Как найти диагональное сечение правильной четырехугольной пирамиды

Как найти площадь диагонального сечения

Если по обе стороны некоторой плоскости есть точки, принадлежащие объемной фигуре (например, многограннику), эту плоскость можно назвать секущей. А двухмерная фигура, образованная общими точками плоскости и многогранника, в этом случае называется сечением. Такое сечение будет являться диагональным, если одна из диагоналей основания принадлежит секущей плоскости.

Как найти площадь диагонального сечения

Инструкция

Диагональное сечение куба имеет форму прямоугольника, площадь которого (S) нетрудно рассчитать, зная длину любого ребра (a) объемной фигуры. В этом прямоугольнике одной из сторон будет высота, совпадающая с длиной ребра. Длину другой — диагонали — рассчитайте по теореме Пифагора для треугольника, в котором она является гипотенузой, а два ребра основания — катетами. В общем виде ее можно записать так: a*√2. Площадь диагонального сечения найдите умножением двух его сторон, длины которых вы выяснили: S = a*a*√2 = a²*√2. Например, при длине ребра в 20 см площадь диагонального сечения куба должна быть примерно равна 20²*√2 ≈ 565,686 см².

Для вычисления площади диагонального сечения параллелепипеда (S) действуйте так же, но учитывайте, что в теореме Пифагора в этом случае участвуют катеты разной длины — длина (l) и ширина (w) объемной фигуры. Длина диагонали в этом случае будет равна √(l²+w²). Высота (h) тоже может отличаться от длин ребер оснований, поэтому в общем виде формула площади сечения может быть записана так: S = h*√(l²+w²). Например, если длина, высота и ширина параллелепипеда равны, соответственно, 10, 20 и 30 см, площадь его диагонального сечения составит приблизительно 30*√(10²+20²) = 30*√500 ≈ 670,82 см².

Диагональное сечение четырехугольной пирамиды имеет треугольную форму. Если высота (H) этого многогранника известна, а в его основании лежит прямоугольник, длины смежных ребер (a и b) которого тоже даны в условиях, расчет площади сечения (S) начните с вычисления длины диагонали основания. Как и в предыдущих шагах используйте для этого треугольник из двух ребер основания и диагонали, где по теореме Пифагора длина гипотенузы равна √(a²+b²). Высота пирамиды в таком многограннике совпадает с высотой треугольника диагонального сечения, опущенной на сторону, длину которой вы только что определили. Поэтому для нахождения площади треугольника найдите половину от произведения высоты на длину диагонали: S = ½*H*√(a²+b²). Например, при высоте в 30 см и длинах смежных сторон основания в 40 и 50 см площадь диагонального сечения должна быть примерно равна ½*30*√(40²+50²) = 15*√4100 ≈ 960,47 см².

Войти на сайт

или

Забыли пароль?
Еще не зарегистрированы?

This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.

ЭСО

→ МНОГОГРАННИКИ

→ Геометрическое тело

→ Многогранник

→ Пирамида


Пред. ←

Содержание

→ След.


Диагональное сечение пирамиды

ОПРЕДЕЛЕНИЕ:

Диагональным сечением пирамиды называется сечение её
плоскостью, проходящей черех два боковых ребра пирамиды,
не лежащих в одной грани.

Любое диагональное сечение разбивает пирамиду на две пирамиды.


ПРИМЕРЫ:

Диагональное сечение пятиугольной пирамиды:

ОПРЕДЕЛЕНИЕ:

Диагональным сечением пирамиды называется сечение её
плоскостью, проходящей черех два боковых ребра пирамиды,
не лежащих в одной грани.

Любое диагональное сечение разбивает пирамиду на две пирамиды.


ПРИМЕРЫ:

Диагональное сечение пятиугольной пирамиды:



Пред. ←

Содержание

→ След.


Диагональное сечение пирамиды

Определение

Диагональное сечение пирамиды

Диагональное сечение пирамиды — это сечение плоскостью, проходящей через два боковых ребра, не лежащих в одной грани.

Вася Иванов

Мореплаватель — имя существительное, употребляется в мужском роде. К нему может быть несколько синонимов.
1. Моряк. Старый моряк смотрел вдаль, думая о предстоящем опасном путешествии;
2. Аргонавт. На аргонавте были старые потертые штаны, а его рубашка пропиталась запахом моря и соли;
3. Мореход. Опытный мореход знал, что на этом месте погибло уже много кораблей, ведь под водой скрывались острые скалы;
4. Морской волк. Старый морской волк был рад, ведь ему предстояло отчалить в долгое плавание.

Напомним,
что пирамида – это многогранник, в основании которого лежит –угольник,
а остальные  граней
– треугольники с общей вершиной.

Многоугольник
 называется
основанием пирамиды.

Треугольники
,
,
…,  называются
боковыми гранями пирамиды.

Точка
 –
вершиной пирамиды, а отрезки ,
,
…,  –
её боковыми рёбрами.

Отрезок,
соединяющий вершину пирамиды с плоскостью её основания и перпендикулярный к
этой плоскости, называется высотой пирамиды.

Пирамиду
с вершиной  и
основанием  называют
-угольной
пирамидой
и обозначают так: .

Диагональное
сечение
– это сечение пирамиды плоскостью, которая проходит
через два боковых ребра, не принадлежащих одной грани.

Объединение
боковых граней называется боковой поверхностью пирамиды, а объединение
всех граней называется полной поверхностью пирамиды.

Тогда
площадью боковой поверхности пирамиды называется сумма площадей её
боковых граней.

А
площадью полной поверхности пирамиды называется сумма площадей всех её
граней.

Объём
пирамиды равен:

.

Пирамида,
в зависимости от того, какой многоугольник лежит в основании, имеет своё
название.

Пирамида
называется правильной, если её основанием является правильный
многоугольник, а все боковые рёбра равны.

Отрезок,
соединяющий вершину пирамиды с центром основания, является её высотой.

Высота
боковой грани правильной пирамиды, проведённая из её вершины к ребру основания,
называется апофемой.

Выше
изображена правильная пирамида.  –
одна из её апофем. Все апофемы правильной пирамиды равны друг другу.

Отметим
некоторые свойства правильной -угольной
пирамиды
.

1.
В правильной -угольной
пирамиде все боковые рёбра равны между собой.

2.
Боковые рёбра равно наклонены к основанию.

3.
Из равенства боковых рёбер пирамиды следует и равенство её боковых граней.

4.
Боковые грани равно наклонены к основанию.

5.
Вершина проектируется в центр основания (основание высоты совпадает с центром
основания).

6.
Площадь боковой поверхности правильной пирамиды равна:

.

7.
Объём правильной четырёхугольной пирамиды со стороной основания  и
высотой  равен:

.

Параллельное
сечение пирамиды
– сечение пирамиды плоскостью,
параллельной основанию.

Параллельное
сечение пирамиды обладает следующими свойствами
:

1.
сечение, параллельное основанию пирамиды, отсекает на высоте пирамиды и боковых
рёбрах пропорциональные отрезки;

2.
в сечении получается многоугольник, подобный основанию;

3.
площади сечения и основания относятся как квадраты их расстояний до вершины.

Усечённая
пирамида
– это часть пирамиды, заключённая между основанием и
параллельным сечением пирамиды.

Основания
усечённой пирамиды – подобные многоугольники, лежащие в параллельных
плоскостях.

Боковые
грани
усечённой пирамиды – трапеции.

Высота
усечённой пирамиды – это перпендикуляр, опущенный из любой точки верхнего
основания на плоскость нижнего.

Площадь
полной поверхности
усечённой пирамиды равна сумме площади
боковой поверхности и площадей двух оснований.

Объём
усечённой пирамиды равен разности объёмов полной и отсечённой пирамиды, или его
ещё можно вычислить по следующей формуле:

.

Правильная
усечённая пирамида
получается из правильной пирамиды.

Апофема
– высота боковой грани правильной усечённой пирамиды.

Площадь
боковой поверхности
правильной усечённой пирамиды равна:

.

Основные
моменты мы с вами повторили, а теперь давайте перейдём к практической части занятия.

Задача
первая
. Дана треугольная пирамида, боковые рёбра которой
взаимно перпендикулярны и равны  см,
 см
и  см.
Найдите площадь боковой поверхности пирамиды.

Решение.

Задача
вторая
. Дана правильная четырёхугольная пирамида со стороной
основания  см
и высотой  см.
Найдите площадь полной поверхности пирамиды.

Решение.

Задача
третья
. Найдите высоту правильной усечённой треугольной
пирамиды ,
если стороны её оснований равны  см
и  см,
а боковое ребро равно  см.

Решение.

Задача
четвёртая
. В пирамиде  боковое
ребро  перпендикулярно
основанию и равно ребру .
Треугольник  –
прямоугольный с катетами  см
и  см.
Найдите объём пирамиды.

Решение.

Задача
пятая
. Найдите объём правильной треугольной пирамиды с
ребром основания, равным  см,
и боковым ребром, равным  см.

Решение.

Понравилась статья? Поделить с друзьями:
  • Как исправить тесто если дрожжи не растворились
  • Как узнать сколько составил выигрыш в русское лото
  • Как быстро найти пчелиный улей в террарии
  • Как найти неактивные группы в вк
  • Найти как избавиться от муравьев