топлива. Количество теплоты, выделяющееся при сгорании топлива, вычисляется по формуле:

где ​( q )​ – удельная теплота сгорания топлива, ​( m )​ – масса топлива.

Холодильником чаще всего у реальных двигателей служит атмосфера.

Виды тепловых двигателей:

  • паровой двигатель;
  • турбина (паровая, газовая);
  • двигатель внутреннего сгорания (карбюраторный, дизельный);
  • реактивный двигатель.

Тепловые двигатели широко используются на всех видах транспорта: на автомобилях – двигатели внутреннего сгорания; на железнодорожном транспорте – дизельные двигатели (на тепловозах); на водном транспорте – турбины; в авиации – турбореактивные и реактивные двигатели. На тепловых и атомных электростанциях тепловые двигатели приводят в движение роторы генераторов переменного тока.

Проблемы энергетики и охрана окружающей среды

Тепловые двигатели широко применяются на транспорте и в энергетике (тепловые и атомные электростанции). Использование тепловых двигателей сильно влияет на состояние биосферы Земли. Можно выделить следующие вредные факторы:

  • при сжигании топлива используется кислород из атмосферы, что приводит к снижению содержания кислорода в воздухе;
  • при сгорании топлива в атмосферу выделяется углекислый газ. Концентрация углекислого газа в атмосфере повышается. Это изменяет прозрачность атмосферы, так как молекулы углекислого газа поглощают инфракрасное излучение, что ведет к повышению температуры (парниковый эффект);
  • при сжигании угля в атмосферу поступают азотные, серные соединения и соединения свинца, вредные для здоровья человека.

Решение проблемы охраны окружающей среды от вредного воздействия предприятий тепловой энергетики требует комплексного подхода. Массовыми загрязнителями при работе тепловых электростанций являются летучая зола, диоксид серы и оксиды азота. Методы сокращения выбросов зависят от свойств топлива и условия его сжижения. Предотвращение загрязнения летучей золой достигается очисткой всего объема продуктов сгорания твердого топлива в высокоэффективных золоуловителях. Сокращение выбросов оксидов азота с продуктами сгорания топлива на тепловых электростанциях, а также в парогазовых и газотурбинных установках обеспечивается, главным образом, технологией сжигания топлива. Уменьшение выброса диоксида серы может быть достигнуто различными методами облагораживания и переработки топлива вне тепловых электростанций либо непосредственно на тепловых электростанциях, а также очисткой дымовых газов.

Контроль за выбросом вредных веществ электростанций осуществляется специальными приборами.

В ряде случаев достаточно эффективным решением вопросов очистки выбросов в атмосферу остается сооружение фильтров-уловителей и дымовых труб. У дымовой трубы два назначения: первое — создавать тягу и тем самым заставлять воздух — обязательный участник процесса горения — в нужном количестве и с должной скоростью входить в топку; второе — отводить продукты горения (вредные газы и имеющиеся в дыме твердые частицы) в верхние слои атмосферы. Благодаря непрерывному турбулентному движению вредные газы и твердые частицы уносятся далеко от источника их возникновения и рассеиваются.

Для рассеивания сернистого ангидрида, содержащегося в дымовых трубах тепловых электростанций, сооружаются дымовые трубы высотой 180, 250 и 320 м. Тепловые электростанции России, работающие на твердом топливе, за год выбрасывают в отвалы около 100 млн т золы и шлаков. Зола и шлаки занимают большие площади земель, неблагоприятно влияют на окружающую среду.

Более половины всех загрязнений создает транспорт. Один из путей решения проблемы защиты окружающей среды заключается в переходе на дизельные двигатели, электродвигатели, повышение КПД.

Алгоритм решения задач раздела «Термодинамика»:

  • выделить систему тел и определить ее тип (замкнутая, адиабатически замкнутая, замкнутая в механическом смысле, незамкнутая);
  • выяснить, как изменяются параметры состояния ​( (p,V,T) )​ и внутренняя энергия каждого тела системы при переходе из одного состояния в другое;
  • записать уравнения, связывающие параметры двух состояний системы, формулы для расчета изменения внутренней энергии каждого тела системы при переходе из одного состояния в другое;
  • определить изменение механической энергии системы и работу внешних сил по изменению ее объема;
  • записать формулу первого закона термодинамики или закона сохранения и превращения энергии;
  • решить систему уравнений относительно искомой величины;
  • проверить решение.

Основные формулы раздела «Термодинамика»

Термодинамика

3 (60.19%) 211 votes

Содержание:

  • Определение и формула внутренней энергии
  • Внутренняя энергия идеального газа
  • Первое начало термодинамики
  • Единицы измерения внутренней энергии
  • Примеры решения задач

Определение и формула внутренней энергии

Определение

Внутренней энергией тела (системы) называют энергию, которая связана со всеми видами движения и взаимодействия частиц,
составляющих тело (систему), включая энергию взаимодействия и движения сложных частиц.

Из выше сказанного следует, что к внутренней энергии не относят кинетическую энергию движения центра масс системы и потенциальную энергию системы, вызванную действием внешних сил. Это энергия, которая зависит только от термодинамического состояния системы.

Внутреннюю энергию чаще всего обозначают буквой U. При этом бесконечно малое ее изменение станет обозначаться dU. Считается, что dU является положительной величиной, если внутренняя энергия системы растет, соответственно, внутренняя энергия отрицательна, если внутренняя энергия уменьшается.

Внутренняя энергия системы тел равна сумме внутренних энергий каждого отдельного тела плюс энергия взаимодействия между телами внутри системы.

Внутренняя энергия – функция состояния системы. Это означает, что изменение внутренней энергии системы при переходе системы из одного состояния в другое не зависит от способа перехода (вида термодинамического процесса при переходе) системы и равно разности внутренних энергий конечного и начального состояний:

$$Delta U=U_{2}-U_{1}(1)$$

Для кругового процесса полное изменение внутренней энергии системы равно нулю:

$$oint d U=0(2)$$

Для системы, на которую не действуют внешние силы и находящуюся в состоянии макроскопического покоя, внутренняя энергия – полная энергия системы.

Внутренняя энергия может быть определена только с точностью до некоторого постоянного слагаемого (U0), которое не определимо
методами термодинамики. Однако, данный факт не существенен, так как при использовании термодинамического анализа, имеют дело с изменениями
внутренней энергии, а не абсолютными ее величинами. Часто U_0 полагают равным нулю. При этом в качестве внутренней энергии рассматривают ее
составляющие, которые изменяются в предлагаемых обстоятельствах.

Внутреннюю энергию считают ограниченной и ее граница (нижняя) соответствует T=0K.

Внутренняя энергия идеального газа

Внутренняя энергия идеального газа зависит только от его абсолютной температуры (T) и пропорциональна массе:

$$U=int_{0}^{T} C_{V} d T+U_{0}=mleft(int_{0}^{T} c_{V} d T+u_{0}right)$$

где CV – теплоемкость газа в изохорном процессе; cV — удельная теплоемкость газа в изохорном процессе;
$u_{0}=frac{U_{0}}{m}$ – внутренняя энергия, приходящаяся на единицу массы газа
при абсолютном нуле температур. Или:

$$d U=frac{i}{2} nu R d T(4)$$

i – число степеней свободы молекулы идеального газа, v – число молей газа, R=8,31 Дж/(моль•К) – универсальная газовая постоянная.

Первое начало термодинамики

Как известно первое начало термодинамики имеет несколько формулировок. Одна из формулировок, которую предложил К.
Каратеодори говорит о существовании внутренней энергии как составляющей полной энергии системы.Она является функцией состояния,
в простых системах зависящей от объема (V), давления (p), масс веществ (mi), которые составляют данную систему:
$U=Uleft(p, V, sum m_{i}right)$ . В формулировке, которую дал Каратеодори внутренняя
энергия не является характеристической функцией своих независимых переменных.

В более привычных формулировках первого начала термодинамики, например, формулировке Гельмгольца внутренняя энергия системы вводится как физическая характеристика системы. При этом поведение системы определено законом сохранения энергии. Гельмгольц не определяет внутреннюю энергию как функцию конкретных параметров состояния системы:

$$Delta U=Q-A(5)$$

$Delta U$ – изменение внутренней энергии в равновесном процессе,
Q – количество теплоты, которое получила система в рассматриваемом процессе, A – работа, которую система совершила.

Единицы измерения внутренней энергии

Основной единицей измерения внутренней энергии в системе СИ является: [U]=Дж

Примеры решения задач

Пример

Задание. Вычислите, на какую величину изменится внутренняя энергия гелия имеющего массу 0,1 кг, если его температура увеличилась на 20С.

Решение. При решении задачи считаем гелий одноатомным идеальным газом, тогда для расчетов можно применить формулу:

$$d U=frac{i}{2} nu R d T(1.1)$$

Так как мы имеем с одноатомным газом, то $i=3 ; nu=frac{m}{mu}$, молярную массу
($mu$) возьмем из таблицы Менделеева
($mu_{H e}=4 cdot 10^{-3}$ кг/моль). Масса газа в представленном процессе
не изменяется, следовательно, изменение внутренней энергии равно:

$$Delta U=int_{T_{1}}^{T_{2}} d U=frac{i}{2} frac{m}{mu} R int_{T_{1}}^{T_{2}} d T=frac{i}{2} frac{m}{mu} Rleft(T_{2}-T_{1}right)$$

где $T_{2}-T_{1}=Delta T=Delta t$

Все величины необходимые для вычислений имеются:

$Delta U=frac{3}{2} cdot frac{0,1}{4 cdot 10^{-3}} cdot 20 cdot 8,31=6,2 cdot 10^{3}$ (Дж)

Ответ. $Delta U=6,2 cdot 10^{3}$ (Дж)

236

проверенных автора готовы помочь в написании работы любой сложности

Мы помогли уже 4 430 ученикам и студентам сдать работы от решения задач до дипломных на отлично! Узнай стоимость своей работы за 15 минут!

Пример

Задание. Идеальный газ расширили в соответствии с законом, который изображен графиком на рис.1. от начального объема
V0. При расширении объем сал равен $V=tau V_{0}$ .
Каково приращение внутренней энергии газа в заданном процессе? Коэффициент адиабаты равен $gamma$.

Решение. Исходя из рисунка, уравнение процесса можно представить аналитически как:

$$p=alpha V(2.1)$$

Показатель адиабаты связан с числом степеней свободы газа выражением:

$$gamma=frac{i+2}{i}(2.2)$$

Выразим число степеней свободы из (2.2):

$$i=frac{2}{gamma-1}$$

Приращение внутренней энергии для постоянной массы газа (см. Пример 1) найдем в соответствии с формулой:

$$Delta U=frac{i}{2} nu R Delta T(2.4)$$

Запишем уравнения состояний идеального газа для точек (1) и (2) рис.1:

$$
begin{aligned}
p V &=nu R T(2.5) \
p_{0} V_{0} &=nu R T_{0}
end{aligned}
$$

Тогда приращение температуры, учитывая уравнение процесса и выражения (2.5), (2.6) найдем как:

$$
begin{aligned}
Delta T &=T-T_{0}=frac{1}{nu R}left(p V-p_{0} V_{0}right)=frac{1}{nu R}left(alpha V cdot V-alpha V_{0} V_{0}right)=\
&=frac{1}{nu R}left(alpha tau V_{0} cdot tau V_{0}-alpha V_{0} V_{0}right)=frac{1}{nu R} V_{0}^{2} alphaleft(tau^{2}-1right)(2.7)
end{aligned}
$$

Подставим $Delta T$ в выражение для
$Delta U$ (2.4), получим:

$Delta U=frac{i}{2} v R frac{1}{v R} V_{0}^{2} alphaleft(tau^{2}-1right)=frac{1}{gamma-1} V_{0}^{2} alphaleft(tau^{2}-1right)$

Ответ. $Delta U=frac{1}{gamma-1} V_{0}^{2} alphaleft(tau^{2}-1right)$

Читать дальше: Формула времени.

Внутренняя энергия тела


Внутренняя энергия тела

4.1

Средняя оценка: 4.1

Всего получено оценок: 229.

4.1

Средняя оценка: 4.1

Всего получено оценок: 229.

При рассмотрении механических явлений кинетическая и потенциальная энергия тел не зависят от их атомарно-молекулярного строения. Величина механической энергии зависит только от скорости тела (кинетическая энергия), как цельного объекта, и расположения тела относительно других тел (потенциальная энергия). В молекулярно-кинетической теории тело рассматривается как система из составляющих его частиц; для объяснения многих явлений, связанных с процессами теплообмена (нагрев и охлаждение) и ряда других эффектов, было введено понятие внутренней энергии тела.

Определение внутренней энергии тела

В результате многочисленных наблюдений и экспериментов ученые к началу ХIХ века пришли к пониманию молекулярного устройства всех тел и веществ в различных агрегатных состояниях. Стало понятно, что мельчайшими частицами являются атомы, из которых как из “кирпичиков” состоят молекулы. При ненулевой абсолютной температуре молекулы и атомы находятся в состоянии постоянного хаотического движения. Каждая движущаяся частица имеет кинетическую энергию, сумма которых будет кинетической составляющей Ek внутренней энергии. Между молекулами существует также взаимодействие, обусловленное силами электрического притяжения и отталкивания, зависящими от взаимного расположения частиц. Значит вся совокупность частиц данного тела обладает определенной величиной потенциальной энергии Eп.

Согласно молекулярно-кинетической теории внутренняя энергия U — это сумма потенциальной энергии взаимодействия молекул Eп, составляющих тело, и кинетической энергии их хаотического теплового движения Ek:

$ U = { Ek + Eп } $ (1).

Рис. 1. Понятие внутренней энергии тела

Необходимость введения понятия о внутренней энергии обосновал в 1851 г. английский физик У. Кельвин. Данное им определение сохранилось до сих пор, но для названия он использовал старое словосочетание — “механическая энергия”. Название “внутренняя энергия” (от англ. — internal energy) ввел англичанин У. Ренкин.

Величина внутренней энергии

Внутренняя энергия тела изменяется под воздействием внешней среды, получая или отдавая тепло Q, либо совершая работу А.

Экспериментально можно измерить только изменение внутренней энергии. Из первого закона термодинамики следует формула, устанавливающая функциональную связь между этими величинами:

$ ΔU ={ Q — A } $ (2).

Величина совершенной работы и полученное (или отданное) тепло поддаются измерению, а значит можно определить изменение внутренней энергии ΔU. Знак минус перед величиной работы означает, что работу совершило тело за счет своей внутренней энергии. Например, это может быть работа горячего пара, приводящего в механическое движение поршень. Если наоборот — над телом была совершена работа внешних сил, то в формуле (2) перед A будет знак плюс. Например, при забивании гвоздя молотком происходит его нагрев, то есть внутренняя энергия увеличивается.

Заметим, что из определения понятия внутренней энергии и формулы (2) следует, что измерить возможно только изменение этой величины (“дельту”), а не ее абсолютную величину.

Способы изменения внутренней энергии

Все способы изменения внутренней энергии тела могут быть отнесены либо к совершенным с помощью работы, либо к процессам теплопередачи (теплопереноса):

  • Внутренняя энергия тела U увеличивается, если над ним совершается работа A. Если само тело совершает работу, то его внутренняя энергия будет уменьшаться;
  • Тепло Q может быть передано телу с помощью одного (или нескольких) механизмов теплопередачи (теплопроводности, конвекции, излучения) :
  • Механизм теплопроводности связан с передачей тепла от более нагретого тела к менее нагретому. Например, когда в горячий чай погружается холодная металлическая ложка, то очень быстро она нагреется за счет этого механизма, суть которого заключается в передаче энергии “горячих” молекул чая молекулам металлической ложки;
  • Конвекция представляет собой перенос внутренней энергии в газах и жидкостях в результате циркуляции потоков вещества и последующего перемешивания. Простым примером для понимания этого механизма служит нагрев воздуха в квартирах от батарей центрального отопления. Нагретый вблизи батареи воздух начинает подниматься вверх (“всплывать”). Его место занимает холодный (более тяжелый) воздух. Таким образом, с помощью перемешивания этих потоков, происходит общий нагрев воздуха в квартире.

Рис. 2. Теплопроводность и конвекция – способы передачи тепловой энергии
  • Передача тепла с помощью излучения происходит в виде электромагнитных волн. Этот механизм включает в себя три стадии: сначала часть внутренней энергии тела преобразуется в энергию электромагнитных волн, далее следует их распространение в пространстве, которое заканчивается поглощением другим телом, в результате чего происходит изменение внутренней энергии обоих тел.

Рис. 3. Излучение – способ передачи тепловой энергии

Кроме кинетической и потенциальной энергии частиц вклад во внутреннюю энергию могут давать еще:

  • Химическая энергия, являющаяся результатом химических реакций между молекулами разных веществ. Примером реакции с выделением тепла Q (экзотермическая реакция) может служить реакция горения фосфора в кислороде:

$ 4P + 5O2 = 2P2O5 + Q $ (3);

  • Энергия электронов, вращающихся вокруг ядер в атомах;
  • Ядерная энергия.

Таким образом, в зависимости от различных условий, в которых находится вещество, те или иные энергетические источники будут давать определяющий вклад в изменение внутренней энергий. То есть внутренняя энергия — это не отдельный (специфический) вид энергии, а некоторый набор из составных частей (видов) полной энергии системы.

Заключение

Что мы узнали?

Итак, мы узнали, что внутренняя энергия тела — это сумма потенциальной энергии взаимодействия молекул, составляющих тело, и кинетической энергии их хаотического теплового движения. При определенных условиях внутренняя энергия может изменяться за счет химической и ядерной энергий. Внутренняя энергия тела изменяется под воздействием внешней средой, получая или отдавая тепло Q, либо совершая работу А. Тепло Q может быть передано телу с помощью следующих механизмов теплопередачи: теплопроводности, конвекции и излучения.

Тест по теме

Доска почёта

Доска почёта

Чтобы попасть сюда — пройдите тест.

  • Александр Коновалов

    5/5

  • Надежда Романова

    5/5

Оценка доклада

4.1

Средняя оценка: 4.1

Всего получено оценок: 229.


А какая ваша оценка?

OBRAZOVALKA.COM

OBRAZOVALKA.COM — образовательный портал
Наш сайт это площадка для образовательных консультаций, вопросов и ответов для школьников и студентов .

  • Наша доска вопросов и ответов в первую очередь ориентирована на школьников и студентов из России и стран СНГ, а также носителей русского языка в других странах.
  • Для посетителей из стран СНГ есть возможно задать вопросы по таким предметам как Украинский язык, Белорусский язык, Казакхский язык, Узбекский язык, Кыргызский язык.
  • На вопросы могут отвечать также любые пользователи, в том числе и педагоги.


    Консультацию по вопросам и домашним заданиям может получить любой школьник или студент.

    Понравилась статья? Поделить с друзьями:
  • Как составить бюджет столовой
  • Как найти длину днк в биологии
  • Как найти своего любимого молитва
  • Как составить предложение на татарском языке со словом
  • Как найти историю уведомлений на андроид