Как найти диагонали трапеции вписанной в окружность

Узнать ещё

Знание — сила. Познавательная информация

Трапеция вписана в окружность

Рассмотрим несколько направлений решения задач, в которых трапеция вписана в окружность.

Когда трапецию можно вписать в окружность? Четырехугольник можно вписать в окружность тогда и только тогда, когда сумма его противолежащих углов равна 180º. Отсюда следует, что вписать в окружность можно только равнобокую трапецию.

Радиус окружности, описанной около трапеции, можно найти как радиус окружности, описанной около из одного из двух треугольников, на которые трапецию делит ее диагональ.

Где находится центр окружности, описанной около трапеции? Это зависит от угла между диагональю трапеции и ее боковой стороной.

Если диагональ трапеции перпендикулярна ее боковой стороне, то центр окружности, описанной около трапеции, лежит на середине ее большего основания. Радиус описанной около трапеции окружности в этом случае равен половине ее большего основания:

Если диагональ трапеции образует с боковой стороной острый угол, центр окружности, описанной около трапеции лежит внутри трапеции.

Если диагональ трапеции образует с боковой стороной тупой угол, центр описанной около трапеции окружности лежит вне трапеции, за большим основанием.

Радиус описанной около трапеции окружности можно найти по следствию из теоремы синусов. Из треугольника ACD

Из треугольника ABC

Другой вариант найти радиус описанной окружности —

Синусы угла D и угла CAD можно найти, например, из прямоугольных треугольников CFD и ACF:

При решении задач на трапецию, вписанную в окружность, можно также использовать то, что вписанный угол равен половине соответствующего ему центрального угла. Например,

Кстати, использовать углы COD и CAD можно и для нахождения площади трапеции. По формуле нахождения площади четырехугольника через его диагонали

В равнобедренном треугольнике AMD углы при основании равны. Внешний угол CMD равен сумме внутренних углов, не смежных с ним:

Трапеция вписанная в окружность и ее свойства

Какими свойствами обладает трапеция, вписанная в окружность?

Трапеция — это четырехугольник. А четырехугольник можно вписать в окружность только тогда, когда сумма противолежащих углов составляет 180 градусов.
А это возможно только в равнобокой трапеции. То есть, только равнобокую трапецию можно вписать в окружность.

Давайте вспомним свойства равнобокой трапеции.

    В равнобокой трапеции угла при основаниях равны.

∠А = ∠С, ∠В = ∠D

∠А + ∠D = 180, ∠B + ∠С = 180

∠А + ∠С= 180, ∠B + ∠D = 180

Свойства трапеции равнобокой и трапеции, вписанной в окружность, часто можно встретить при решении задач. Поэтому нужно их помнить.

Как найти диагонали трапеции если она вписана в окружность

Напомним свойства трапеции, которые часто используются при решении задач. Некоторые из этих свойств были доказаны в заданиях для 9-го класса, другие попробуйте доказать самостоятельно. Приведённые рисунки напоминают ход доказательства.

$$ 4.<1>^<○>$$. Диагонали трапеции разбивают её на четыре треугольника с общей вершиной (рис. 20). Площади треугольников, прилежащих к боковым сторонам, равны, а треугольники прилежащие к основаниям — подобны.

$$ 4.<2>^<○>$$. В любой трапеции середины оснований, точка пересечения диагоналей и точка пересечения продолжении боковых сторон, лежат на одной прямой (на рис. 21 точки `M`, `N`, `O` и `K`).

$$ 4.<3>^<○>$$. В равнобокой трапеции углы при основании равны (рис. 22).

$$ 4.<4>^<○>$$. В равнобокой трапеции прямая, проходящая через середины оснований, перпендикулярна основаниям и является осью симметрии трапеции (рис. 23).

$$ 4.<5>^<○>$$. В равнобокой трапеции диагонали равны (рис. 24).

$$ 4.<6>^<○>$$. В равнобокой трапеции высота, опущенная на большее основание из конца меньшего основания, делит его на два отрезка, один из которых равен полуразности оснований, а другой – их полусумме

(рис. 25, основания равны `a` и `b`, `a>b`).

$$ 4.<7>^<○>$$. Во всякой трапеции середины боковых сторон и середины диагоналей лежат на одной прямой (рис. 26).

$$ 4.<8>^<○>$$. Во всякой трапеции отрезок, соединяющий середины диагоналей, параллелен основаниям и равен полуразности оснований (рис. 27).

$$ 4.<9>^<○>$$.В равнобокой трапеции `d^2=c^2+ab`, где `d` — диагональ, `c` — боковая сторона, `a` и `b` основания.

Во всякой трапеции сумма квадратов диагоналей равна сумме квадратов боковых сторон и удвоенного произведения оснований, т. е. `d_1^2+d_2^2=c_1^2+c_2^2+2*ab`.

$$ 4.<10>^<○>$$. Во всякой трапеции с основаниями `a` и `b` отрезок с концами на боковых сторонах, проходящий через точку пересечения диагоналей параллельно основаниям, равен `(2ab)/(a+b)` (на рис. 28 отрезок `MN`).

$$ 4.<11>^<○>$$. Трапецию можно вписать в окружность тогда и только тогда, когда она равнобокая.

Докажем, например, утверждение $$ 4.<9>^<○>$$ .

Применяем теорему косинусов (см. рис. 29а и б):

`ul(DeltaACD):` `d_1^2=a^2+c_2^2-2a*c_2*cos varphi`,

`ul(DeltaBCD):` `d_2^2=b^2+c_2^2+2b*c_2*cos varphi` (т. к. `cos(180^@-varphi)=-cos varphi`).

Проводим `CK«||«BA` (рис. 29в), рассматриваем треугольник `ul(KCD):` `c_1^2=c_2^2+(a-b)^2-2c_2*(a-b)*cos varphi`. Используя последнее равенство, заменяем выражение в скобках в (2), получаем:

`d_1^2+d_2^2=c_1^2+c_2^2+2ab`.

В случае равнобокой трапеции `d_1=d_2`, `c_1=c_2=c`, поэтому получаем

Отрезок, соединяющий середины оснований трапеции, равен `5`, одна из диагоналей равна `6`. Найти площадь трапеции, если её диагонали перпендикулярны.

`AC=6`, `BM=MC`, `AN=ND`, `MN=5` (рис. 30а). Во всякой трапеции середины оснований и точка пересечения диагоналей лежат на од-ной прямой (свойство $$ 4.<2>^<○>$$). Треугольник `BOC` прямоугольный (по условию `AC_|_BD`), `OM` — его медиана, проведённая из вершины прямого угла, она равна половине гипотенузы: `OM=1/2BC`. Аналогично устанавливается `ON=1/2AD`, поэтому `MN=1/2(BC+AD)`. Через точку `D` проведём прямую, параллельную диагонали `AC`, пусть `K` — её точка пересечения с прямой `BC` (рис. 30б).

По построению `ACKD` — параллелограмм, `DK=AC`, `CK=AD` и `/_BDK=90^@`

(т. к. угол `BDK` — это угол между диагоналями трапеции).

Прямоугольный треугольник `ul(BDK)` с гипотенузой `BK=BC+AD=2MN=10` и катетом `DK=6` имеет площадь `S=1/2DK*BD=1/2DKsqrt(BK^2-DK^2)=24`. Но площадь треугольника `BDK` равна площади трапеции, т. к. если `DP_|_BK`, то

Диагонали трапеции, пересекаясь, разбивают её на четыре треугольника с общей вершиной. Найти площадь трапеции, если площади треугольников, прилежащих к основаниям, равны `S_1` и `S_2`.

Пусть `BC=a`, `AD=b`, и пусть `h` — высота трапеции (рис. 31). По свойству $$ 4.<1>^<○>$$ `S_(ABO)=S_(CDO)`, обозначим эту площадь `S_0` (действительно, `S_(ABD)=S_(ACD)`, т. к. у них общие основания и равные высоты, т. е. `S_(AOB)+S_(AOD)=S_(COD)+S_(AOD)`, откуда следует `S_(AOB)=S_(COD)`). Так как `S_(ABC)=S_0 + S_1=1/2ah` и `S_(ACD)=S_0+S_2=1/2bh`, то `(S_0+S_1)/(S_0 + S_2)=a/b`.

Далее, треугольники `BOC` и `DOA` подобны, площади подобных треугольников относятся как квадраты соответствующих сторон, значит, `(S_1)/(S_2)=(a/b)^2`. Таким образом, `(S_0+S_1)/(S_0+S_2)=sqrt((S_1)/(S_2))`.Отсюда находим `S_0=sqrt(S_1S_2)`, и поэтому площадь трапеции будет равна

Основания равнобокой трапеции равны `8` и `10`, высота трапеции равна `3` (рис. 32).

Найти радиус окружности, описанной около этой трапеции.

Трапеция равнобокая, по свойству $$ 4.<11>^<○>$$ около этой трапеции можно описать окружность. Пусть `BK_|_AD`, по свойству $$ 4.<6>^<○>$$

Из прямоугольного треугольника `ABK` находим `AB=sqrt(1+9)=sqrt(10)` и `sinA=(BK)/(AB)=3/(sqrt10)`. Окружность, описанная около трапеции `ABCD`, описана и около треугольника `ABD`, значит (формула (1), § 1), `R=(BD)/(2sinA)`. Отрезок `BD` находим из прямоугольного треугольника `KDB:` `BD=sqrt(BK^2+KD^2)=3sqrt(10)` (или по формуле `d^2=c^2+ab`), тогда

$$ 4.<12>^<○>$$. Площадь трапеции равна площади треугольника, две стороны которого равны диагоналям трапеции, а третья равна сумме оснований.

$$ 4.<13>^<○>$$. Если `S_1` и `S_2` — площади треугольников, прилежащих к основаниям, то площади треугольников, прилежащих к боковым сторонам равны `sqrt(S_1S_2)`, а площадь всей трапеции равна `(sqrt(S_1) +sqrt(S_2))^2`.

$$ 4.<14>^<○>$$. Радиус окружности, описанной около трапеции, находится по формуле `R+a/(2sin alpha)`, где `a` — какая-то сторона (или диагональ трапеции), `alpha` — смотрящий на неё вписанный угол.

Диагональ выпуклого четырехугольника – это отрезок, соединяющий 2 противолежащие вершины. В
зависимости от типа геометрической фигуры диагональ обладает особыми свойствами, которые необходимо
знать и уметь применять на практике, так как большинство решений задач основывается именно на них. В
данной статье рассмотрены пути определения диагоналей, проведенных в трапеции.

Основные свойства фигуры и проведенных диагоналей способствуют выведению сокращенных формул, которые
помогут в решении задач по геометрии повышенного уровня. Рассмотрим несколько способов нахождения
искомого отрезка.

  • Диагональ трапеции через нижнее основание, боковую сторону
    и угол между ними
  • Диагональ трапеции через четыре стороны
  • Диагональ трапеции через высоту, нижнее основание и угол
    при нижнем основание
  • Диагональ трапеции через высоту, верхнее основание и угол
    при нижнем основание
  • Диагональ трапеции через высоту, нижнее основание и боковую
    сторону
  • Диагональ трапеции через высоту, основании и другую
    известную диагональ
  • Диагональ трапеции через площадь и другую известную
    диагональ
  • Диагональ трапеции через высоту, среднию линию и другую
    известную диагональ
  • Диагональ равнобедренной трапеции через основании и боковую
    сторону
  • Диагональ равнобедренной трапеции через высоту и среднию
    линию
  • Диагональ равнобедренной трапеции через высоту и
    основании
  • Диагональ равнобедренной трапеции через площадь и угол
    между диагоналями
  • Диагональ прямоугольной трапеции через основание и
    сторону
  • Диагональ прямоугольной трапеции через основание и
    высоту

Вычисление через нижнее основание, боковую сторону и угол между ними

Зная длину стороны, большего основания трапеции и противолежащий по отношению к диагонали угол, можно
быстро найти результат благодаря формуле:

D = √(a² + b² — 2ac * cos β)

где c — сторона трапеции, a — основание, β – угол между ними.

Цифр после
запятой:

Результат в:

Пример. В трапеции проведена диагональ, противолежащий к ней острый угол равен 75
градусам. Прилежащие к данному углу основание и сторона трапеции равны 6,1 и 7 см. Найти проведенный
отрезок. D = √(6,1² + 7³ —  2 * 6,1 * 7 * cos75°) = 8 см – искомая
величина.

Вычисление через известные длины четырех сторон трапеции

Допустим, что a, b – основания, c и d – боковые стороны. Значение диагонали с учетом этих данных
легко можно найти, подставив их в формулу:

D =√(c² + ab — a * (c² — d²) / (a — b))

где a, b — основания, c, d — боковые стороны трапеции.

Цифр после
запятой:

Результат в:

Пример. Дана трапеция с боковыми сторонами 6 и 5 см, основаниями 4 и 8 см. Нужно
найти диагональ, которая лежит против угла. Применим данную формулу для решения: D = √(36 + 4 * 8 — 4(36 — 25) / (8 — 4)) = √(36 + 32 — 44 / 4) = 7,5 см
– неизвестная диагональ.

Вычисление через высоту, нижнее основание и угол при нижнем основании

Зная длину проведенной в трапеции высоты к нижнему основанию, значение которого также известно, и
один из двух углов при нижнем основании фигуры, можно найти диагональ, применив формулу:

D = √(h² + (a — h * ctg β)²)

где h — высота, a — нижнее основание, β – внутренний угол при основании.

Цифр после
запятой:

Результат в:

Пример. К нижнему основанию трапеции равному 7 м проведена высота, длина которой 8
м. Известен угол между нижним основанием и боковой стороной — 71°. Найти диагональ,
противолежащую известному углу. D = √(64 + (7 — 8 * ctg 71°)²) = 9 м
– длина искомого отрезка.

Вычисление через высоту, верхнее основание и угол при нижнем основании

В данном случае не нужно тратить время на поиски нижнего основания трапеции, стоит воспользоваться
формулой:

D = √(h² + (b + h * ctg α)²)

где b – длина верхнего основания трапеции.

Цифр после
запятой:

Результат в:

Пример. К нижнему основанию трапеции проведена высота длиной 6 мм. Длина верхнего
основания фигуры равна 4 мм, а внутренний угол — 71°. Найти: значение диагонали трапеции,
проходящей через вершину известного угла. D = √(36 + (4 + 6 * ctg 71°)²) = 8,5 мм.

Вычисление через высоту, нижнее основание и боковую сторону

Если известна длина одной из боковых сторон, нижнее основание и высота, проведенная к нему,
необходимо применить формулу:

D = √(a² + c² — 2a * √(c² — h²))

где a – нижнее основание трапеции, c – боковая сторона, h — высота.

Цифр после
запятой:

Результат в:

Пример. В трапеции проведена высота длиной 8 см к нижнему основанию длиной 7 см.
Известно, что одна из боковых сторон равна 9 см. Найти: диагональ, противолежащую острому углу между
нижним основанием и известной боковой стороной. D = √(49 + 81 — 14√81 — 64) = √(130 — 14√17) = √72,3 = 8,5 см
– искомая величина.

Вычисление через высоту, основании и другую известную диагональ

Кроме данных о высоте, верхнем и нижнем основании, одной из диагоналей, необходимо значить величину
углов, образующихся при пересечении диагоналей трапеции. Известно, что углы между отрезками
считаются смежными, а значит их синусы равны. Таким образом, подставляем все данные в формулу:

D = h(a+b) / d * sin α

где a, b – основания трапеции, α – острый или тупой угол между диагоналями, h — высота.

Цифр после
запятой:

Результат в:

Пример. Дана трапеция с основаниями 15 и 5 мм. Проведена высота длиной 10 мм, а
длина большей диагонали равна 20 мм. Найти: вторую диагональ, если известно, что угол при
пересечении отрезков равен 60°. D = 20(15 + 5) / 20 * sin 60° = 20 / sin 60° = 11,54 мм.

Вычисление через площадь трапеции и другую известную диагональ

Здесь также понадобится значение угла между данными отрезками. Способ нахождения через известную
площадь фигуры и другую диагональ имеет формулу вида:

D = 2S / d * sin α

где S – площадь, α – угол, d — известная диагональ

Цифр после
запятой:

Результат в:

Пример. Дана трапеция площадью 87 мм² с диагональю длиной 14,7 мм. Как найти
неизвестную диагональ, если угол между отрезками равен 65 градусам. D = 2 * 87 / 14,7 * sin 65° = 174 / 14,7 * sin 65° = 13 мм
– искомая величина.

Вычисление через высоту, среднюю линию и другую известную диагональ

Средняя линия трапеции – это отрезок, проходящий через середины боковых сторон данного
четырёхугольника. Через это значение искомая диагональ находится по формуле:

D = 2 * mh / d * sin α

где буквой m обозначается средняя линия трапеции, h — высота, d — известная
диагональ.

Цифр после
запятой:

Результат в:

Пример. Диагонали трапеции, одна из которых равна 19 мм, пересекаются под углом 65
градусов. Проведена средняя, длина которой 8 мм, а высота трапеции равна 15,5 мм. Найти: вторую
диагональ. D = 2 * 8 * 15,5 / 19 * sin 65° = 13 * sin 65° = 14,4 мм
длина неизвестной диагонали.

Диагональ равнобедренной трапеции через основания и боковую сторону

Равнобедренная трапеция – часто встречающийся вид данного четырёхугольника. Основными признаками
равнобедренной фигуры служит равенство внутренних углов при основании, а также равенство диагоналей.
Найти диагональ, проведенную в равнобедренной трапеции, можно несколькими способами. К примеру,
вычислить искомую величину можно по формуле:

D = √(c² + a * b)

где c – известная боковая сторона, a и b – верхнее и нижнее основание трапеции.

Цифр после
запятой:

Результат в:

Пример. Углы трапеции при основаниях, равных 8 и 18 см, имеют одинаковую градусную
меру. Одна из боковых сторон равна 6 см. Найти: диагональ. Из равенства углов делаем вывод, что дана
равнобедренная трапеция. Затем подставляем известные значения в формулу: D = √(36 + 8 * 18) = √180 = 13,4 см
– длина диагоналей равнобедренной трапеции.

Диагональ равнобедренной трапеции через высоту и среднюю линию

Зная длину высоты и отрезок, проходящий через середины сторон равнобедренной трапеции, можно легко
найти искомую величину по формуле:

D = √(h² + m²)

где буквой m обозначена средняя линия, а h — высота.

Цифр после
запятой:

Результат в:

Пример. В трапеции проведена высота длиной 7 м, диагонали равны. Как найти
диагонали, если известна длина средней линии – 9 м? Из равенства диагоналей можно сделать вывод, что
трапеция равнобедренная. А значит, что для быстрого решения нужно воспользоваться выше указанной
формулой: D = √(7² + 9²) = √(49+81) = √130 = 14,4 м – диагонали трапеции.

Диагональ равнобедренной трапеции через высоту, верхнее и нижнее основание

Формула нахождения искомого отрезка при помощи высоты и известных величин оснований имеет следующий
вид:

D = √(h² + (a² + b²) / 4)

где a и b – верхнее и нижнее основание равнобедренной трапеции, h — высота.

Цифр после
запятой:

Результат в:

Пример. Дана равнобедренная трапеция, в которой к нижнему основанию проведена высота
длиной 7 см. Основания – 5 и 11 см. Найти: диагонали. D = √(7² +(5² + 11²) / 4) = √(49 + 146 / 4) = √85,5 = 10,6 см
– длина диагоналей.

Диагональ равнобедренной трапеции через площадь и угол между диагоналями

Как уже говорилось, синусы углов, образованных пересечением диагоналей, равны, так как углы являются
смежными. Поэтому для вычисления по следующей формуле, необходим любой из этих углов. Формула:

D = √2*S / sin α

где S — площадь, sin α — угол между диагоналями.

Цифр после
запятой:

Результат в:

Пример. Дана равнобедренная трапеция, площадь которой равна 86 мм². Найти: длину
диагоналей, один из углов при пересечении которых равен 120 градусам. D = √(2 * 86 / sin 120°) = √(172 / sin 120°) = 14 мм.

Диагональ прямоугольной трапеции через основание и сторону

В прямоугольной трапеции одна из боковых сторон расположена перпендикулярно основаниям (под углом
90°). Зная одно из оснований такого четырёхугольника и боковую сторону, можно легко найти диагональ,
применив следующую формулу:

D = √(a² + c²)

где a – основание, c — сторона.

Цифр после
запятой:

Результат в:

Пример. Внутренний угол трапеции между боковой стороной и основаниями равен 90
градусам. Сторона равна 20 м, нижнее основание – 15 м. Найти: диагональ трапеции, противолежащую
прямому углу. Исходя их известных данных, делаем вывод, что дана прямоугольная трапеция. Затем
подставляем значения в формулу: D = √(20²+15²) = 25 м. Аналогичный способ
решения можно применить для того случая, когда известна длина верхнего основания.

Диагональ прямоугольной трапеции через основание и высоту

В данном случае высота равна боковой стороне, перпендикулярной основанию, поэтому вместо стороны в
формулу просто подставляется значение высоты при необходимости:

D = √(a² + h²)

где a — основание, h — высота.

Цифр после
запятой:

Результат в:

Пример. Дана прямоугольная трапеция с высотой равной 15 см и основанием — 10
см. Найти: диагональ. D = √(15² + 10²) = 18 см.

Трапеция – выпуклая плоская геометрическая фигура, которая представляет собой четырёхугольник.
Обязательным условием данного вида является параллельность двух сторон (они называются основаниями).
Как и упоминалось выше, в зависимости от боковых сторон трапеция может быть равнобедренной и
прямоугольной.

Рассмотрим некоторые свойства четырёхугольника, знание которых необходимо для решения самых
простейших задач:

  • В трапецию можно вписать окружность, если сумма оснований равна сумме боковых сторон.
  • Средняя линия параллельна основаниям, M=(a+b)/2, где a и b – основания.
  • На одной прямой лежат точки пересечения диагоналей и продолжения длин боковых сторон.

Диагональ, построенная в данной фигуре, отличается следующими свойствами:

  • Диагонали разделяют фигуру на 2 подобных треугольника, углы которых равны, а стороны
    пропорциональны.
  • Проведенные диагонали также образуют 2 идентичных треугольника, стороны которых совпадают со
    сторонами трапеции.
  • Отрезок, проходящий через точку пересечения диагоналей и соединяющий основания фигуры, делится в
    пропорции, равной соотношению оснований фигуры.
  • Отрезок, проходящий через середины диагоналей, делит боковые стороны трапеции на 2 равные
    части.

В решении задач значение диагонали поможет определить немалое количество нужных величин: высота,
площадь, периметр, все стороны и среднюю линию трапеции, внутренние углы. Хорошие навыки применения
тригонометрических функций способствуют быстрой скорости решения по данных формулам, которые
значительно облегчают и ускоряют процесс.

Трапеция. Формулы, признаки и свойства трапеции

Определение.

Трапеция — это четырехугольник, у которого две стороны параллельны, а две другие стороны не параллельны.

Параллельные стороны называются основами трапеции, а две другие боковыми сторонами

Так же, трапецией называется четырехугольник, у которого одна пара противоположных сторон параллельна, и стороны не равны между собой.

Элементы трапеции:

  • Основы трапеции — параллельные стороны
  • Боковые стороны — две другие стороны
  • Средняя линия — отрезок, соединяющий середины боковых сторон.

Виды трапеций:

  • Равнобедренная трапеция — трапеция, у которой боковые стороны равны
  • Прямоугольная трапеция — трапеция, у которой одна из боковых сторон перпендикулярна основам

Основные свойства трапеции

1. В трапецию можно вписать окружность, если сумма длин оснований равна сумме длин боковых сторон:

AB + CD = BC + AD

2. Средняя линия трапеции разделяет пополам любой отрезок, который соединяет основы, так же делит диагонали пополам:

AK = KB, AM = MC, BN = ND, CL = LD

3. Средняя линия трапеции параллельна основаниям и равна их полусумме:

4. Точка пересечения диагоналей трапеции и середины оснований лежат на одной прямой.

5. В трапеции её боковая сторона видна из центра вписанной окружности под углом 90°.

6. Каждая диагональ в точке пересечения делится на две части с таким соотношением длины, как соотношение между основаниями:

BC : AD = OC : AO = OB : DO

7. Диагонали трапеции d1 и d2 связаны со сторонами соотношением:

d12 + d22 = 2ab + c2 + d2

Сторона трапеции

Формулы определения длин сторон трапеции:

1. Формула длины оснований трапеции через среднюю линию и другую основу:

a = 2mb

b = 2ma

2. Формулы длины основ через высоту и углы при нижнем основании:

a = b + h · (ctg α + ctg β)

b = ah · (ctg α + ctg β)

3. Формулы длины основ через боковые стороны и углы при нижнем основании:

a = b + cos α + cos β

b = acos αcos β

4. Формулы боковых сторон через высоту и углы при нижнем основании:

Средняя линия трапеции

Определение.

Средняя линия — отрезок, соединяющий середины боковых сторон трапеции.

Формулы определения длины средней линии трапеции:

1. Формула определения длины средней линии через длины оснований:

2. Формула определения длины средней линии через площадь и высоту:

Высота трапеции

Формулы определения длины высоты трапеции:

1. Формула высоты через сторону и прилегающий угол при основании:

h = sin α = sin β

2. Формула высоты через диагонали и углы между ними:

h =  sin γ · d1 d2  =  sin δ · d1 d2
a + b a + b

3. Формула высоты через диагонали, углы между ними и среднюю линию:

h =  sin γ · d1 d2  =  sin δ · d1 d2
2m 2m

4. Формула высоты трапеции через площадь и длины оснований:

5. Формула высоты трапеции через площадь и длину средней линии:

Диагонали трапеции

Формулы определения длины диагоналей трапеции:

1. Формулы диагоналей по теореме косинусов:

d1 = √a2 + d2 — 2ad·cos β

d2 = √a2 + c2 — 2ac·cos α

2. Формулы диагоналей через четыре стороны:

d1 =  d 2 + ab —  a(d 2c2)
ab
d2 =  c2 + ab —  a(c2d 2)
ab

3. Формула длины диагоналей через высоту:

d1 = √h2 + (ah · ctg β)2 = h2 + (b + h · ctg α)2

d2 = √h2 + (ah · ctg α)2 = h2 + (b + h · ctg β)2

4. Формулы длины диагонали через сумму квадратов диагоналей:

d1 = √c2 + d 2 + 2abd22

d2 = √c2 + d 2 + 2abd12

Площадь трапеции

Формулы определения площади трапеции:

1. Формула площади через основания и высоту:

2. Формула площади через среднюю линию и высоту:

S = m · h

3. Формула площади через диагонали и угол между ними:

S =  d1d2 · sin γ  =  d1d2 · sin δ
2 2

4. Формула площади через четыре стороны:

S =  a + b c2 ( (ab)2 + c2d 2 ) 2
2 2(ab)

5. Формула Герона для трапеции

S =  a + b (p — a)(p — b)(p — a — c)(p — a — d)
|a — b|

где

p =  a + b + c + d   — полупериметр трапеции.
2

Периметр трапеции

Формула определения периметра трапеции:

1. Формула периметра через основания:

P = a + b + c + d

Окружность описанная вокруг трапеции

Окружность можно описать только вокруг равнобедренной трапеции!!!

Формула определения радиуса описанной вокруг трапеции окружности:

1. Формула радиуса через стороны и диагональ:

R =  a·c·d1
4√p(pa)(pc)(pd1)

где

a — большее основание

Окружность вписанная в трапецию

В трапецию можно вписать окружность, если сумма длин оснований равна сумме длин боковых сторон:

a + b = c + d

Формула определения радиуса вписанной в трапецию окружности

1. Формула радиуса вписанной окружности через высоту:

Другие отрезки разносторонней трапеции

Формулы определения длин отрезков проходящих через трапецию:

1. Формула определения длин отрезков проходящих через трапецию:

KM = NL =  b    KN = ML =  a    TO = OQ =  a · b
2 2 a + b

В этой статье мы постараемся насколько возможно полно отразить свойства трапеции. В частности, речь пойдет про общие признаки и свойства трапеции, а также про свойства вписанной трапеции и про окружность, вписанную в трапецию. Затронем мы и свойства равнобедренной и прямоугольной трапеции.

Пример решения задачи с использованием рассмотренных свойств поможет вам разложить по местам в голове и лучше запомнить материал.

Трапеция и все-все-все

Для начала коротко вспомним, что такое трапеция и какие еще понятия с ней связаны.

Итак, трапеция – фигура-четырехугольник, две из сторон которой параллельны друг другу (это основания). И две не параллельны – это боковые стороны.

В трапеции может быть опущена высота – перпендикуляр к основаниям. Проведены средняя линия и диагонали. А также из любого угла трапеции возможно провести биссектрису.

Про различные свойства, связанные со всеми эти элементами и их комбинациями, мы сейчас и поговорим.

Похожее изображение

Свойства диагоналей трапеции

Чтобы было понятнее, пока читаете, набросайте себе на листке трапецию АКМЕ и проведите в ней диагонали.

  1. Если вы найдете середины каждой из диагоналей (обозначим эти точки Х и Т) и соедините их, получится отрезок. Одно из свойств диагоналей трапеции заключается в том, что отрезок ХТ лежит на средней линии. А его длину можно получив, разделив разность оснований на два: ХТ = (a – b)/2.
  2. Перед нами все та же трапеция АКМЕ. Диагонали пересекаются в точке О. Давайте рассмотрим треугольники АОЕ и МОК, образованные отрезками диагоналей вместе с основаниями трапеции. Эти треугольники – подобные. Коэффициент подобия k треугольников выражается через отношение оснований трапеции: k = АЕ/КМ.
    Отношение площадей треугольников АОЕ и МОК описывается коэффициентом k2.
  3. Все та же трапеция, те же диагонали, пересекающиеся в точке О. Только в этот раз мы будем рассматривать треугольники, которые отрезки диагоналей образовали совместно с боковыми сторонами трапеции. Площади треугольников АКО и ЕМО являются равновеликими – их площади одинаковые.
  4. Еще одно свойство трапеции включает в себя построение диагоналей. Так, если продолжить боковые стороны АК и МЕ в направлении  меньшего основания, то рано или поздно они пересекутся к некоторой точке. Дальше, через середины оснований трапеции проведем прямую. Она пересекает основания в точках Х и Т.
    Если мы теперь продлим прямую ХТ, то она соединит вместе точку пересечения диагоналей трапеции О, точку, в которой пересекаются продолжения боковых сторон и середины оснований Х и Т.
  5. Через точку пересечения диагоналей проведем отрезок, который соединит основания трапеции (Т лежит на меньшем основании КМ, Х – на большем АЕ). Точка пересечения диагоналей делит этот отрезок в следующем соотношении: ТО/ОХ = КМ/АЕ.
  6. А теперь через точку пересечения диагоналей проведем параллельный основаниям трапеции (a и b) отрезок. Точка пересечения разделит его на две равных части. Найти длину отрезка можно по формуле 2ab/(a + b).

Трапеция 2

Свойства средней линии трапеции

Среднюю линию проведите в трапеции параллельно ее основаниям.

  1. Длину средней линии трапеции можно вычислить, если сложить длины оснований и разделить их пополам: m = (a + b)/2.
  2. Если провести через оба основания трапецию любой отрезок (высоту, к примеру), средняя линия разделит его на две равных части.

Свойство биссектрисы трапеции

Выберите любой угол трапеции и проведите биссектрису. Возьмем, например, угол КАЕ нашей трапеции АКМЕ. Выполнив построение самостоятельно, вы легко убедитесь – биссектрисой отсекается от основания (или его продолжения на прямой за пределами самой фигуры) отрезок такой же длины, что и боковая сторона.

Свойства углов трапеции

  1. Какую бы из двух пар прилежащих к боковой стороне углов вы не выбрали, сумма углов в паре всегда составляет 1800: α + β = 1800  и γ + δ = 1800.
  2. Соединим середины оснований трапеции отрезком ТХ. Теперь посмотрим на углы при основаниях трапеции. Если сумма углов при любом из них составляет 900 , длину отрезка ТХ легко вычислить исходя из разности длин оснований, разделенной пополам: ТХ = (АЕ – КМ)/2.
  3. Если через стороны  угла трапеции провести параллельные прямые, те разделят стороны угла на пропорциональные отрезки.

Трапеция 2

Свойства равнобедренной (равнобокой) трапеции

  1. В равнобедренной трапеции равны углы при любом из оснований.
  2. Теперь снова постройте трапецию, чтобы проще было представить, о чем речь. Посмотрите внимательно на основание АЕ – вершина противоположного основания М проецируется в некую точку на прямой, которая содержит АЕ. Расстояние от вершины А до точки проекции вершины М и средняя линия равнобедренной трапеции – равны.
  3. Пару слов о свойстве диагоналей равнобедренной трапеции – их длины равны. А также одинаковы углы наклона этих диагоналей к основанию трапеции.
  4. Только около равнобедренной трапеции можно описать окружность, поскольку сумма противолежащих углов четырехугольника 1800 – обязательное условие для этого.
  5. Из предыдущего пункта следует свойство равнобедренной трапеции – если возле трапеции можно описать окружность, она является равнобедренной.
  6. Из особенностей равнобедренной трапеции вытекает свойство высоты трапеции: если ее диагонали пересекаются под прямым углом, то длина высоты равна половине суммы оснований: h = (a + b)/2.
  7. Снова проведите отрезок ТХ через середины оснований трапеции – в равнобедренной трапеции он является перпендикуляром к основаниям. И одновременно ТХ – ось симметрии равнобедренной трапеции.
  8. На этот раз опустите на большее основание (обозначим его a) высоту из противолежащей вершины трапеции. Получится два отрезка. Длину одного можно найти, если длины оснований сложить и разделить пополам: (a + b)/2. Второй получим, когда из большего основания вычтем меньшее и полученную разность разделим  на два: (a – b)/2.

Трапеция 4

Свойства трапеции, вписанной в окружность

Раз уже речь зашла о вписанной в окружность трапеции, остановимся на этом вопросе подробней. В частности на том, где находится центр окружности по отношению к трапеции. Тут тоже рекомендуется не полениться взять карандаш в руки и начертить то, о чем пойдет речь ниже. Так и поймете быстрее, и запомните лучше.

  1. Расположение центра окружности определяется углом наклона диагонали трапеции к ее боковой стороне. Например, диагональ может выходить из вершины трапеции под прямым углом к боковой стороне. В таком случае большее основание пересекает центр описанной окружности точно посередине (R = ½АЕ).
  2. Диагональ и боковая сторона могут встречаться и под острым углом – тогда центр окружности оказывается внутри трапеции.
  3. Центр описанной окружности может оказаться вне пределов трапеции, за большим ее основанием, если между диагональю трапеции и боковой стороной – тупой угол.
  4. Угол, образованный диагональю и большим основанием трапеции АКМЕ (вписанный угол) составляет половину того центрального угла, который ему соответствует:МАЕ = ½МОЕ.
  5. Коротко про два способа найти радиус описанной окружности. Способ первый: посмотрите внимательно на свой чертеж – что вы видите? Вы без труда заметите, что диагональ разбивает трапецию на два треугольника. Радиус можно найти через отношение стороны треугольника к синусу противолежащего угла, умноженному на два. Например, R = АЕ/2*sinАМЕ. Аналогичным образом формулу можно расписать для любой из сторон обоих треугольников.
  6. Способ второй: находим радиус описанной окружности через площадь треугольника, образованного диагональю, боковой стороной и основанием трапеции: R = АМ*МЕ*АЕ/4*SАМЕ.

Трапеция 6

Свойства трапеции, описанной около окружности

Вписать окружность в трапецию можно, если соблюдается одно условие. Подробней о нем ниже. И вместе эта комбинация фигур имеет ряд интересных свойств.

  1. Если в трапецию вписана окружность, длину ее средней линии можно без труда найти, сложив длины боковых сторон и разделив полученную сумму пополам: m = (c + d)/2.
  2. У трапеции АКМЕ, описанной около окружности, сумма длин оснований равна сумме длин боковых сторон: АК + МЕ = КМ + АЕ.
  3. Из этого свойства оснований трапеции вытекает обратное утверждение: окружность можно вписать в ту трапецию, сумма оснований которой равна сумме боковых сторон.
  4. Точка касания окружности с радиусом r, вписанной в трапецию, разбивает боковую сторону на два отрезка, назовем их a и b. Радиус окружности можно вычислить по формуле: r = √ab.
  5. И еще одно свойство. Чтобы не запутаться, этот пример тоже начертите сами. У нас есть старая-добрая трапеция АКМЕ, описанная около окружности. В ней проведены диагонали, пересекающиеся в точке О. Образованные отрезками диагоналей и боковыми сторонами треугольники АОК и ЕОМ – прямоугольные.
    Высоты этих треугольников, опущенные на гипотенузы (т.е. боковые стороны трапеции), совпадают с радиусами вписанной окружности. А высота трапеции – совпадает с диаметром вписанной окружности.

Свойства прямоугольной трапеции

Прямоугольной называют трапецию, один из углов которой является прямым. И ее свойства проистекают из этого обстоятельства.

  1. У прямоугольной трапеции одна из боковых сторон перпендикулярна основаниям.
  2. Высота и боковая сторона трапеции, прилежащая к прямому углу, равны. Это позволяет вычислять площадь прямоугольной трапеции (общая формула S = (a + b) * h/2) не только через высоту, но и через боковую сторону, прилежащую к прямому углу.
  3. Для прямоугольной трапеции актуальны уже описанные выше общие свойства диагоналей трапеции.

Трапеция 3

Доказательства некоторых свойств трапеции

Равенство углов при основании равнобедренной трапеции:

  • Вы уже наверное и сами догадались, что тут нам снова потребуется трапеция АКМЕ – начертите равнобедренную трапецию. Проведите из вершины М прямую МТ, параллельную боковой стороне АК (МТ || АК).

Полученный четырехугольник АКМТ – параллелограмм (АК || МТ, КМ || АТ). Поскольку МЕ = КА = МТ, ∆ МТЕ – равнобедренный и МЕТ = МТЕ.

АК || МТ, следовательно МТЕ = КАЕ, МЕТ = МТЕ = КАЕ.

Откуда АКМ = 1800 — МЕТ = 1800 — КАЕ = КМЕ.

Что и требовалось доказать.

Теперь на основании свойства равнобедренной трапеции (равенства диагоналей) докажем, что трапеция АКМЕ является равнобедренной:

  • Для начала проведем прямую МХ – МХ || КЕ. Получим параллелограмм КМХЕ (основание – МХ || КЕ и КМ || ЕХ).

∆АМХ – равнобедренный, поскольку АМ = КЕ = МХ, а МАХ = МЕА.

МХ || КЕ, КЕА = МХЕ, поэтому МАЕ = МХЕ.

У нас получилось, что треугольники АКЕ и ЕМА равны между собой, т.к АМ = КЕ и АЕ – общая сторона двух треугольников. А также МАЕ = МХЕ. Можем сделать вывод, что АК = МЕ, а отсюда следует и что трапеция АКМЕ – равнобедренная.

Похожее изображение

Задача для повторения

Основания трапеции АКМЕ равны 9 см и 21 см, боковая сторона КА, равная 8 см, образует угол 1500 с меньшим основанием. Требуется найти площадь трапеции.

Решение: Из вершины К опустим высоту к большему основанию трапеции. И начнем рассматривать углы трапеции.

Углы АЕМ и КАН являются односторонними. А это значит, в сумме они дают 1800. Поэтому КАН = 300 (на основании свойства углов трапеции).

Рассмотрим теперь прямоугольный ∆АНК (полагаю, этот момент очевиден читателям без дополнительных доказательств). Из него найдем высоту трапеции КН – в треугольнике она является катетом, который лежит напротив угла в 300. Поэтому КН = ½АВ = 4 см.

Площадь трапеции находим по формуле: SАКМЕ = (КМ + АЕ) * КН/2 = (9 + 21) * 4/2 = 60 см2.

Послесловие

Если вы внимательно и вдумчиво изучили эту статью, не поленились с карандашом в руках начертить трапеции для всех приведенных свойств и разобрать их на практике, материал должен был неплохо вами усвоиться.

Конечно, информации тут много, разнообразной и местами даже запутанной: не так уж сложно перепутать свойства описанной трапеции со свойствами вписанной. Но вы сами убедились, что разница огромна.

Теперь у вас есть подробный конспект всех общих свойств трапеции. А также специфических свойств и признаков трапеций равнобедренной и прямоугольной. Им очень удобно пользоваться, чтобы готовиться к контрольным и экзаменам. Попробуйте сами и поделитесь ссылкой с друзьями!

© blog.tutoronline.ru,
при полном или частичном копировании материала ссылка на первоисточник обязательна.

Трапеция и ее свойства

Т. А. Унегова

Определения:

Трапеция — это называется четырехугольник, у которого две стороны параллельны, а две другие — не параллельны.

Параллельные стороны называются основаниями трапеции, а непараллельные — боковыми сторонами трапеции.

Средней линией трапеции называется отрезок, соединяющий середины ее боковых сторон.

Если боковые стороны равны, трапеция называется равнобедренной.

Высотой трапеции называется перпендикуляр, проведенный из любой точки одного из оснований трапеции к прямой, содержащей другое основание.

Трапеция называется вписанной в окружность, если каждая ее вершина принадлежит окружности.

Трапеция называется описанной вокруг окружности, если каждая ее сторона касается окружности.

Трапеция называется равнобедренной (равнобокой, равнобочной), если ее боковые стороны равны.

Трапеция, один из углов которой прямой, называется прямоугольной.

Теоремы о средней линии и диагоналях трапеции

Теорема 1. Средняя линия трапеции параллельна основаниям и равна их полусумме: m=displaystyle frac{a+b}{2}.

Теорема 2. Диагонали трапеции делят среднюю линию трапеции на три отрезка. Средний из них равен полуразности оснований, а два крайних равны между собой: EF=GH, ; FG=displaystyle frac{a-b}{2}.

Теорема 3. Средняя линия треугольника, составленного из диагоналей и суммы оснований трапеции, равна средней линии трапеции: PQ=MN.

Теорема 4. Четыре точки: середины оснований трапеции, точка пересечения ее диагоналей и точка пересечения продолжений ее боковых сторон — лежат на одной прямой.

Эта теорема называется также «Замечательное свойство трапеции».

Теорема 5. Диагонали трапеции делят ее на четыре треугольника. Два из них, содержащие боковые стороны, равновелики (имеют равные площади), а два других, содержащие основания, подобны.

Теоремы о площади трапеции

Теорема 6. Площадь трапеции равна произведению полусуммы ее оснований на высоту:  S=displaystyle frac{a+b}{2}cdot h.

Теорема 7. Площадь трапеции равна произведению ее средней линии на высоту: S=mh.

Теорема 8. Площадь трапеции (как и всякого выпуклого четырехугольника) равна половине произведения ее диагоналей на синус угла между ними: S=displaystyle frac{1}{2}d_1d_2{sin alpha  }, где d_1=AC, d_2=BD, alpha =angle BOA. (Вместо angle BOA можно брать angle BOC.)

Теорема 9. Если в трапецию можно вписать окружность, то (как и для всякого описанного многоугольника) площадь трапеции равна произведению ее полупериметра на радиус вписанной окружности: S=pr. Таким образом, S=displaystyle frac{a+b+c+d}{2}cdot r.

Теорема 10. Площадь трапеции равна площади треугольника, составленного из диагоналей и суммы оснований этой трапеции. (Сравни эту теорему и теорему 3.)

Теоремы о вписанных и описанных трапециях

Теорема 11. Если трапеция вписана в окружность, то она равнобедренная. И наоборот, если трапеция равнобедренная, то около нее можно описать окружность.

Теорема 12. Если трапеция описана около окружности, то сумма оснований трапеции равна сумме ее боковых сторон.

Задачи ЕГЭ и ОГЭ по теме: Трапеция

Задача 1.

Найдите высоту трапеции ABCD, опущенную из вершины B, если стороны квадратных клеток равны sqrt{2}.

Решение:

Высота трапеции— это отрезок, перпендикулярный ее основаниям. Проведем высоту из вершины B. Так как сторона квадратной клетки равна sqrt{2} , то по теореме Пифагора получаем, что h=2.

Ответ: 2.

Задача 2.

Основания трапеции равны 18 и 6, боковая сторона, равная 7, образует с одним из оснований трапеции угол {150}^{{}^circ }. Найдите площадь трапеции.

Решение:

Углы angle ABC и angle BAH — односторонние, их сумма равна {180}^{{}^circ }, и тогда angle BAH =30{}^circ .

Из vartriangle ABH найдем высоту BH. Катет, лежащий против угла в {30}^{{}^circ }, равен половине гипотенузы. Получаем, что BH = 3,5.

Площадь трапеции равна S=displaystyle frac{6+18}{2}cdot 3,5=42.

Ответ: 42.

Задача 3.

Основания трапеции равны 4 и 10. Найдите больший из отрезков, на которые делит среднюю линию этой трапеции ее диагональ.

Решение:

Что можно увидеть на чертеже? Можно сказать, что изображена трапеция ABCD, и в ней проведена средняя линия. А можно увидеть и другое — два треугольника, ABC и ACD, в которых проведены средние линии.

Напомним, что средняя линия треугольника — это отрезок, соединяющий середины двух его сторон. Средняя линия треугольника параллельна третьей его стороне и равна половине этой стороны. Из vartriangle ACD находим, что x=5.

Ответ: 5.

Задача 4.

Основания трапеции равны 3 и 2. Найдите отрезок, соединяющий середины диагоналей трапеции.

Решение:

Проведем PQ — среднюю линию трапеции, PQ = 2,5 и PQparallel BC. Отсюда получаем, что M- середина отрезка AC, то есть PM — средняя линия треугольника ABC и PM = 1. Аналогично, NQ = 1.

x=MN=PQ-PM-NQ=0,5.

Ответ: 0,5.

Задача 5.

Прямая, проведенная параллельно боковой стороне трапеции через конец меньшего основания, равного 4, отсекает треугольник, периметр которого равен 15. Найдите периметр трапеции.

Решение:

Периметр треугольника равен сумме его сторон, то есть   a+b+c=15.

Периметр трапеции равен

a+b+4+c+4=left(a+b+cright)+8=15+8=23.

Ответ: 23.

Задача 6.

В равнобедренной трапеции ABCD диагональ AC является биссектрисой острого угла трапеции и образует со стороной CD угол 63{}^circ . Найдите углы трапеции.

Решение:

Пусть angle CAD =alpha , тогда angle CAB =alpha и angle BAD =2alpha , так как трапеция равнобедренная.

Сумма углов vartriangle ACD=3alpha +63{}^circ =180{}^circ , откуда
 alpha =39{}^circ .
Итак, angle D=78{}^circ , аangle BCD=180{}^circ -78{}^circ =102{}^circ .

Ответ: 78{}^circ , 102{}^circ .

Задача 7.

В равнобедренной трапеции основания равны 10 м и 24 м, боковая сторона 25 м. Найдите высоту трапеции.

Решение:

В равнобедренной трапеции проведем высоты. Получим прямоугольник и два равных прямоугольных треугольника. Тогда основание каждого треугольника равно 7 и h^2={25}^2-7^2=left(25-7right)left(25+7right)=18cdot 32. Отсюда, h=sqrt{18cdot 32}=sqrt{9cdot 64}=3cdot 8=24.

Ответ: 24.

Задача 8.

Тупой угол равнобедренной трапеции равен {135}^circ , а высота, проведенная из вершины этого угла, делит большее основание на отрезки 1,4 см и 3,4 см. Найдите площадь трапеции.

Решение:

Проведем две высоты. Они разделят трапецию на три части: прямоугольник и два равных прямоугольных треугольника с острым углом 45{}^circ .

Каждый треугольник равнобедренный, поэтому h = 1,4.

Нетрудно видеть, что верхнее основание трапеции равно 2, а нижнее — 4,8. Отсюда площадь трапеции равна displaystyle frac{2+4,8}{2}cdot 1,4=4,76.

Ответ: 4,76.

Задача 9.

Площадь трапеции равна 60м^2, а основания 8 м и 12 м. Найдите высоту трапеции.

Решение:

Так как площадь трапеции S=displaystyle frac{a+b}{2}cdot h, то 60=displaystyle frac{8+12}{2}cdot h, откуда h = 6.

Ответ: 6.

Задача 10.

В равнобедренной трапеции диагонали перпендикулярны и равны a. Найдите площадь трапеции.

Решение:

Проведем CE parallel BD и DE — продолжение AD.

Так как BCDE — параллелограмм, то CE = a.

По теореме 10 получим, что S_{ABCD}=S_{ACE}=displaystyle frac{1}{2}a^2.

Ответ: displaystyle frac{1}{2}a^2

Задач 11.

В трапеции ABCD с большим основанием AD диагональ AC перпендикулярна к боковой стороне CD и является биссектрисой угла A.

Найдите AD, если периметр трапеции равен 20, а угол D равен 60{}^circ .

Решение:

По условию задачи в прямоугольном vartriangle ACD

angle D =60{}^circ , следовательно, angle CAD  =30{}^circ .

Так как AC — биссектриса, то angle CAB =30{}^circ , откуда angle DAB =60{}^circ , то есть, трапеция равнобедренная. angle BCA =angle CAD =30{}^circ как накрест лежащие, поэтому vartriangle ABC — равнобедренный.

Обозначим длины боковых сторон vartriangle ABC буквой x.

Тогда AB = BC = CD = x, и AD = 2x, так как в прямоугольном vartriangle ACD против угла в 30{}^circ лежит катет, равный половине гипотенузы.

Таким образом, периметр трапеции, равный 20, составляет 5x, отсюда

x = 4 и AD = 8.

Ответ: 8.

Задача 12.

В равнобедренной трапеции ABCD с острым углом 60{}^circ меньшее основание BC равно 2, а боковая сторона AB равна 10. Продолжения боковых сторон трапеции пересекаются в точке M. Во сколько раз площадь трапеции больше площади треугольника BCM?

Решение:

Нетрудно видеть, что vartriangle BCM равносторонний и BM = 2, тогда AM = 12 и vartriangle BCM подобен vartriangle ADM c коэффициентом k=12:2=6.

Пусть S_{BCM}=S_1, S_{ADM}=S_2, тогда

S_2=k^2cdot S_1=36{cdot S}_1.

Площадь трапеции будет равна

S_{ABCD}=S_2-S_1=36 S_1-S_1=35 S_1=35 S_{BCM}.

Ответ: 35.

Задача 13.

Сумма углов при одном из оснований трапеции равна 90{}^circ . Найдите длину отрезка, соединяющего середины оснований, если основания равны 6 и 10.

Решение:

Продолжим боковые стороны до пересечения в точке E и отметим точки F и G — середины оснований трапеции.

Так как сумма углов при основании трапеции равна 90{}^circ , то angle BEC=90{}^circ , поэтому EF и EG — медианы в прямоугольных треугольниках BEC и AED соответственно.

Известно, что медиана, проведенная к гипотенузе, равна ее половине, значит FG=EG-EF=AG-BF=5-3=2.

Ответ: 2.

Задача 14.

Найдите радиус окружности, вписанной в равнобочную трапецию, если средняя линия трапеции равна 10, а ее площадь 24.

Решение:

Так как площадь трапеции равна S=mh, а высота трапеции равна диаметру вписанной окружности, то есть h=2r, то 24=10cdot 2r, откуда r=1,2.

Ответ: 1,2.

Задача 15.

Периметр прямоугольной трапеции равен 32, а большая боковая сторона равна 10. Найдите радиус r вписанной в трапецию окружности.

Решение:

По свойствам описанной трапеции сумма ее боковых сторон равна сумме оснований, поэтому

AB+CD=32:2=16, откуда AB=16-10=6.

Сторона AB равна диаметру окружности, поэтому r=3.

Ответ: 3.

Задача 16.

Около окружности описана трапеция, сумма боковых сторон которой равна 40. Найдите длину ее средней линии.

Решение:

Длина средней линии трапеции равна полусумме оснований. Если трапеция описана вокруг окружности, то в ней сумма оснований равна сумме боковых сторон, поэтому

m=displaystyle frac{a+b}{2}=displaystyle frac{c+d}{2}=displaystyle frac{40}{2}=20.

Ответ: 20.

Задача 17.

В окружность вписана трапеция так, что диаметр окружности служит основанием трапеции, а вершины другого основания делят полуокружность на три равные части. Найдите тупые углы трапеции. Ответ выразите в градусах.

Решение:

Так как AD — диаметр окружности, то дуга ABCD равна 180{}^circ . Она делится на три равные части по 60{}^circ .

Вписанный угол D опирается на дугу ABC, которая равна 120{}^circ , отсюда angle ADC=60{}^circ и, стало быть, angle C=120{}^circ =angle B.

Ответ: 120.

Спасибо за то, что пользуйтесь нашими публикациями.
Информация на странице «Трапеция и ее свойства» подготовлена нашими авторами специально, чтобы помочь вам в освоении предмета и подготовке к ЕГЭ и ОГЭ.
Чтобы успешно сдать необходимые и поступить в высшее учебное заведение или техникум нужно использовать все инструменты: учеба, контрольные, олимпиады, онлайн-лекции, видеоуроки, сборники заданий.
Также вы можете воспользоваться другими материалами из данного раздела.

Публикация обновлена:
08.05.2023

Понравилась статья? Поделить с друзьями:
  • Как я нашел работу в нью йорке
  • Как найти ковариацию в экселе
  • Как составить септаккорд
  • Как исправить гриф электрогитары
  • Как можно найти группу в ватсапе