Как найти диаметр молекулы физика

Определение размеров молекул

1 способ. Основан на том, что молекулы вещества, когда оно находится в твердом или жидком состоянии, можно считать плотно прилегающими друг к другу. В таком случае для грубой оценки можно считать, что объем V некоторой массы m вещества просто равен сумме объемов содержащихся в нем молекул. Тогда объем одной молекулы мы получим, разделив объем V на число молекул N.

Число молекул в теле массой m равно, как известно,
нано 2,
где М — молярная масса вещества NA — число Авогадро.

Отсюда объем V0 одной молекулы определяется из равенства
нано 3

В это выражение входит отношение объема вещества к его массе.

Обратное же отношение
нано 4

есть плотность вещества,

так что
нано 5

Плотность практически любого вещества можно найти в доступных всем таблицах. Молярную массу легко определить, если известна химическая формула вещества.

Объем одной молекулы, если считать ее шариком, равен
нано 6,
где r — радиус шарика.

Поэтому
нано 7,
откуда мы и получаем выражение для радиуса молекулы:

нано 8

Первый из этих двух корней — постоянная величина, равная ≈ 7,4 · 10-9 моль 1/3, поэтому формула для r принимает вид нано 9.

Например, радиус молекулы воды, вычисленный по этой формуле, равен rВ ≈ 1,9 · 10-10 м.

Описанный способ определения радиусов молекул не может быть точным уже потому, что шарики нельзя уложить так, чтобы между ними не было промежутков, даже если они соприкасаются друг с другом. Кроме того, при такой «упаковке» молекул – шариков были бы невозможны молекулярные движения. Тем не менее, вычисления размеров молекул по формуле, приведенной выше, дают результаты, почти совпадающие с результатами других методов, несравненно более точных.

2 способ. Метод Ленгмюра и Дево. В данном методе исследуемая жидкость должна растворяться в спирте (эфире) и быть легче воды, не растворяясь в ней. При попадании капли раствора на поверхность воды спирт растворяется в воде, а исследуемая жидкость образует пятно площадью S и толщиной d (порядка диаметра молекул).

Если допустить, что молекула имеет форму шара, то объем одной молекулы равен:

нано 10где d – молекулы.

Необходимо определить диаметр молекулы d. В микропипетку набрать 0,5 мл раствора и, расположив ее над сосудом, отсчитать число капель n, содержащихся в этом объеме. Проделав опыт несколько раз, найти среднее значение числа капель в объеме 0,5 мл, а затем подсчитать объём исследуемой жидкости в капле: нано 11, где n – число капель в объеме 0,5 мл, 1:400 – концентрация раствора.

В ванну налить воду толщиной 1 – 2 см. Насыпать тальк тонким слоем на лист бумаги, ударяя слегка пальцем по коробочке. Расположив лист бумаги выше и сбоку от ванны на расстоянии 10 – 20 см, тальк сдуть с бумаги. На поверхность воды в ванне из пипетки капнуть одну каплю раствора. Линейкой измерить, средний диаметр образовавшегося пятна D и подсчитываю его площадь. Опыт повторить 2- 3 раза, а затем подсчитать диаметр молекул d.

3 способ. Определение диаметра молекулы. Будем считать, что капля масла растекается по воде до тех пор, пока толщина масляной плёнки не станет равной одной молекуле, тогда диаметр одной молекулы можно определить по формуле: d=V/S, где V – объём капли масла, S — площадь масленого пятна.

Объём капли масла можно определить следующим образом: накапать 100 капель из капилляра в сосуд и измерить массу масла в нём. После этого массу, выраженную в килограммах, поделить на плотность масла, которую можно взять из таблицы плотности некоторых веществ (плотность масла растительного 800 кг/м3).

Затем полученный результат поделить на количество капель. Объём капли можно определить также с помощью мерного цилиндра: накапать масло в цилиндр, измерить его объём в см3 и перевести в м3, для чего поделить на 1000000, затем на количество капель масла. После того, как объём капли стал известен нужно капнуть одну каплю масла на поверхность воды, которая налита в широкий сосуд.

Для ускорения реакции предварительно немного нужно нагреть воду – приблизительно до 400С. Масло начнёт растекаться, и в результате получится круглое пятно. После того, как пятно перестанет расширяться, с помощью линейки измерить его диаметр и рассчитать площадь пятна по формуле: нано 12

Практическое получение наночастиц

В современном мире в связи с общей тенденцией к миниатюризации большими темпами стала развиваться такая наука, как нанотехнология. Методы нанотехнологии позволяют получить принципиально новые устройства и материалы с характеристиками, значительно превосходящими их современный уровень, что весьма важно для интенсивного развития многих областей техники, биотехнологии, медицины, охраны окружающей среды и др.

Ход работы:

1) Определение объёма капли

нано 10_2=14,13 мм3;

2) Определение объёма капли путём взвешивания.

1. На весы накапали 10 капель растительного масла, измерили массу

mk=0,2 г

  • Масса 1 капли m1=0,2 г/10=0,02 г
  • Определение объёма капли V=m1/q=0,01г/0,8 г/см3=13 мм3

3) Определяем площадь пятна Sмасла=ПR2=11304 мм2

(Приложение 1,2,3,4,5)

4) Площадь пятна нефти Sнефти=20*16=32000 мм2

(Приложение 6,7,8,9)

5) Определяем толщину плёнки h=V/S

Для масла h=13/11304=1,2*10-7=120 нм

Для нефтиh=13/32000=4*10-8 м=40 нм

Вывод: В лабораторных условиях можно получать нанопленки

Заключение

Мы измерили толщину наноплёнок масла и нефти, изучили физические свойства плёнок и методы их получения, также ознакомились с физическими методами исследования микро- и наномасшатабных объектов.

К сожалению, из таких жидкостей как кислоты(уксусная, ортофосфорная, борная), моющие средства и мыло у нас не получилось сделать наноплёнки, потому что все эти жидкости гидрофобные(боятся воды).Мы пытались получить пленки с помощью скотча, но электронные весы позволяют измерять массу с точностью до десятых долей грамма

Список использованной литературы

  1. Анциферов Л.И. Самодельные приборы для физического практикума в средней школе. М.: Просвещение, 1985.
  2. Блудов М.И. Беседы по физике. М.: Просвещение, 1984.
  3. Буров В.А. Практикум по физике в средней школе. М.: Просвещение, 1973.

Приложения

нано 13

нано 14


Цитировать:

Лякишев В.К. РАСЧЁТ ДИАМЕТРА МОЛЕКУЛЫ ВОДОРОДА В РАМКАХ КЛАССИЧЕСКОЙ ЭЛЕКТРОДИНАМИКИ // Universum: химия и биология : электрон. научн. журн. 2023. 2(104). URL: https://7universum.com/ru/nature/archive/item/14860 (дата обращения: 27.05.2023).

АННОТАЦИЯ

Данная работа относится к области физической химии. При помощи формул электрической ёмкости и электрической энергии сферического конденсатора из классической электродинамики в работе рассчитан диаметр молекулы водорода, форма которой близка к сферической. Также в ходе вычислений были использованы энергия Хартри (абсолютное значение электрической потенциальной энергии атома водорода) и энергия диссоциации молекулы водорода. Полученный в работе диаметр молекулы водорода (1,8 Å) близок к так называемому кинетическому диаметру, определённому через длину свободного пробега молекулы (2,3 Å).

ABSTRACT

This work is related to the field of physical chemistry. Using formulas of electric capacity and electric energy of spherical capacitor from classical electrodynamics, the diameter of hydrogen molecule whose shape is almost spherical has been calculated. The Hartree energy (the absolute value of the hydrogen atom electric potential energy) and the hydrogen molecule dissociation energy have been taken into account in the calculations as well.  The hydrogen molecule diameter obtained in the work (1,8 Å) is a close to the so-called kinetic diameter, defined through mean free path of the molecule (2,3 Å).

Ключевые слова: молекула водорода, эффективный диаметр, энергия Хартри, энергия диссоциации молекулы, ёмкость сферического конденсатора, энергия конденсатора, теорема вириала, длина свободного пробега молекулы.

Keywords: molecular hydrogen, effective molecular diameter, Hartree energy, bond-dissociation energy, capacity of a spherical capacitor, capacitor energy, virial theorem, mean free path.

Введение

Молекула водорода является простейшей двухатомной молекулой с ковалентной неполярной химической связью [2]. Достаточно точно вычислены среднее межъядерное расстояние в молекуле водорода [9], а также энергия диссоциации молекулы [6] (то есть энергия, необходимая для диссоциации одной молекулы, не находящейся во взаимодействии с другими молекулами). Однако размеры молекулы водорода известны недостаточно точно. Эффективный диаметр молекулы водорода принято оценивать по длине свободного пробега молекулы [1] (расстоянию, которое пролетает молекула между двумя последовательными столкновениями).

Средняя длина свободного пробега молекулы водорода определяется по формуле:

,                                                                              (1)

где  n – концентрация молекул водорода, которую можно определить из уравнения Менделеева-Клапейрона:    

                                                                                     (2)

(p – давление водорода, равное 105 Па; T – температура водорода по абсолютной шкале, равная 273 К; k = 1,38 · 10-23 Дж/К — постоянная Больцмана).

Подставив концентрацию молекул водорода в формулу средней длины свободного пробега молекулы водорода, можно найти диаметр молекулы:

                                                                             (3)

При длине свободного пробега = 0,16 мкм диаметр молекулы водорода равен   d = 23·10-11 м = 2,3 Å.

Целью данной работы является расчёт эффективного диаметра молекулы водорода принципиально новым способом.

Метод состоит в использовании положений квантовой физики (энергия Хартри), теоретической физики (теорема вириала), экспериментальной химии (энергия диссоциации молекулы водорода), классической физики (электрическая энергия и ёмкость конденсатора), Евклидовой геометрии (обоснованное приближение формы молекулы водорода сферой).

Расчет эффективного диаметра молекулы водорода

 (Энергия Хартри) – потенциальная энергия атома водорода в основном состоянии, равная 27,211 эВ [12; 11] (речь идет о модуле этой энергии). Применим теорему вириала [8], имеющую широкое применение в квантовой химии [4]. Согласно теореме о вириале для случая электрического поля (для которого потенциальная энергия взаимодействия заряженных частиц обратно пропорциональна первой степени расстояния между ними) средняя кинетическая энергия системы равна половине модуля средней отрицательной потенциальной энергии. Тогда полная энергия системы равна половине потенциальной энергии. По теореме о вириале модуль полной энергии атома водорода будет равен

                                                                              (4)

Тогда модуль полной энергии молекулы водорода будет складываться из двух полных энергий атома водорода (их абсолютных значений) и энергии диссоциации молекулы водорода:

,          (5)

где   = 4,477 эВ – энергия диссоциации молекулы водорода.

По теореме о вириале потенциальная энергия молекулы водорода равна удвоенной полной энергии молекулы водорода:

                                                  (6)

Отношение потенциальных энергий молекулы водорода и атома водорода будет равно:

                                                             (7)

С другой стороны, атом водорода и молекулу водорода можно представить в виде сферических конденсаторов. Равновесное межатомное расстояние в молекуле водорода, равное 0,74 Å, превышает боровский радиус, равный 0,53 Å. Это означает глубокое перекрытие электронных облаков атома. Поэтому форма граничной поверхности общего электронного облака молекулы близка к сферической. Используя формулы энергии заряженного сферического конденсатора [3] и электрической ёмкости сферического конденсатора [7], запишем потенциальные энергии для атома и молекулы водорода в виде:

 потенциальная энергия атома водорода,                           (8)

где  e – заряд электрона,  – электрическая ёмкость атома водорода, равная

                                                                          (9)

 – электрическая постоянная,  – боровский радиус [10]).

Подставив электрическую ёмкость атома водорода в формулу потенциальной энергии атома водорода, получим:

                                                                        (10)

Потенциальная энергия молекулы водорода будет равна:

                                                                       (11)

где  e – заряд электрона,  – электрическая ёмкость молекулы водорода, равная

                                                                    (12)

(d – эффективный диаметр молекулы водорода).

Подставив электрическую ёмкость молекулы водорода в формулу потенциальной энергии молекулы водорода, получим:

                                                                  (13)

Найдём отношение потенциальных энергий молекулы водорода и атома водорода:

                                          (14)

Тогда эффективный диаметр молекулы водорода равен:

                                            (15)

Полученное значение диаметра молекулы водорода близко к значению, вычисленному по формуле (3), а полученное значение полной энергии молекулы очень близко к значениям, полученными другими методами [5].

Заключение

 Молекула водорода является квантово-механической системой, однако нелинейные эффекты квантовой электродинамики существенны на маленьких расстояниях, сравнимых с комптоновской длиной волны электрона. Поэтому в работе был проведён расчёт диаметра молекулы водорода с использованием методов классической электродинамики. Это позволило получить результат, близкий к общепринятому, что подтверждает корректность применённых методов.

Список литературы:

  1. Алешкевич В.А. Курс общей физики. Молекулярная физика. – М. : Физматлит, 2016. – С. 281–283.
  2. Барковский Е.В., Ткачев С.В., Петрушенко Л.Г. Общая химия. – Минск : Вышэйшая школа, 2013. – С. 58.
  3. Бобрович О.Г., Тульев В.В. Физика в 5 ч. Ч. 2. Электростатика. Постоянный электрический ток. – Минск : БГТУ, 2011. – С. 57.
  4. Ермаков А.И. Квантовая механика и квантовая химия. Ч. 2. Квантовая химия : учебник и практикум для вузов. – М. :  Юрайт, 2022. – С. 14.
  5. Институт теоретической химии / [Электронный ресурс]. – Режим доступа: http://itchem.ru/energiya_molekuly_vodoroda.
  6. Никольский Б.П., Рабинович В.А. Справочник химика. Т. 1. Общие сведения. Строение вещества. Свойства важнейших веществ. Лабораторная техника. –  М. –Л. : Химия, 1966. – С. 338.
  7. Савельев И.В. Курс общей физики. Т. 2. Электричество и магнетизм. Волны. Оптика : учеб. пособие. – М. : Наука, Главная редакция физико-математической литературы, 1982. – С. 93.
  8. Сивухин Д.В. Общий курс физики. Т. 1. Механика. – М. : Физматлит, 2005. – C. 148.
  9. Стась Н.Ф. Справочник по общей и неорганической химии : учеб. пособие. – Томск : Изд-во Томского политехнического университета, 2011. – С. 26.
  10. URL: https://physics.nist.gov/cgi-bin/cuu/Value?bohrrada0.
  11. URL: https://physics.nist.gov/cgi-bin/cuu/Value?hrev.
  12. WolframAlpha / [Электронный ресурс]. – Режим доступа: https://www.wolframalpha.com/input/?i=Hartree.

Размеры молекул

Размер молекулы является величиной условной. Его оценивают так. Между молекулами наряду с силами притяжения действуют и силы отталкивания, поэтому молекулы могут сближаться лишь до некоторого расстояния d (рис. 1).

Рис. 1

Расстояние предельного сближения центров двух молекул называют эффективным диаметром молекулы d (при этом считают, что молекулы имеют сферическую форму).

В настоящее время существует много методов определения размеров молекул. Самый простой, хотя и не самый точный, состоит в следующем. В твердых и жидких телах молекулы расположены очень близко одна к другой, почти вплотную. Поэтому можно считать, что объем V, занимаемый телом некоторой массы m, приблизительно равен сумме объемов всех его молекул.

Тогда объем одной молекулы будет (V_{0} =frac{V}{N},) где V — объем тела, (N=frac{m}{M} cdot N_{A}) — число молекул в теле. Следовательно,

(V_{0} =frac{Vcdot M}{mcdot N_{A}}.)

Так как (frac{m}{V} =rho,) где ρ — плотность вещества, то

(V_{0} =frac{M}{rho cdot N_{A}}.) (6.5)

Считая, что молекула — маленький шарик, диаметр которого d = 2r, где r — радиус, имеем

(V_{0} = frac{4}{3} pi cdot r^{3} = frac{pi cdot d^{3}}{6}.)

Подставив сюда значение V0 (6.5), получим

(frac{pi cdot d^{3}}{6} = frac{M}{rho cdot N_{A}}.)

Отсюда

(d = sqrt[{3}]{frac{6M}{pi cdot rho cdot N_{A}}}.)

Так, для воды

(d = sqrt[{3}]{frac{6cdot 18cdot 10^{-3}}{3,14 cdot 10^{3} cdot 6,02 cdot 10^{23}}} = 3,8 cdot 10^{-10}) м.

Размеры молекул различных веществ неодинаковы, но все они порядка 10-10 м, т.е. очень малы.

Литература

Аксенович Л. А. Физика в средней школе: Теория. Задания. Тесты: Учеб. пособие для учреждений, обеспечивающих получение общ. сред, образования / Л. А. Аксенович, Н.Н.Ракина, К. С. Фарино; Под ред. К. С. Фарино. — Мн.: Адукацыя i выхаванне, 2004. — C. 125-126.

Описание презентации по отдельным слайдам:

  • Опыт по определению диаметра молекулыРабота по физике
ученицы 11 класса
Макси...

    1 слайд

    Опыт по определению диаметра молекулы
    Работа по физике
    ученицы 11 класса
    Максимовой Татьяны

  • СодержаниеЧто такое молекула?
Опыт по вычислению диаметра молекулы
Материалы...

    2 слайд

    Содержание
    Что такое молекула?
    Опыт по вычислению диаметра молекулы
    Материалы
    Ход работы
    Вычисление диаметра молекулы
    Вопросы для класса
    Источники

  • Что такое молекула?

    3 слайд

    Что такое молекула?

  • Опыт по определению диаметра молекулы

    4 слайд

    Опыт по определению диаметра молекулы

  • Материалысосуд с водоймикропипетка со шкалойлинейка0,5 % раствора олеиновой к...

    5 слайд

    Материалы
    сосуд с водой
    микропипетка со шкалой
    линейка
    0,5 % раствора олеиновой кислоты в спирте

  • Ход работы

  • Вычисление диаметра молекулы

    7 слайд

    Вычисление диаметра молекулы

  • 1. вычисляем объем капли
2. вычисляем объем кислоты
3. затем площадь пятна
4....

    8 слайд

    1. вычисляем объем капли
    2. вычисляем объем кислоты
    3. затем площадь пятна
    4. находим толщину пятна или
    диаметр молекулы

  • ВопросыКаковы молекулы одного и того же вещества во всем агрегатных состояния...

    10 слайд

    Вопросы
    Каковы молекулы одного и того же вещества во всем агрегатных состояниях?
    Способна ли молекула к самостоятельному существованию?
    Назовите формулу, с помощью которой мы можем вычислить диаметр молекулы?
    При образовании масляного пятна на поверхности воды, что происходит со спиртом?

  • Спасибо за внимание!

    11 слайд

    Спасибо за внимание!

  • Источникиhttp://www.bestreferat.ru/referat-202407.html
http://www.ebiblioteka...

    12 слайд

    Источники
    http://www.bestreferat.ru/referat-202407.html
    http://www.ebiblioteka.lt/resursai/Uzsienio%20leidiniai/Uspechi_Fiz_Nauk/1924/02/ufn24_02_05.pdf
    http://nsportal.ru/ap/nauchno-tekhnicheskoe-tvorchestvo/library/issledovatelskaya-rabota-po-fizike-opredelenie-razmerov

Основные положения молекулярно-кинетической теории. Размеры молекул

Гипермаркет знаний>>Физика и астрономия>>Физика 10 класс>>Физика: Основные положения молекулярно-кинетической теории. Размеры молекул

   Молекулы очень малы, но посмотрите, как просто оценить их размеры и массу. Достаточно одного наблюдения и пары несложных расчетов. Правда, надо еще додуматься до того, как это сделать.
   В основе молекулярно-кинетической теории строения вещества лежат три утверждения: вещество состоит из частиц; эти частицы беспорядочно движутся; частицы взаимодействуют друг с другом. Каждое утверждение строго доказано с помощью опытов.
   Свойства и поведение всех без исключения тел от инфузории до звезды определяются движением взаимодействующих друг с другом частиц: молекул, атомов или еще более малых образований — элементарных частиц.
   Оценка размеров молекул. Для полной уверенности в существовании молекул надо определить их размеры.
   Проще всего это сделать, наблюдая расплывание капельки масла, например оливкового, по поверхности воды. Масло никогда не займет всю поверхность, если сосуд велик (рис.8.1). Нельзя заставить капельку объемом 1 мм3 расплыться так, чтобы она заняла площадь поверхности более 0,6 м2. Можно предположить, что при растекании масла по максимальной площади оно образует слой толщиной всего лишь в одну молекулу — «мономолекулярный слой». Толщину этого слоя нетрудно определить и тем самым оценить размеры молекулы оливкового масла.

вода

   Объем V слоя масла равен произведению его площади поверхности S на толщину d слоя, т. е. V=Sd. Следовательно, размер молекулы оливкового масла равен:

A56-1.jpg

   Перечислять сейчас всевозможные способы доказательства существования атомов и молекул нет необходимости. Современные приборы позволяют видеть изображения отдельных атомов и молекул. На рисунке 8.2 показана микрофотография поверхности кремниевой пластины, где бугорки — это отдельные атомы кремния. Подобные изображения впервые научились получать в 1981 г. с помощью не обычных оптических, а сложных туннельных микроскопов.

молекула

   Размеры молекул, в том числе и оливкового масла, больше размеров атомов. Диаметр любого атома примерно равен 10-8 см. Эти размеры так малы, что их трудно себе представить. В таких случаях прибегают к помощи сравнений.
   Вот одно из них. Если пальцы сжать в кулак и увеличить его до размеров земного шара, то атом при том же увеличении станет размером с кулак.
   Число молекул. При очень малых размерах молекул число их в любом макроскопическом теле огромно. Подсчитаем примерное число молекул в капле воды массой 1 г и, следовательно, объемом 1 см3.
   Диаметр молекулы воды равен примерно 3•10-8 см. Считая, что каждая молекула воды при плотной упаковке молекул занимает объем (3•10-8 см)3, можно найти число молекул в капле, разделив объем капли (1 см3) на объем, приходящийся на одну молекулу:

A56-2.jpg

    При каждом вдохе вы захватываете столько молекул, что если бы все они после выдоха равномерно распределились в атмосфере Земли, то каждый житель планеты при вдохе получил бы две-три молекулы, побывавшие в ваших легких.
    Размеры атома малы: A56-3.jpg.
   О трех основных положениях молекулярно-кинетической теории речь будет идти неоднократно.

   ???
   1. Какие измерения надо произвести, чтобы оценить размеры молекулы оливкового масла?
   2. Если бы атом увеличился до размеров макового зернышка (0,1 мм), то размеров какого тела при том же увеличении достигло бы зернышко?
   3. Перечислите известные вам доказательства существования мо¬лекул, не упомянутые в тексте.

Содержание урока
1236084776 kr.jpg конспект урока                       
1236084776 kr.jpg опорный каркас  
1236084776 kr.jpg презентация урока
1236084776 kr.jpg акселеративные методы 
1236084776 kr.jpg интерактивные технологии 

Практика
1236084776 kr.jpg задачи и упражнения 
1236084776 kr.jpg самопроверка
1236084776 kr.jpg практикумы, тренинги, кейсы, квесты
1236084776 kr.jpg домашние задания
1236084776 kr.jpg дискуссионные вопросы
1236084776 kr.jpg риторические вопросы от учеников

Иллюстрации
1236084776 kr.jpg аудио-, видеоклипы и мультимедиа 
1236084776 kr.jpg фотографии, картинки 
1236084776 kr.jpg графики, таблицы, схемы
1236084776 kr.jpg юмор, анекдоты, приколы, комиксы
1236084776 kr.jpg притчи, поговорки, кроссворды, цитаты

Дополнения
1236084776 kr.jpg рефераты
1236084776 kr.jpg статьи 
1236084776 kr.jpg фишки для любознательных 
1236084776 kr.jpg шпаргалки 
1236084776 kr.jpg учебники основные и дополнительные
1236084776 kr.jpg словарь терминов                          
1236084776 kr.jpg прочие 

Совершенствование учебников и уроков
1236084776 kr.jpg исправление ошибок в учебнике
1236084776 kr.jpg обновление фрагмента в учебнике 
1236084776 kr.jpg элементы новаторства на уроке 
1236084776 kr.jpg замена устаревших знаний новыми 

Только для учителей
1236084776 kr.jpg идеальные уроки 
1236084776 kr.jpg календарный план на год  
1236084776 kr.jpg методические рекомендации  
1236084776 kr.jpg программы
1236084776 kr.jpg обсуждения


Интегрированные уроки

Если у вас есть исправления или предложения к данному уроку, напишите нам.

Если вы хотите увидеть другие корректировки и пожелания к урокам, смотрите здесь — Образовательный форум.

Авторські права | Privacy Policy |FAQ | Партнери | Контакти | Кейс-уроки

©  Автор системы образования 7W и Гипермаркета Знаний — Владимир Спиваковский

При использовании материалов ресурса
ссылка на edufuture.biz обязательна (для интернет ресурсов —
гиперссылка).
edufuture.biz 2008-© Все права защищены.
Сайт edufuture.biz является порталом, в котором не предусмотрены темы политики, наркомании, алкоголизма, курения и других «взрослых» тем.

Разработка — Гипермаркет знаний 2008-

Ждем Ваши замечания и предложения на email:
По вопросам рекламы и спонсорства пишите на email:

Понравилась статья? Поделить с друзьями:
  • Как найти лишние программы
  • Мастерские доспехи школы кота как найти
  • Состояние отказ как исправить
  • Как найти востребованные товары
  • Мои папки превратились ярлыки как исправить