Как найти диагонали пятиугольника

A pentagon has five side and five angles. A polygon’s diagonals are line segments from one corner to another, but not the sides. The diagonals of a convex regular pentagon are in the golden ratio to its sides. Below given Pentagon Diagonal Length Calculator calculates the diagonal length of a five-sided pentagon given the value of a side. Just input the side of the pentagon and the calculator will automatically update you with the diagonal value.

  • Area
  • Diagonal Length
  • Perimeter

A pentagon has five side and five angles. A polygon’s diagonals are line segments from one corner to another, but not the sides. The diagonals of a convex regular pentagon are in the golden ratio to its sides. Below given Pentagon Diagonal Length Calculator calculates the diagonal length of a five-sided pentagon given the value of a side. Just input the side of the pentagon and the calculator will automatically update you with the diagonal value.

Code to add this calci to your website Expand embed code Minimize embed code

Formula:

D = (1+ √5) / 2) x a

Where,
D = Pentagon Diagonal Length
a = Side Length
Pentagon Diagonal Length

Example

A pentagon with one of its side having a length of 12 cm
Pentagon Diagonal Length = (1+ √5) / 2) x 12
= 19.4164 cm


Загрузить PDF


Загрузить PDF

Нахождение числа диагоналей является важнейшим навыком, который пригодится при решении геометрических задач. Это не так сложно, как кажется – просто нужно запомнить формулу. Диагональ – это отрезок, соединяющий любые две несмежные вершины многоугольника.[1]
Многоугольник – это любая фигура с как минимум тремя сторонами. При помощи несложной формулы можно найти количество диагоналей в любом многоугольнике, например, с 4 сторонами или с 4000 сторон.

  1. Изображение с названием Find How Many Diagonals Are in a Polygon Step 1

    1

    Запомните названия многоугольников. Сначала нужно найти число сторон многоугольника. Это можно сделать по названию любого многоугольника. Вот названия самых распространенных многоугольников:[2]

    • Четырехугольник: 4 стороны
    • Пятиугольник: 5 сторон
    • Шестиугольник: 6 сторон
    • Семиугольник: 7 сторон
    • Восьмиугольник: 8 сторон
    • Девятиугольник: 9 сторон
    • Десятиугольник: 10 сторон
    • Обратите внимание, что у треугольника диагоналей нет.[3]
  2. Изображение с названием Find How Many Diagonals Are in a Polygon Step 2

    2

    Нарисуйте многоугольник. Чтобы найти число диагоналей в квадрате, нарисуйте его. Самый простой способ найти число диагоналей – это нарисовать правильный многоугольник (в таком многоугольнике все стороны равны) и посчитать количество диагоналей. Запомните: неправильный многоугольник будет иметь такое же количество диагоналей, что и правильный (при одинаковом числе сторон).[4]

    • Чтобы нарисовать многоугольник, воспользуйтесь линейкой; нарисуйте замкнутую фигуру со сторонами одинаковой длины.
    • Если вы не знаете, как выглядит многоугольник, поищите картинки в интернете. Например, знак «Стоп» – это восьмиугольник.
  3. Изображение с названием Find How Many Diagonals Are in a Polygon Step 3

    3

    Нарисуйте диагонали. Диагональ – это отрезок, соединяющий любые две несмежные вершины многоугольника.[5]
    Из одной (любой) вершины многоугольника проведите диагонали к другим (несмежным) вершинам.

    • В квадрате проведите одну диагональ из нижнего левого угла в правый верхний угол, а вторую – из нижнего правого угла в левый верхний угол.
    • Нарисуйте диагонали разных цветов, чтобы быстрее посчитать их.[6]
    • Обратите внимание, что применять этот метод к многоугольникам, у которых больше 10 сторон, довольно сложно.
  4. Изображение с названием Find How Many Diagonals Are in a Polygon Step 4

    4

    Посчитайте диагонали. Можно считать диагонали во время того, как вы рисуете их, или после того, как они нарисованы. Отмечайте диагонали, которые уже посчитаны, чтобы не запутаться (особенно когда диагоналей много и они пересекаются).

    • У квадрата всего две диагонали – по одной на каждые две вершины.[7]
    • У шестиугольника 9 диагоналей: по три диагонали на каждые три вершины.
    • У семиугольника 14 диагоналей. Если у многоугольника больше семи сторон, посчитать диагонали довольно сложно, потому что их слишком много.
  5. Изображение с названием Find How Many Diagonals Are in a Polygon Step 5

    5

    Каждую диагональ считайте только один раз. Из каждой вершины выходит несколько диагоналей, но это не значит, что число диагоналей равно произведению числа вершин на число диагоналей, выходящих из каждой вершины. Поэтому аккуратно считайте диагонали.[8]

    • Например, у пятиугольника (5 сторон) только 5 диагоналей. Из каждой вершины выходит 2 диагонали; если умножить число вершин на число диагоналей, выходящих из каждой вершины, получите 10. Это неверный ответ, как если бы вы посчитали каждую диагональ дважды.
  6. Изображение с названием Find How Many Diagonals Are in a Polygon Step 6

    6

    Попрактикуйтесь в определении числа диагоналей на некоторых примерах. Нарисуйте разные многоугольники и посчитайте их диагонали. Этот метод применим и к неправильным многоугольникам. В случае вогнутого многоугольника некоторые диагонали лежат вне границ фигуры.[9]

    • У шестиугольника 9 диагоналей.
    • У семиугольника 14 диагоналей.

    Реклама

  1. Изображение с названием Find How Many Diagonals Are in a Polygon Step 7

    1

    Запишите формулу. Формула для вычисления числа диагоналей многоугольника: d = n(n-3)/2, где d – число диагоналей, n – число сторон многоугольника.[10]
    Используя распределительное свойство, эту формулу можно записать так: d = (n2 — 3n)/2. Можно пользоваться любой формой представленной формулы.

    • Эта формула для вычисления числа диагоналей многоугольника.
    • Обратите внимание, что эта формула не применима к треугольникам, потому что у треугольников диагоналей нет.[11]
  2. Изображение с названием Find How Many Diagonals Are in a Polygon Step 8

    2

    Определите число сторон многоугольника. Чтобы использовать приведенную формулу, нужно знать число сторон многоугольника. Число сторон можно выяснить по названию многоугольника. Ниже приведены части названий многоугольников.[12]

    • Четырех (4), пяти (5), шести (6), семи (7), восьми (8), девяти (9), десяти (10), одиннадцати (11), двенадцати (12), тринадцати (13 ), четырнадцати (14), пятнадцати (15) и так далее.
    • Если сторон слишком много, то в название многоугольника включается цифра. Например, если у многоугольника 44 стороны, он называется 44-угольником.
    • Если дан рисунок многоугольника, просто посчитайте его стороны.
  3. Изображение с названием Find How Many Diagonals Are in a Polygon Step 9

    3

    Подставьте число сторон в формулу. Сделайте это после того, как найдете число сторон многоугольника. Число сторон подставьте вместо n.[13]

    • Например. У двенадцатиугольника 12 сторон.
    • Запишите формулу: d = n(n-3)/2
    • Подставьте число сторон: d = (12(12 — 3))/2
  4. Изображение с названием Find How Many Diagonals Are in a Polygon Step 10

    4

    Решите уравнение. Для этого не забудьте про определенный порядок выполнения математических операций. Начните с вычитания, затем умножьте, а потом разделите. В итоге вы получите число диагоналей многоугольника.[14]

    • Например: (12(12 — 3))/2
    • Вычитание: (12*9)/2
    • Умножение: (108)/2
    • Деление: 54
    • У двенадцатиугольника 54 диагонали.
  5. Изображение с названием Find How Many Diagonals Are in a Polygon Step 11

    5

    Попрактикуйтесь на других примерах. Чем больше задач вы решите, тем лучше уясните процесс вычисления. Также вы наверняка запомните формулу для вычисления числа диагоналей, что пригодится на экзамене. Не забывайте, что представленная формула применима к многоугольнику, у которого больше трех сторон.

    • Шестиугольник (6 сторон): d = n(n-3)/2 = 6(6-3)/2 = 6*3/2 = 18/2 = 9 диагоналей.
    • Десятиугольник (10 сторон): d = n(n-3)/2 = 10(10-3)/2 = 10*7/2 = 70/2 = 35 диагоналей.
    • Двадцатиугольник (20 сторон): d = n(n-3)/2 = 20(20-3)/2 = 20*17/2 = 340/2 = 170 диагоналей.
    • 96-угольник (96 сторон): 96(96-3)/2 = 96*93/2 = 8928/2 = 4464 диагоналей.

    Реклама

Об этой статье

Эту страницу просматривали 175 985 раз.

Была ли эта статья полезной?

Диагональ правильного пятиугольника «стягивает» дугу в 144°. Проводим к концам диагонали радлиусы и получаем равнобедренный треугольник. Длину основания этого треугольника (диагонали пятиугольника) находим по стандартной процедуре d=2*r*sin(72°). Поскольку r=1, то получается d=2*sin(72°).

sin(72°) находим по формуле двойного угла sin(72°)=2*sin(36°)*cos(36°).

А значения sin(36°)=√((5-√5)/8) и cos(36°)=(1+√5)/4, мы с Вами уже неоднократно вычисляли и использовали.

Итак получается d=2*(2*√((5-√5)/8)*(1+√5)/4)=2*√((5+√5)/8)=√((5+√5)/2)=1,9021

Пятиугольник, виды, свойства и формулы.

Пятиугольник – это многоугольник, общее количество углов (вершин) которого равно пяти.

Пятиугольник, выпуклый и невыпуклый пятиугольник

Правильный многоугольник

Свойства правильного пятиугольника

Построение правильного пятиугольника

Формулы правильного пятиугольника

Правильный пятиугольник в природе, технике и культуре

Пятиугольник, шестиугольник, семиугольник, восьмиугольник

Пятиугольник, выпуклый и невыпуклый пятиугольник:

Пятиугольник – это многоугольник, общее количество углов (вершин) которого равно пяти.

Пятиугольник – фигура, состоящая из пяти углов (вершин), которые образуются пятью отрезками (сторонами).

Пятиугольник может быть выпуклым и невыпуклым.

Выпуклым многоугольником называется многоугольник, все точки которого лежат по одну сторону от любой прямой, проходящей через две его соседние вершины. Невыпуклыми являются все остальные многоугольники.

Соответственно выпуклый пятиугольник – это пятиугольник, у которого все его точки лежат по одну сторону от любой прямой, проходящей через две его соседние вершины.

Выпуклый пятиугольник

Рис. 1. Выпуклый пятиугольник

Сумма внутренних углов любого выпуклого шестиугольника равна 540°.

Невыпуклый пятиугольник – это пятиугольник, у которого одна часть его точек лежат по одну сторону, а другая часть – по другую от любой прямой, проходящей через две его соседние вершины.

Невыпуклый пятиугольник

Рис. 2. Невыпуклый пятиугольник

Звёздчатый пятиугольник (пентаграмма) – пятиугольник, у которого все стороны и углы равны, а вершины совпадают с вершинами правильного семиугольника многоугольника. Стороны звёздчатого пятиугольника могут пересекаться между собой.

Правильный многоугольник:

Правильный пятиугольник (пентагон) – это правильный многоугольник с пятью сторонами.

В свою очередь правильный многоугольник – это многоугольник, у которого все стороны и углы одинаковые.

Правильный пятиугольник – это пятиугольник, у которого все стороны равны, а все внутренние углы равны 108°.

Правильный пятиугольник

Рис. 3. Правильный пятиугольник

Правильный пятиугольник имеет 5 сторон, 5 углов и 5 вершин.

Углы правильного семиугольника образуют семь равнобедренных треугольников.

Правильный пятиугольник может быть построен с помощью циркуля и линейки или вписыванием его в заданную окружность, или построением на основе заданной стороны.

Свойства правильного пятиугольника:

1. Все стороны правильного пятиугольника равны между собой.

a1 = a2 = a3 = a4= a5.

2. Все углы равны между собой и каждый угол равен 108°.

α1 = α2 = α3 = α4 = α5 = 108°.

Правильный пятиугольник

Рис. 4. Правильный пятиугольник

3. Сумма внутренних углов правильного пятиугольника равна 540°.

4. Все биссектрисы углов между сторонами равны и проходят через центр правильного пятиугольника O.

Правильный пятиугольник

Рис. 5. Правильный пятиугольник

5. Количество диагоналей правильного пятиугольника равно 5.

Правильный пятиугольник

Рис. 6. Правильный пятиугольник

6. Центр вписанной окружности O1 совпадает с центром описанной окружности O2, что и образуют центр пятиугольника O.

Правильный пятиугольник

Рис. 7. Правильный пятиугольник

7. Диагонали правильного пятиугольника являются трисектрисами его внутренних углов.

Правильный пятиугольник

Рис. 8. Правильный пятиугольник

8. Отношение диагонали правильного пятиугольника к стороне равно золотому сечению.

a / c ≈ 5 / 8 ≈ 0,618.

Правильный пятиугольник

Рис. 9. Правильный пятиугольник

Построение правильного пятиугольника:

Метод построения правильного пятиугольника вписыванием его в заданную окружность:

1. Постройте окружность, в которую будет вписан пятиугольник, и обозначьте её центр как O.

2. Выберите на окружности точку A, которая будет одной из вершин пятиугольника. Постройте прямую через O и A.

3. Постройте прямую перпендикулярно прямой OA, проходящую через точку O. Обозначьте одно её пересечение с окружностью как точку B.

4. Постройте точку C посередине между O и B.

5. Проведите окружность с центром в точке C через точку A. Обозначьте её пересечение с прямой OB (внутри первоначальной окружности) как точку D.

6. Проведите окружность с центром в A через точку D, пересечение данной окружности с оригинальной (зелёной окружностью) обозначьте как точки E и F.

7. Проведите окружность с центром в E через точку A. Обозначьте её другое пересечение с первоначальной окружностью как точку G.

8. Проведите окружность с центром в F через точку A. Обозначьте её другое пересечение с первоначальной окружностью как точку H.

9. Постройте правильный пятиугольник AEGHF.

Формулы правильного пятиугольника:

Пусть a – сторона пятиугольника, r – радиус окружности, вписанной в пятиугольник, R – радиус описанной окружности пятиугольника, S – площадь пятиугольника, h – высота пятиугольника, d – диагональ пятиугольника, Ф – отношение золотого сечения.

Формулы площади правильного пятиугольника:

Формулы высоты правильного пятиугольника:

Формулы стороны правильного пятиугольника:

Формулы диагонали правильного пятиугольника:

Формулы радиуса окружности, вписанной в правильный пятиугольник:

Формулы радиуса окружности, описанной вокруг правильного пятиугольника:

Правильный пятиугольник в природе, технике и культуре:

Пентасимметрию можно наблюдать в некоторых фруктах (например, у мушмулы германской), у иглокожих (например, у морских звёзд) и у некоторых растений.

Исследования формирования водяного льда на ровной поверхности меди при температурах 100-140 K показали, что сначала на поверхности возникают цепочки молекул шириной около 1 нм не гексагональной, а пентагональной структуры.

Пентагон — здание Министерства обороны США — имеет форму правильного пятиугольника.

Паркет, тротуарная плитка, мозайки и т.п. может выкладываться элементами, которые имеют вид пятиугольников.

Государственный знак качества СССР имеет форму пятиугольника с выпуклыми сторонами.

Прямоугольник

Прямоугольный треугольник

Равнобедренный треугольник

Равносторонний треугольник

Пятиугольник

Шестиугольник

Семиугольник

Восьмиугольник

Примечание: © Фото https://www.pexels.com, https://pixabay.com

Коэффициент востребованности
9 625

Где найти формулы для правильного пятиугольника?

Правильный пятиугольник или пентагон (англ. regular pentagon) — это пятиугольник, все стороны и все углы которого равны между собой.

Формулы для правильного пятиугольника:

  • Величина α внутренних углов правильного пятиугольника (n=5) составляет:
    α = (n – 2)/n · 180° = (3/5) · 180° = 108°.
  • Площадь правильного пятиугольника со стороной a рассчитывается по формуле:
    S = (5/4) a2 ctg(π/5) = (1/4) √5 √(5 + 2√5) a2 ≈ 1,720 a2.
  • Площадь правильного пятиугольника, вписанного в окружность радиуса R рассчитывается по формуле:
    S = (5/2) R2 sin(2π/5) = (5√2/8) √(5 + √5) R2 ≈ 2,378 R2.
  • Площадь правильного пятиугольника, описанного вокруг окружности радиуса r рассчитывается по формуле:
    S = 5 r2 tg(π/5) = 5 √(5 – 2√5) r2 ≈ 3,633 r2.
  • Высота правильного пятиугольника со стороной a составляет:
    h = (1/2) a tg 72° = (1/2) √(5 + 2√5) a2 = 1,539 a.
  • Отношение диагонали d правильного пятиугольника к его стороне a равно золотому сечению:
    d/a = (1 + √5) / 2 ≈ 1,618.
  • Радиус r окружности, вписанной в правильный пятиугольник со стороной a составляет:
    r = (1/10) √5 √(5 + 2√5) a ≈ 0,688 a.
  • Радиус R окружности, описанной вокруг правильного пятиугольника со стороной a составляет:
    R = (1/10) √10 √(5 + √5) a ≈ 0,851 a.
  • Радиус R  окружности, описанной вокруг правильного пятиугольника, можно найти по радиусу r вписанной в него окружности по формуле:  
  • R = (√5 – 1) r ≈ 1,236 r.

Факты о правильном пятиугольнике:

  • Правильный пятиугольник может быть построен с помощью циркуля и линейки, или вписыванием его в заданную окружность, или построением на основе заданной стороны. Впервые это построение описал Евклид в своих «Началах» около 300 года до н.э.
  • Все диагонали правильного пятиугольника равны между собой. Вместе они образуют пятиконечную звезду, называемую также пентаграммой. Отношение длины диагонали к длине стороны правильного пятиугольника равно золотому сечению.
  • Правильными пятиугольниками нельзя замостить плоскость без промежутков и наложений. Это наименьший по числу сторон правильный многоугольник, который обладает таким свойством.
  • Додекаэдр — единственный правильный многогранник, грани которого представляют собой правильные пятиугольники. Правильный пятиугольник — наибольший по числу сторон правильный многоугольник, из которых можно собрать правильный многогранник.
  • В природе не существует кристаллов с гранями в форме правильного пятиугольника. Однако, при формировании водяного льда на ровной поверхности меди при температурах 100—140 K на поверхности сначала возникают цепочки молекул шириной около 1 нм пентагональной структуры. 
  • Правильный пятиугольник можно получить, завязав узлом полоску бумаги, а затем сплющив узел.
  • Пентагоном называют министерство обороны США, поскольку оно размещается в здании, имеющем в плане форму правильного пятиугольника (пентагона).

Источники:

  • ru.wikipedia.org — Википедия: Правильный пятиугольник
  • wolframalpha.com — Wolfram|Alpha: regular pentagon (англ. яз.)

Дополнительно на Геноне:

  • Какой величины углы у правильного треугольника?
  • Что такое пентаграмма?
  • Сколько диагоналей у пятиугольника?
  • Кто такой Евклид?
  • Почему у здания Пентагона пять углов?

Последнее редактирование ответа: 20.10.2011


  • Оставить отзыв

    Оставить отзыв

    Вы можете написать свои замечания к ответу, предложения об улучшении или просто поблагодарить автора. Комментарий, после проверки, увидят автор и редактор ответа. Будьте, пожалуйста, вежливыми. Спасибо!

    Если Вы хотите получить уведомление об
    исправлении ответа укажите свой e-mail:

    Неправильный формат адреса электронной почты

Похожие вопросы

  • Сколько существует правильных многогранников?
  • Каково определение правильного многогранника?
  • Как использовать уровни коррекции Фибоначчи?
  • Где найти развертки правильных многогранников?
  • Что такое правильный многогранник?
  • Под каким углом пересекаются диагонали октаэдра?
  • Что такое диагональ?
  • Какой угол между диагоналями куба?
  • Сколько диагоналей у 12-угольника, 24-угольника?
  • Сколько диагоналей у многоугольника?

В соответствии с пользовательским соглашением администрация не несет ответственности за содержание материалов, которые размещают пользователи. Для урегулирования спорных вопросов и претензий Вы можете связаться с администрацией сайта genon.ru.
Размещенные на сайте материалы могут содержать информацию, предназначенную для пользователей старше 18 лет, согласно Федерального закона №436-ФЗ от 29.12.2010 года «О защите детей от информации, причиняющей вред их здоровью и развитию». Обращение к пользователям 18+.

Понравилась статья? Поделить с друзьями:
  • Как найти основание если известны его стороны
  • Как найти семью в англии
  • Как найти векторные линии поля онлайн
  • Как найти цвет в indesign
  • Секрет как найти работы