Как найти детерминант матрицы 3х3


Загрузить PDF


Загрузить PDF

Определители матриц часто используются в вычислениях, в линейной алгебре и аналитической геометрии. Вне академического мира определители матриц постоянно требуются инженерам и программистам, в особенности тем, кто работает с компьютерной графикой. Если вы уже знаете, как найти определитель матрицы размерностью 2×2, то из инструментов для нахождения определителя матрицы 3×3 вам будут необходимы только сложение, вычитание и умножение.

  1. Изображение с названием Find the Determinant of a 3X3 Matrix Step 1

    1

    Запишите матрицу размерностью 3 x 3. Запишем матрицу размерностью 3 x 3, которую обозначим M, и найдем ее определитель |M|. Далее приводится общая форма записи матрицы, которую мы будем использовать, и матрица для нашего примера:

    • M={begin{pmatrix}a_{{11}}&a_{{12}}&a_{{13}}\a_{{21}}&a_{{22}}&a_{{23}}\a_{{31}}&a_{{32}}&a_{{33}}end{pmatrix}}={begin{pmatrix}1&5&3\2&4&7\4&6&2end{pmatrix}}
  2. Изображение с названием Find the Determinant of a 3X3 Matrix Step 2

    2

    Выберите строку или столбец матрицы. Эта строка (или столбец) будет опорной. Результат будет одинаков, независимо от того, какую строку или какой столбец вы выберете. В данном примере давайте возьмем первую строку. Чуть позже вы найдете несколько советов касательно того, как выбирать строку или столбец, чтобы упростить вычисления.

    • Давайте выберем первую строку матрицы M в нашем примере. Обведите числа 1 5 3. В общей форме обведите a11 a12 a13.
  3. Изображение с названием Find the Determinant of a 3X3 Matrix Step 3

    3

    Зачеркните строку или столбец с первым элементом. Обратитесь к опорной строке (или к опорному столбцу) и выберите первый элемент. Проведите горизонтальную и вертикальную черту через этот элемент, вычеркнув таким образом столбец и строку с этим элементом. Должно остаться четыре числа. Будем считать эти элементы новой матрицей размерностью 2 x 2.

    • В нашем примере, опорной строкой будет 1 5 3. Первый элемент находится на пересечении первого столбца и первой строки. Вычеркните строку и столбец с этим элементом, то есть первую сроку и первый столбец. Запишите оставшиеся элементы в виде матрицы 2 x 2:
    •  1  5 3
    •  2  4 7
    •  4  6 2
  4. Изображение с названием Find the Determinant of a 3X3 Matrix Step 4

    4

    Найдите определитель матрицы 2 x 2. Запомните, что определитель матрицы {begin{pmatrix}a&b\c&dend{pmatrix}} вычисляется как ad — bc.[1]
    Опираясь на это, вы можете вычислить определитель полученной матрицы 2 x 2, которую, если хотите, можете обозначить как X. Умножьте два числа матрицы X, соединенных по диагонали слева направо (то есть так: ). Затем вычтите результат умножения двух других чисел по диагонали справа налево (то есть так: / ). Используйте эту формулу, чтобы вычислить определитель матрицы, которую вы только что получили.

    • В нашем примере определитель матрицы {begin{pmatrix}4&7\6&2end{pmatrix}} = 4*2 — 7*6 = -34.
    • Этот определитель называется минором элемента, который мы выбрали в нашей первоначальной матрице.[2]
      Другими словами, мы только что нашли минор a11.
  5. Изображение с названием Find the Determinant of a 3X3 Matrix Step 5

    5

    Умножьте полученный ответ на выбранный элемент матрицы M. Вспомните, какой элемент из опорной строки (или столбца) мы использовали, когда вычеркивали другие элементы строки и столбца, чтобы получить новую матрицу. Умножьте этот элемент на полученный минор (определитель матрицы 2×2, которую мы обозначили X).

    • В нашем примере мы выбирали элемент a11, который равнялся 1. Умножим его на -34 (определитель матрицы 2×2), и у нас получится 1*-34 = -34.
  6. Изображение с названием Find the Determinant of a 3X3 Matrix Step 6

    6

    Определите знак полученного результата. Далее вам понадобится умножить полученный результат на 1, либо на -1, чтобы получить алгебраическое дополнение (кофактор) выбранного элемента. Знак кофактора будет зависеть от того, в каком месте матрицы 3×3 стоит элемент. Запомните эту простую схему знаков, чтобы знать знак кофактора:

    • + — +
    • — + —
    • + — +
    • Поскольку мы работали с элементом a11, для которого стоит знак +, то мы будем умножать полученное значение на +1 (то есть оставим его как есть). Алгебраическое дополнение нашего элемента будет равно -34.
    • Вы также можете найти знак алгебраического дополнения по формуле (-1)i+j, где i и j — номер столбца и строки выбранного элемента соответственно.[3]
  7. Изображение с названием Find the Determinant of a 3X3 Matrix Step 7

    7

    Повторите все вышеописанные действия со вторым элементом опорной строки (или столбца). Вернитесь к исходной матрице размерностью 3×3 и строке, которую мы обвели в самом начале вычислений. Повторите все действия с этим элементом:

  8. Изображение с названием Find the Determinant of a 3X3 Matrix Step 8

    8

    Повторите с третьим элементом. Далее вам понадобится найти еще одно алгебраическое дополнение. Вычислите его для последнего элемента опорной строки или опорного столбца. Далее приводится краткое описание того, как вычисляется алгебраическое дополнение для a13 в нашем примере:

    • Зачеркните первую строку и третий столбец, чтобы получить матрицу {begin{pmatrix}2&4\4&6end{pmatrix}}
    • Ее определитель равен 2*6 — 4*4 = -4.
    • Умножьте результат на элемент a13: -4 * 3 = -12.
    • Элемент a13 имеет знак + в приведенной выше таблице, поэтому ответ будет -12.
  9. Изображение с названием Find the Determinant of a 3X3 Matrix Step 9

    9

    Сложите полученные результаты. Это последний шаг. Вам необходимо сложить полученные алгебраические дополнения элементов опорной строки (или опорного столбца). Сложите их вместе, и вы получите значение определителя матрицы 3×3.

    • В нашем примере определитель равен -34 + 120 + -12 = 74.

    Реклама

  1. Изображение с названием Find the Determinant of a 3X3 Matrix Step 10

    1

    Выбирайте в качестве опорной строки (или столбца) ту, что имеет больше нулей. Помните, что в качестве опорной вы можете выбрать любую строку или столбец. Выбор опорной строки или столбца не влияет на результат. Если вы выберете строку с наибольшим количеством нулей, вам придется выполнять меньше вычислений, поскольку вам будет необходимо вычислить алгебраические дополнения только для ненулевых элементов. Вот почему:

    • Допустим, вы выбрали 2 строку с элементами a21, a22, and a23. Чтобы найти определитель, вам будет необходимо найти определители трех различных матриц размерностью 2×2. Давайте назовем их A21, A22, and A23.
    • То есть определитель матрицы 3×3 равен a21|A21| — a22|A22| + a23|A23|.
    • Если оба элемента a22 и a23 равны 0, то наша формула становится намного короче a21|A21| — 0*|A22| + 0*|A23| = a21|A21| — 0 + 0 = a21|A21|. То есть необходимо вычислить только алгебраическое дополнение одного элемента.
  2. Изображение с названием Find the Determinant of a 3X3 Matrix Step 11

    2

    Используйте сложение строк, чтобы упростить матрицу. Если вы возьмете одну строку и прибавите к ней другую, то определитель матрицы не изменится. То же самое верно и для столбцов. Подобные действия можно выполнять несколько раз, кроме того, вы можете умножать значения строки на постоянную (перед сложением) для того, чтобы получить как можно больше нулей. Подобные действия могут сэкономить массу времени.

  3. Изображение с названием Find the Determinant of a 3X3 Matrix Step 12

    3

    Помните, что вычислять определитель треугольных матриц намного проще. Определитель треугольных матриц вычисляется как произведение элементов на главной диагонали, от a11 в верхнем левом углу до a33 в нижнем правом углу. Речь в данном случае идет о треугольных матрицах размерностью 3×3. Треугольные матрицы могут быть следующих видов, в зависимости от расположения ненулевых значений:[4]

    • Верхняя треугольная матрица: Все ненулевые элементы находятся на главной диагонали и выше нее. Все элементы ниже главной диагонали равны нулю.
    • Нижняя треугольная матрица: Все ненулевые элементы находятся ниже главной диагонали и на ней.
    • Диагональная матрица: Все ненулевые элементы находятся на главной диагонали. Является частным случаем вышеописанных матриц.

    Реклама

Советы

  • Описанный метод распространяется на квадратные матрицы любого ранга. Например, если вы используете его для матрицы 4×4, то после «вычеркивания» будут оставаться матрицы 3×3, для которых определитель будет вычисляться вышеупомянутым способом. Будьте готовы к тому, что вычислять определитель для матриц таких размерностей вручную — очень трудоемкая задача!
  • Если все элементы строки или столбца равны 0, то определитель матрицы тоже равен 0.

Реклама

Об этой статье

Эту страницу просматривали 119 322 раза.

Была ли эта статья полезной?


Download Article


Download Article

The determinant of a matrix is frequently used in calculus, linear algebra, and advanced geometry. Finding the determinant of a matrix can be confusing at first, but it gets easier once you do it a few times.

  1. Image titled Find the Determinant of a 3X3 Matrix Step 1

    1

    Write your 3 x 3 matrix. We’ll start with a 3 x 3 matrix A, and try to find its determinant |A|. Here’s the general matrix notation we’ll be using, and our example matrix:[1]

    • M={begin{pmatrix}a_{{11}}&a_{{12}}&a_{{13}}\a_{{21}}&a_{{22}}&a_{{23}}\a_{{31}}&a_{{32}}&a_{{33}}end{pmatrix}}={begin{pmatrix}1&5&3\2&4&7\4&6&2end{pmatrix}}
  2. Image titled Find the Determinant of a 3X3 Matrix Step 2

    2

    Choose a single row or column. This will be your reference row or column. You’ll get the same answer no matter which one you choose. For now, just pick the first row. Later, we’ll give some advice on how to choose the easiest option to calculate.[2]

    • Let’s choose the first row of our example matrix A. Circle the 1 5 3. In general terms, circle a11 a12 a13.

    Advertisement

  3. Image titled Find the Determinant of a 3X3 Matrix Step 3

    3

    Cross out the row and column of your first element. Look at the row or column you circled and select the first element. Draw a line through its row and column. You should be left with four numbers. We’ll treat these as a 2 x 2 matrix.[3]

    • In our example, our reference row is 1 5 3. The first element is in row 1 and column 1. Cross out all of row 1 and column 1. Write the remaining elements as a 2 x 2 matrix:
    •  1  5 3
       2  4 7
       4  6 2
  4. Image titled Find the Determinant of a 3X3 Matrix Step 4

    4

    Find the determinant of the 2 x 2 matrix. Remember, the matrix {begin{pmatrix}a&b\c&dend{pmatrix}} has a determinant of ad — bc. You may have learned this by drawing an X across the 2 x 2 matrix. Multiply the two numbers connected by the of the X. Then subtract the product of the two numbers connected by the /. Use this formula to calculate the determinate of the matrix you just found.[4]

    • In our example, the determinant of the matrix {begin{pmatrix}4&7\6&2end{pmatrix}} = 4 * 2 — 7 * 6 = -34.
    • This determinant is called the minor of the element we chose in our original matrix.[5]
      In this case, we just found the minor of a11.
  5. Image titled Find the Determinant of a 3X3 Matrix Step 5

    5

    Multiply the answer by your chosen element. Remember, you selected an element from your reference row (or column) when you decided which row and column to cross out. Multiply this element by the determinant you just calculated for the 2×2 matrix.[6]

    • In our example, we selected a11, which had a value of 1. Multiply this by -34 (the determinant of the 2×2) to get 1*-34 = -34.
  6. Image titled Find the Determinant of a 3X3 Matrix Step 6

    6

    Determine the sign of your answer. Next, you’ll multiply your answer either by 1 or by -1 to get the cofactor of your chosen element. Which you use depends on where the element was placed in the 3×3 matrix. Memorize this simple sign chart to track which element causes which:

    • + — +
      — + —
      + — +
    • Since we chose a11, marked with a +, we multiply the number by +1. (In other words, leave it alone.) The answer is still -34.
    • Alternatively, you can find the sign with the formula (-1)i+j, where i and j are the element’s row and column.[7]
  7. Image titled Find the Determinant of a 3X3 Matrix Step 7

    7

    Repeat this process for the second element in your reference row or column. Return to the original 3×3 matrix, with the row or column you circled earlier. Repeat the same process with this element:[8]

  8. Image titled Find the Determinant of a 3X3 Matrix Step 8

    8

    Repeat with the third element. You have one more cofactor to find. Calculate i for the third term in your reference row or column. Here’s a quick rundown of how you’d calculate the cofactor of a13 in our example:

    • Cross out row 1 and column 3 to get {begin{pmatrix}2&4\4&6end{pmatrix}}
    • Its determinant is 2*6 — 4*4 = -4.
    • Multiply by element a13: -4 * 3 = -12.
    • Element a13 is + on the sign chart, so the answer is -12.
  9. Image titled Find the Determinant of a 3X3 Matrix Step 9

    9

    Add your three results together. This is the final step. You’ve calculated three cofactors, one for each element in a single row or column. Add these together and you’ve found the determinant of the 3×3 matrix.

    • In our example the determinant is -34 + 120 + -12 = 74.
  10. Advertisement

  1. Image titled Find the Determinant of a 3X3 Matrix Step 10

    1

    Pick the reference with the most zeroes. Remember, you can pick any row or column as your reference. You’ll get the same answer no matter which you pick. If you pick a row or column with zeros, you only need to calculate the cofactor for the nonzero elements. Here’s why:[9]

    • Let’s say you pick row 2, with elements a21, a22, and a23. To solve this problem, we’ll be looking at three different 2×2 matrices. Let’s call them A21, A22, and A23.
    • The determinant of the 3×3 matrix is a21|A21| — a22|A22| + a23|A23|.
    • If terms a22 and a23 are both 0, our formula becomes a21|A21| — 0*|A22| + 0*|A23| = a21|A21| — 0 + 0 = a21|A21|. Now we only have to calculate the cofactor of a single element.
  2. Image titled Find the Determinant of a 3X3 Matrix Step 11

    2

    Use row addition to make the matrix easier. If you take the values of one row and add them to a different row, the determinant of the matrix does not change. The same is true of columns. You can do this repeatedly — or multiply the values by a constant before adding — to get as many zeroes in the matrix as possible. This can save you a lot of time.

  3. Image titled Find the Determinant of a 3X3 Matrix Step 12

    3

    Learn the shortcut for triangular matrices. In these special cases, the determinant is simply the product of the elements along the main diagonal, from a11 in the top left to a33 in the lower right. We’re still talking about 3×3 matrices, but «triangular» ones have special patterns of nonzero values:[10]

    • Upper triangular matrix: All the non-zero elements are on or above the main diagonal. Everything below is a zero.
    • Lower triangular matrix: All the non-zero elements are on or below the main diagonal.
    • Diagonal matrix: All the non-zero elements are on the main diagonal. (A subset of the above.)
    • You can use the method of minors or the elementary row operations to find the inverse of a 3 x 3 matrix.[11]
    • If you use the latter method to find the inverse of a matrix A, begin by setting up the formula [A | I]. Where I is the 3 x 3 identity matrix.[12]
    • Then, use elementary row operations to reduce the left-hand side of the formula to I. The resulting formula will be [I | A-1], where A-1 is the inverse of A.[13]
  4. Advertisement

Add New Question

  • Question

    Why is the formula for the determinant (b^2-4ac)^(1/2) instead of ad-bc?

    Community Answer

    I think the OP was confused. They were referring to the discriminant, something you use in the quadratic formula. The formula for the determinant is different for every matrix, but for a 3×3 one is very hard to type out. It might be easier to Google it.

  • Question

    How do I adjoin a matrix?

    Community Answer

    The adjoint of a square matrix is the transpose of the matrix Cij (cofactor of the original matrix).

  • Question

    What is the formula for the determinant?

    Prem Shah

    Prem Shah

    Community Answer

    The formula to find the determinant for a quadratic formula is (b^2-4ac), which is all in a square root.

Ask a Question

200 characters left

Include your email address to get a message when this question is answered.

Submit

Advertisement

Video

  • If all elements of a row or column are 0, the determinant of that matrix is 0.

  • This method extends to square matrices of any size. For example, if using this for a 4×4 matrix, your «crossing out» leaves you with a 3×3 matrix, for which you calculate the determinate as described above. Be warned, this gets very tedious by hand!

Advertisement

About This Article

Article SummaryX

1. Write your 3 x 3 matrix.
2. Choose a single row or column.
3. Cross out the row and column of your first element.
4. Find the determinant of the 2 x 2 matrix.
5. Multiply the answer by your chosen element.
6. Find the sign of your answer (+ or -) using the formula (-1)*(i+j), where i and j are the element’s row and column. The formula will tell you whether your answer is positive or negative.
7. Repeat this process for the second element in your reference row or column.
8. Repeat with the third element.
9. Add your three results together.

Did this summary help you?

Thanks to all authors for creating a page that has been read 1,637,147 times.

Did this article help you?

Пример вычисления
определителя (детерминанта) матрицы

Определитель матрицы — является
многочленом от элементов квадратной
матрицы (если элементы матрицы это
числа, тогда определитель матрицы тоже
будет числом).

Для нахождения определителя матрицы,
исходная матрица должна быть квадратной.

Пример №1

Дана матрица размером 2х2;

Что бы вычислить определитель матрицы
2х2 нужно из произведения элементов
главной диагонали, вычесть произведение
элементов побочной диагонали;

Ответ: -6

Пример №2

Дана матрица размером 3х3;

Что бы вычислить определитель матрицы
3х3 нужно воспользоваться формулой;


Подставляем наши значения в формулу;

Пример №3

Дана матрица размером 4х4;

Есть два способа вычисления определителя
матрицы:

  1. По определению — через разложение
    по строке или столбцу;

  2. По методу Гаусса — приведение матрицы
    к треугольному виду (этот способ лучше
    использовать для решения матриц,
    размером 4х4 и более).

Решим пример первым
способом
(по определению — через
разложение по строке или столбцу)

Чтобы вычислить определитель матрицы,
нужно воспользоваться следующей
формулой, в ней рассмотрен пример
разложения матрицы по первой строке;

Итак, начнём

  1. Выбираем строку или столбец (любую),
    лучше всего выбирать строку или столбец,
    где больше нулей, для удобства
    вычисления;
    В данном случае мы выбираем
    третью строку, так как в ней присутствует
    ноль;

  1. Берём первый элемент этой строки
    (2);
    Теперь вычёркиваем
    третью строку и первый столбец;

Получаем матрицу 3х3;

Согласно формуле, мы умножаем выбранный
нами элемент на определитель получившейся
матрицы;

Вычисление определителя матрицы 3х3,
мы рассматривали в примере №2

  1. Далее делаем всё тоже самое, что и в
    шаге два, только берём второй элемент
    данной строки (0) и
    вычёркиваем третью строку и второй
    столбец;

Так как этот элемент равен нулю, то ни
чего не нужно считать и так всё ясно;

  1. Теперь берём третий элемент строки (6)
    и вычёркиваем третью строку и третий
    столбец;

Получаем матрицу 3х3;

Вычисляем определитель этой матрицы и
умножаем на выбранный нами элемент (6)

  1. Берём четвёртый элемент строки (-3)
    и вычёркиваем третью строку и четвёртый
    столбец;

Получаем матрицу 3х3;

Вычисляем определитель этой матрицы и
умножаем на выбранный нами элемент (-3)

  1. Чтобы вычислить определитель исходной
    матрицы, нужно сложить полученные
    результаты;

Ответ: -1926

Опишем решение примера
вторым способом
(по методу Гаусса
— приведение матрицы к треугольному
виду)

Суть способа заключается в том, чтобы
перед вычислением определителя, привести
матрицу к треугольному виду. Если в ходе
приведения матрицы к треугольному виду
вы умножаете (делите) строку на число,
то на это же число нужно будет умножить
(разделить) полученный в конце определитель;

Пример приведения матрицы к треугольному
виду мы уже рассматривали здесь

Итак, мы привили матрицу к треугольному
виду;

Теперь чтобы вычислить определитель
приведённой матрицы, нужно перемножить
все элементы, стоящие на главной
диагонали;

Ответ: -1926

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]

  • #
  • #
  • #
  • #
  • #
  • #
  • #
  • #
  • #
  • #
  • #

Найти определитель (детерминант) матрицы онлайн

На данной странице калькулятор поможет найти определитель матрицы онлайн с подробным решением. При решении можно выбрать правило треугольника, правило Саррюса. Разложение определителя по строке или столбцу. Приведение определителя к треугольному виду. Для расчета задайте целые или десятичные числа.

Определитель матрицы


Размерность матрицы:

Павило:


A


Другой материал по теме

Содержание:

  • Вычисления определителей второго порядка
  • Методы вычисления определителей третьего порядка
  • Приведение определителя к треугольному виду
  • Правило треугольника
  • Правило Саррюса
  • Разложение определителя по строке или столбцу
  • Разложение определителя по элементам строки или столбца
  • Теорема Лапласа

В общем случае правило вычисления определителей
$n$-го порядка
является довольно громоздким. Для определителей второго и третьего порядка существуют рациональные способы их вычислений.

Вычисления определителей второго порядка

Чтобы вычислить определитель матрицы второго порядка, надо от произведения
элементов главной диагонали отнять произведение
элементов побочной диагонали:

$$left| begin{array}{ll}{a_{11}} & {a_{12}} \ {a_{21}} & {a_{22}}end{array}right|=a_{11} cdot a_{22}-a_{12} cdot a_{21}$$

Пример

Задание. Вычислить определитель второго порядка
$left| begin{array}{rr}{11} & {-2} \ {7} & {5}end{array}right|$

Решение. $left| begin{array}{rr}{11} & {-2} \ {7} & {5}end{array}right|=11 cdot 5-(-2) cdot 7=55+14=69$

Ответ. $left| begin{array}{rr}{11} & {-2} \ {7} & {5}end{array}right|=69$

Методы вычисления определителей третьего порядка

Для вычисления определителей третьего порядка существует такие правила.

Правило треугольника

Схематически это правило можно изобразить следующим образом:

Определитель матрицы по правилу треугольника

Произведение элементов в первом определителе, которые соединены прямыми,
берется со знаком «плюс»; аналогично, для второго определителя — соответствующие произведения берутся со знаком «минус», т.е.

$$left| begin{array}{ccc}{a_{11}} & {a_{12}} & {a_{13}} \ {a_{21}} & {a_{22}} & {a_{23}} \ {a_{31}} & {a_{32}} & {a_{33}}end{array}right|=a_{11} a_{22} a_{33}+a_{12} a_{23} a_{31}+a_{13} a_{21} a_{32}-$$

$$-a_{11} a_{23} a_{32}-a_{12} a_{21} a_{33}-a_{13} a_{22} a_{31}$$

236

проверенных автора готовы помочь в написании работы любой сложности

Мы помогли уже 4 430 ученикам и студентам сдать работы от решения задач до дипломных на отлично! Узнай стоимость своей работы за 15 минут!

Пример

Задание. Вычислить определитель $left| begin{array}{rrr}{3} & {3} & {-1} \ {4} & {1} & {3} \ {1} & {-2} & {-2}end{array}right|$ методом треугольников.

Решение. $left| begin{array}{rrr}{3} & {3} & {-1} \ {4} & {1} & {3} \ {1} & {-2} & {-2}end{array}right|=3 cdot 1 cdot(-2)+4 cdot(-2) cdot(-1)+$

$$+3 cdot 3 cdot 1-(-1) cdot 1 cdot 1-3 cdot(-2) cdot 3-4 cdot 3 cdot(-2)=54$$

Ответ. $left| begin{array}{rrr}{3} & {3} & {-1} \ {4} & {1} & {3} \ {1} & {-2} & {-2}end{array}right|=54$

Правило Саррюса

Справа от определителя дописывают первых два столбца и произведения элементов на главной диагонали и на диагоналях, ей
параллельных, берут со знаком «плюс»; а произведения элементов побочной диагонали и диагоналей, ей параллельных,
со знаком «минус»:

$$-a_{13} a_{22} a_{31}-a_{11} a_{23} a_{32}-a_{12} a_{21} a_{33}$$

Пример

Задание. Вычислить определитель $left| begin{array}{rrr}{3} & {3} & {-1} \ {4} & {1} & {3} \ {1} & {-2} & {-2}end{array}right|$ с помощью правила Саррюса.

Решение.

$$+(-1) cdot 4 cdot(-2)-(-1) cdot 1 cdot 1-3 cdot 3 cdot(-2)-3 cdot 4 cdot(-2)=54$$

Ответ. $left| begin{array}{rrr}{3} & {3} & {-1} \ {4} & {1} & {3} \ {1} & {-2} & {-2}end{array}right|=54$

Разложение определителя по строке или столбцу

Определитель равен сумме произведений элементов строки определителя на их
алгебраические дополнения. Обычно выбирают
ту строку/столбец, в которой/ом есть нули. Строку или столбец, по которой/ому ведется разложение, будет обозначать стрелкой.

Пример

Задание. Разложив по первой строке, вычислить определитель $left| begin{array}{lll}{1} & {2} & {3} \ {4} & {5} & {6} \ {7} & {8} & {9}end{array}right|$

Решение. $left| begin{array}{lll}{1} & {2} & {3} \ {4} & {5} & {6} \ {7} & {8} & {9}end{array}right| leftarrow=a_{11} cdot A_{11}+a_{12} cdot A_{12}+a_{13} cdot A_{13}=$

$1 cdot(-1)^{1+1} cdot left| begin{array}{cc}{5} & {6} \ {8} & {9}end{array}right|+2 cdot(-1)^{1+2} cdot left| begin{array}{cc}{4} & {6} \ {7} & {9}end{array}right|+3 cdot(-1)^{1+3} cdot left| begin{array}{cc}{4} & {5} \ {7} & {8}end{array}right|=-3+12-9=0$

Ответ. $left| begin{array}{lll}{1} & {2} & {3} \ {4} & {5} & {6} \ {7} & {8} & {9}end{array}right|=0$

Этот метод позволяет вычисление определителя свести к вычислению определителя более низкого порядка.

Пример

Задание. Вычислить определитель $left| begin{array}{lll}{1} & {2} & {3} \ {4} & {5} & {6} \ {7} & {8} & {9}end{array}right|$

Решение. Выполним следующие
преобразования над строками определителя: из второй строки отнимем четыре
первых, а из третьей первую строку, умноженную на семь, в результате, согласно свойствам определителя, получим определитель,
равный данному.

$$left| begin{array}{ccc}{1} & {2} & {3} \ {4} & {5} & {6} \ {7} & {8} & {9}end{array}right|=left| begin{array}{ccc}{1} & {2} & {3} \ {4-4 cdot 1} & {5-4 cdot 2} & {6-4 cdot 3} \ {7-7 cdot 1} & {8-7 cdot 2} & {9-7 cdot 3}end{array}right|=$$

$$=left| begin{array}{rrr}{1} & {2} & {3} \ {0} & {-3} & {-6} \ {0} & {-6} & {-12}end{array}right|=left| begin{array}{ccc}{1} & {2} & {3} \ {0} & {-3} & {-6} \ {0} & {2 cdot(-3)} & {2 cdot(-6)}end{array}right|=0$$

Определитель равен нулю, так как вторая и третья строки являются пропорциональными.

Ответ. $left| begin{array}{lll}{1} & {2} & {3} \ {4} & {5} & {6} \ {7} & {8} & {9}end{array}right|=0$

Для вычисления определителей четвертого порядка и выше применяется либо разложение по строке/столбцу, либо приведение
к треугольному виду, либо с помощью теоремы Лапласа.

Разложение определителя по элементам строки или столбца

Пример

Задание. Вычислить определитель
$left| begin{array}{llll}{9} & {8} & {7} & {6} \ {5} & {4} & {3} & {2} \ {1} & {0} & {1} & {2} \ {3} & {4} & {5} & {6}end{array}right|$ , разложив его по элементам какой-то строки или какого-то столбца.

Решение. Предварительно выполним
элементарные преобразования над строками определителя, сделав
как можно больше нулей либо в строке, либо в столбце. Для этого вначале от первой строки отнимем девять третьих,
от второй — пять третьих и от четвертой — три третьих строки, получаем:

$$left| begin{array}{cccc}{9} & {8} & {7} & {6} \ {5} & {4} & {3} & {2} \ {1} & {0} & {1} & {2} \ {3} & {4} & {5} & {6}end{array}right|=left| begin{array}{cccc}{9-1} & {8-0} & {7-9} & {6-18} \ {5-5} & {4-0} & {3-5} & {2-10} \ {1} & {0} & {1} & {2} \ {0} & {4} & {2} & {0}end{array}right|=left| begin{array}{rrrr}{0} & {8} & {-2} & {-12} \ {0} & {4} & {-2} & {-8} \ {1} & {0} & {1} & {2} \ {0} & {4} & {2} & {0}end{array}right|$$

Полученный определитель разложим по элементам первого столбца:

$$left| begin{array}{rrrr}{0} & {8} & {-2} & {-12} \ {0} & {4} & {-2} & {-8} \ {1} & {0} & {1} & {2} \ {0} & {4} & {2} & {0}end{array}right|=0+0+1 cdot(-1)^{3+1} cdot left| begin{array}{rrr}{8} & {-2} & {-12} \ {4} & {-2} & {-8} \ {4} & {2} & {0}end{array}right|+0$$

Полученный определитель третьего порядка также разложим по элементам строки и столбца, предварительно получив нули,
например, в первом столбце. Для этого от первой строки отнимаем две вторые строки, а от третьей — вторую:

$$left| begin{array}{rrr}{8} & {-2} & {-12} \ {4} & {-2} & {-8} \ {4} & {2} & {0}end{array}right|=left| begin{array}{rrr}{0} & {2} & {4} \ {4} & {-2} & {-8} \ {0} & {4} & {8}end{array}right|=4 cdot(-1)^{2+2} cdot left| begin{array}{ll}{2} & {4} \ {4} & {8}end{array}right|=$$

$$=4 cdot(2 cdot 8-4 cdot 4)=0$$

Ответ. $left| begin{array}{cccc}{9} & {8} & {7} & {6} \ {5} & {4} & {3} & {2} \ {1} & {0} & {1} & {2} \ {3} & {4} & {5} & {6}end{array}right|=0$

Замечание

Последний и предпоследний определители можно было бы и не вычислять,
а сразу сделать вывод о том, что они равны нулю, так как содержат пропорциональные строки.

Приведение определителя к треугольному виду

С помощью элементарных преобразований над строками или столбцами определитель приводится к треугольному виду и тогда его
значение, согласно свойствам определителя, равно произведению
элементов стоящих на главной диагонали.

Пример

Задание. Вычислить определитель
$Delta=left| begin{array}{rrrr}{-2} & {1} & {3} & {2} \ {3} & {0} & {-1} & {2} \ {-5} & {2} & {3} & {0} \ {4} & {-1} & {2} & {-3}end{array}right|$ приведением его к треугольному виду.

Решение. Сначала делаем нули в первом столбце под главной диагональю. Все преобразования
будет выполнять проще, если элемент $a_{11}$ будет
равен 1. Для этого мы поменяем местами первый и второй столбцы определителя, что, согласно свойствам определителя,
приведет к тому, что он сменит знак на противоположный:

$$Delta=left| begin{array}{rrrr}{-2} & {1} & {3} & {2} \ {3} & {0} & {-1} & {2} \ {-5} & {2} & {3} & {0} \ {4} & {-1} & {2} & {-3}end{array}right|=-left| begin{array}{rrrr}{1} & {-2} & {3} & {2} \ {0} & {3} & {-1} & {2} \ {2} & {-5} & {3} & {0} \ {-1} & {4} & {2} & {-3}end{array}right|$$

Далее получим нули в первом столбце, кроме элемента $a_{11}$ ,
для этого из третьей строки вычтем две первых, а к четвертой строке прибавим первую, будем иметь:

$$Delta=-left| begin{array}{rrrr}{1} & {-2} & {3} & {2} \ {0} & {3} & {-1} & {2} \ {0} & {-1} & {-3} & {-4} \ {0} & {2} & {5} & {-1}end{array}right|$$

Далее получаем нули во втором столбце на месте элементов, стоящих под главной диагональю. И снова, если
диагональный элемент будет равен $pm 1$ , то
вычисления будут более простыми. Для этого меняем местами вторую и третью строки (и при этом меняется на
противоположный знак определителя):

$$Delta=left| begin{array}{rrrr}{1} & {-2} & {3} & {2} \ {0} & {-1} & {-3} & {-4} \ {0} & {3} & {-1} & {2} \ {0} & {2} & {5} & {-1}end{array}right|$$

Далее делаем нули во втором столбце под главной диагональю, для этого поступаем следующим образом:
к третьей строке прибавляем три вторых, а к четвертой — две вторых строки, получаем:

$$Delta=left| begin{array}{rrrr}{1} & {-2} & {3} & {2} \ {0} & {-1} & {-3} & {-4} \ {0} & {0} & {-10} & {-10} \ {0} & {0} & {-1} & {-9}end{array}right|$$

Далее из третьей строки выносим (-10) за определитель и делаем нули в третьем столбце под
главной диагональю, а для этого к последней строке прибавляем третью:

$$Delta=-10 left| begin{array}{rrrr}{1} & {-2} & {3} & {2} \ {0} & {-1} & {-3} & {-4} \ {0} & {0} & {1} & {1} \ {0} & {0} & {-1} & {-9}end{array}right|=$$

$$=-10 cdot left| begin{array}{cccc}{1} & {-2} & {3} & {2} \ {0} & {-1} & {-3} & {-4} \ {0} & {0} & {1} & {1} \ {0} & {0} & {0} & {-8}end{array}right|=(-10) cdot 1 cdot(-1) cdot 1 cdot(-8)=-80$$

Ответ. $Delta=-80$

Теорема Лапласа

Теорема

Пусть $Delta$ — определитель
$n$-го порядка. Выберем в нем произвольные
$k$ строк (или столбцов), причем
$k leq n-1$ . Тогда сумма произведений всех
миноров
$k$-го порядка, которые содержатся в выбранных
$k$ строках (столбцах), на их
алгебраические дополнения равна определителю.

Пример

Задание. Используя теорему Лапласа, вычислить определитель
$left| begin{array}{rrrrr}{2} & {3} & {0} & {4} & {5} \ {0} & {1} & {0} & {-1} & {2} \ {3} & {2} & {1} & {0} & {1} \ {0} & {4} & {0} & {-5} & {0} \ {1} & {1} & {2} & {-2} & {1}end{array}right|$

Решение. Выберем в данном определителе пятого порядка две строки —
вторую и третью, тогда получаем (слагаемые, которые равны нулю, опускаем):

$$left| begin{array}{rrrrr}{2} & {3} & {0} & {4} & {5} \ {0} & {1} & {0} & {-1} & {2} \ {3} & {2} & {1} & {0} & {1} \ {0} & {4} & {0} & {-5} & {0} \ {1} & {1} & {2} & {-2} & {1}end{array}right|=left| begin{array}{cc}{1} & {-1} \ {4} & {-5}end{array}right| cdot(-1)^{2+4+2+4} cdot left| begin{array}{ccc}{2} & {0} & {5} \ {3} & {1} & {1} \ {1} & {2} & {1}end{array}right|+$$

$$+left| begin{array}{ll}{1} & {2} \ {4} & {0}end{array}right| cdot(-1)^{2+4+2+5} cdot left| begin{array}{rrr}{2} & {0} & {4} \ {3} & {1} & {0} \ {1} & {2} & {-2}end{array}right|+left| begin{array}{cc}{-1} & {2} \ {-5} & {0}end{array}right| cdot(-1)^{2+4+5} cdot left| begin{array}{ccc}{2} & {3} & {0} \ {3} & {2} & {1} \ {1} & {1} & {2}end{array}right|=$$

$$=-23+128+90=195$$

Ответ. $left| begin{array}{rrrrr}{2} & {3} & {0} & {4} & {5} \ {0} & {1} & {0} & {-1} & {2} \ {3} & {2} & {1} & {0} & {1} \ {0} & {4} & {0} & {-5} & {0} \ {1} & {1} & {2} & {-2} & {1}end{array}right|=195$

Читать дальше: обратная матрица.

Понравилась статья? Поделить с друзьями:
  • Найти телефон iphone как работает
  • Как в контакте найти понравившиеся записи айфон
  • Найти как представить прическу
  • Как можно составит меню для кафе
  • Как найти песню незабудка