Как найти диаметр основания косинуса

Формулы для вычисления диаметра конуса. Пример решения геометрической задачи

Фигура конус является объектом изучения стереометрии. Основными свойствами конуса являются наличие у него объема и площади поверхности, которые можно вычислить с помощью линейных параметров. Одним из них является диаметр конуса. В данной статье покажем, как этот диаметр можно рассчитать по другим известным характеристикам фигуры.

Круглый прямой конус

В общем случае конусом является фигура, построенная в результате движения отрезка вдоль некоторой кривой на плоскости, при этом второй конец отрезка зафиксирован в определенной точке пространства. Сам отрезок называется генератрисой, или образующей, а кривая — директрисой, или направляющей.

Согласно приведенному определению, кривая, которая ограничивает фигуру, может быть совершенно любого типа. Самыми известными из них являются парабола, гипербола, эллипс и окружность. В последнем случае говорят о круглом конусе.

Круглый конус может быть наклонным и прямым. Обе фигуры показаны ниже на рисунке.

Прямой и наклонный конусы

Здесь r — радиус окружности, которая ограничивает основание фигуры. Буквой h обозначена высота, которая представляет опущенный на основание из вершины конуса перпендикуляр. Буквой a обозначена ось конуса. Видно, что в случае прямой фигуры его высота совпадает с осью, то есть пересекает окружность в ее центре.

Помимо радиуса r и высоты h, важным линейным параметром конуса является длина его образующей g. Как было сказано, образующая — это отрезок, соединяющий директрису с высотой. Для прямого круглого конуса все образующие равны друг другу.

Далее в статье, раскрывая вопрос касательно того, как найти диаметр конуса, будет рассматриваться только конус круглый и прямой.

Вычисление диаметра фигуры через линейные параметры и угол при основании

Описанную пространственную фигуру можно получить, если вращать вокруг любого катета прямоугольный треугольник. Этот факт демонстрирует рисунок ниже.

Конус - фигура вращения

Из рисунка видно, что два катета AC и AB являются радиусом r и высотой h объемной фигуры соответственно. Генератриса g — это гипотенуза BC. Эти соответствия позволяют записать формулу диаметра конуса через известные g и h:

При записи этой формулы использовалась теорема Пифагора, а также определение диаметра, который в два раза больше радиуса основания конуса.

Если известен угол φ между основанием и любой из образующих g фигуры, тогда диаметр конуса можно определить по следующим формулам:

Оба равенства являются следствием применения определения тригонометрических функций тангенса и косинуса.

Вычисление диаметра через площадь поверхности и генератрису

Поверхность рассматриваемого конуса образована конической поверхностью и круглым основанием. Развертка конуса показана ниже.

Развертка конуса

Общая площадь развертки определяется по следующей формуле:

Если известна площадь S и генератриса g, тогда это уравнение позволяет вычислить радиус фигуры, а значит, и ее диаметр. Заметим, что речь идет об уравнении второго порядка относительно радиуса r. Решать его следует с использованием дискриминанта. При решении, как правило, получаются два корня, один из которых отрицательный. Он должен быть отброшен, ввиду его не физического значения.

С использованием описанной методики в конце статьи будет решена задача, и будет получен ответ на вопрос о том, чему равен диаметр конуса.

Определение диаметра через объем и высоту

Конусы разных диаметров

Теперь покажем, как найти диаметр конуса, зная его объем V и высоту h. Для этого необходимо вспомнить, что объем конуса, как и объем любой пирамиды, можно определить, пользуясь следующим равенством:

Здесь S — площадь основания. Поскольку площадь основания в рассматриваемом случае является площадью круга, то это выражение можно переписать в таком виде:

Остается выразить отсюда радиус и умножить его в два раза, и мы получим ответ на вопрос о том, как найти диаметр конуса через величины V и h. Имеем:

Заметим, что в правой части получается размерность длины. Это доказывает правильность полученной формулы.

Все записанные в статье формулы для диаметра d фигуры также являются справедливыми для радиуса, который будет в два раза меньше диаметра.

Задача на определение диаметра через известную площадь конуса и его образующую

Дан конус, площадь поверхности которого составляет 150 см 2 . Генератриса равна 14 см. Чему равен диаметр конуса?

Для получения ответа на поставленный вопрос используем описанную в статье методику. Сначала выпишем соответствующее уравнение:

При получении последнего равенства мы разделили левую и правую его части на число Пи. Рассчитываем дискриминант D. Имеем:

Полученный дискриминант приведен с точностью до 0,0001. Формула для корней уравнения r имеет следующий вид:

Очевидно, что один из корней будет отрицательным. Его не будем вычислять. Определим лишь искомый положительный радиус фигуры:

Чтобы найти диаметр конуса, остается умножить это значение на два и записать ответ: d = 5,674 см.

В конце отметим, что, зная два любых параметра круглого конуса прямого, можно определить любую его характеристику, включая объем и площадь поверхности.

Высота конуса равна .

В этой статье рассмотрим задачи на нахождение элементов конуса. Конечно же, их можно отнести к одним из самых простых задач, которые входят в открытый банк заданий ЕГЭ по математике.

Как и многие задачи этой части, решаются они в одно-два действия. Несмотря на то, что это это стереометрическая задача, для решения достаточно знать теорему Пифагора. Рассмотрим задачи:

Высота конуса равна 4, а диаметр основания — 6. Найдите образующую конуса.

Высота конуса равна 4, а длина образующей — 5. Найдите диаметр основания конуса.

Диаметр основания конуса равен 6, а длина образующей — 5. Найдите высоту конуса.

В будущем рассмотрим и другие задачи с конусами, не пропустите. Успехов вам!

С уважением, Александр Крутицких.

P.S: Буду благодарен Вам, если расскажете о сайте в социальных сетях.

Полный Видеокурс по РУССКОМУ ЯЗЫКУ!

ПРЕМИУМ-КУРС по математике на 100 баллов!

Замучили боль и скованность в мышцах спины?

Александр, позвольте одно БОЛЬШООООЕ , но принципиальное, замечание.

В изображении тел вращения (конус, цилиндр)показывать диаметр следует отрезком, соединяющим две точки окружности и проходящим через центр основания.

То, что изображено на Ваших рисунках, это — хорды. Почему?

Я объясняю своим ученикам так. Наш глаз позволяет видеть поверхность круглого тела чуть больше половины. Значит, если соединить основания двух образующих конуса (или)цилиндра на изображении (плоскостном рисунке), то получится хорда, и она будет отличной от диаметра.

Конечно, лучше это объяснять ученикам с помощью стереометрической модели. Но , надеюсь, Вы мою мысль поняли.

Конус. Площади поверхностей. Объём

В данный момент вы не можете посмотреть или раздать видеоурок ученикам

Чтобы получить доступ к этому и другим видеоурокам комплекта, вам нужно добавить его в личный кабинет, приобретя в каталоге.

Получите невероятные возможности

Конспект урока «Конус. Площади поверхностей. Объём»

Напомним, что конус – это тело, полученное при вращении прямоугольного треугольника вокруг прямой, проходящей через один из его катетов.

Назовём элементы конуса.

Осью конуса называется прямая вращения.

Основание конуса – круг радиуса , который равен катету треугольника вращения.

Радиус конуса – это радиус его основания.

Вершина конуса – неподвижная вершина треугольника вращения.

Образующая конуса – отрезок, соединяющий вершину конуса с любой точкой окружности основания. Все образующие конуса равны между собой.

Высота конуса – перпендикуляр, опущенный из вершины конуса на плоскость его основания. Высота конуса совпадает с неподвижным катетом треугольника вращения.

В конусе радиус основания , высота и образующая связаны следующим соотношением:

.

Сечение конуса плоскостью, проходящей через его вершину, представляет собой равнобедренный треугольник, у которого боковые стороны являются образующими конуса.

Осевым сечением конуса называется сечение конуса плоскостью, проходящей через его ось.

Осевое сечение конуса – равнобедренный треугольник, боковые стороны которого – образующие, а основание – диаметр основания конуса.

Боковую поверхность конуса, как и боковую поверхность цилиндра, можно развернуть на плоскость, разрезав её по одной из образующих. Развёрткой боковой поверхности конуса является круговой сектор.

Обратите внимание, радиус сектора равен образующей конуса, а длина дуги сектора равна длине окружности основания конуса.

Площадь боковой поверхности конуса можно вычислить по следующим формулам:

, , ,

где – длина окружности основания, – радиус основания, – образующая.

Площадь полной поверхности конуса равна сумме площади боковой поверхности конуса и площади его основания.

Тогда площадь полной поверхности конуса можно вычислить по формуле^

,

где – радиус основания конуса, – его образующая.

Объём конуса равен одной третьей произведения площади основания на высоту.

Тогда его можно вычислить по формуле:

,

где – радиус основания конуса, – его высота.

Плоскость, параллельная плоскости основания конуса, пересекает конус по кругу, а боковую поверхность – по окружности с центром на оси конуса. Эта плоскость разбивает конус на две части. Одна из частей (верхняя) представляет собой конус, а вторая (нижняя) называется усечённым конусом.

Усечённым конусом называется часть конуса, ограниченная его основанием и сечением, параллельным плоскости основания. Усечённый конус имеет ось, высоту , радиусы оснований и , образующую . Осевое сечение усечённого конуса – равнобедренная трапеция.

Площадь боковой поверхности усечённого конуса и объём усечённого конуса равен разности площадей боковых поверхностей и объёмов полного конуса и отсечённого.

,

Площадь боковой поверхности усечённого конуса можно найти по следующим формулам:

,

Объём усечённого конуса можно вычислить по следующим формулам:

,

где и – площади оснований, – высота усечённого конуса;

или ,

где – высота усечённого конуса, и – радиусы верхнего и нижнего оснований.

Основные моменты мы с вами повторили, а теперь давайте перейдём к практической части занятия.

Задача первая. Радиус основания конуса равен см, высота конуса равна см. Найдите площадь боковой поверхности и объём конуса.

Задача вторая. В конус вписана правильная треугольная пирамида с площадью основания см 2 и углом наклона бокового ребра к основанию, равным . Найдите объём и площадь полной поверхности конуса.

Задача третья. В равносторонний конус с радиусом основания, равным см, вписан прямоугольный параллелепипед в основании которого лежит квадрат, с высотой см так, что одно его основание принадлежит основанию конуса, а вершины другого основания принадлежат боковой поверхности конуса. Найдите объём параллелепипеда. В ответе запишите значение .

Задача четвёртая. Длины радиусов оснований и образующей усечённого конуса равны соответственно см, см и см. Вычислите его высоту.

Фигура конус является объектом изучения стереометрии. Основными свойствами конуса являются наличие у него объема и площади поверхности, которые можно вычислить с помощью линейных параметров. Одним из них является диаметр конуса. В данной статье покажем, как этот диаметр можно рассчитать по другим известным характеристикам фигуры.

Круглый прямой конус

В общем случае конусом является фигура, построенная в результате движения отрезка вдоль некоторой кривой на плоскости, при этом второй конец отрезка зафиксирован в определенной точке пространства. Сам отрезок называется генератрисой, или образующей, а кривая — директрисой, или направляющей.

Согласно приведенному определению, кривая, которая ограничивает фигуру, может быть совершенно любого типа. Самыми известными из них являются парабола, гипербола, эллипс и окружность. В последнем случае говорят о круглом конусе.

Круглый конус может быть наклонным и прямым. Обе фигуры показаны ниже на рисунке.

Прямой и наклонный конусы

Здесь r — радиус окружности, которая ограничивает основание фигуры. Буквой h обозначена высота, которая представляет опущенный на основание из вершины конуса перпендикуляр. Буквой a обозначена ось конуса. Видно, что в случае прямой фигуры его высота совпадает с осью, то есть пересекает окружность в ее центре.

Помимо радиуса r и высоты h, важным линейным параметром конуса является длина его образующей g. Как было сказано, образующая — это отрезок, соединяющий директрису с высотой. Для прямого круглого конуса все образующие равны друг другу.

Далее в статье, раскрывая вопрос касательно того, как найти диаметр конуса, будет рассматриваться только конус круглый и прямой.

Вычисление диаметра фигуры через линейные параметры и угол при основании

Описанную пространственную фигуру можно получить, если вращать вокруг любого катета прямоугольный треугольник. Этот факт демонстрирует рисунок ниже.

Конус - фигура вращения

Из рисунка видно, что два катета AC и AB являются радиусом r и высотой h объемной фигуры соответственно. Генератриса g — это гипотенуза BC. Эти соответствия позволяют записать формулу диаметра конуса через известные g и h:

d = 2*√(g2 — h2)

При записи этой формулы использовалась теорема Пифагора, а также определение диаметра, который в два раза больше радиуса основания конуса.

Если известен угол φ между основанием и любой из образующих g фигуры, тогда диаметр конуса можно определить по следующим формулам:

d = 2*g*cos(φ);

d = 2*h/tg(φ)

Оба равенства являются следствием применения определения тригонометрических функций тангенса и косинуса.

Вычисление диаметра через площадь поверхности и генератрису

Поверхность рассматриваемого конуса образована конической поверхностью и круглым основанием. Развертка конуса показана ниже.

Развертка конуса

Общая площадь развертки определяется по следующей формуле:

S = pi*r2 + pi*r*g

Если известна площадь S и генератриса g, тогда это уравнение позволяет вычислить радиус фигуры, а значит, и ее диаметр. Заметим, что речь идет об уравнении второго порядка относительно радиуса r. Решать его следует с использованием дискриминанта. При решении, как правило, получаются два корня, один из которых отрицательный. Он должен быть отброшен, ввиду его не физического значения.

С использованием описанной методики в конце статьи будет решена задача, и будет получен ответ на вопрос о том, чему равен диаметр конуса.

Определение диаметра через объем и высоту

Конусы разных диаметров

Теперь покажем, как найти диаметр конуса, зная его объем V и высоту h. Для этого необходимо вспомнить, что объем конуса, как и объем любой пирамиды, можно определить, пользуясь следующим равенством:

V = 1/3*S*h

Здесь S — площадь основания. Поскольку площадь основания в рассматриваемом случае является площадью круга, то это выражение можно переписать в таком виде:

V = 1/3*pi*r2*h

Остается выразить отсюда радиус и умножить его в два раза, и мы получим ответ на вопрос о том, как найти диаметр конуса через величины V и h. Имеем:

r = √(3*V/(pi*h));

d = 2*r = 2*√(3*V/(pi*h))

Заметим, что в правой части получается размерность длины. Это доказывает правильность полученной формулы.

Все записанные в статье формулы для диаметра d фигуры также являются справедливыми для радиуса, который будет в два раза меньше диаметра.

Задача на определение диаметра через известную площадь конуса и его образующую

Дан конус, площадь поверхности которого составляет 150 см2. Генератриса равна 14 см. Чему равен диаметр конуса?

Для получения ответа на поставленный вопрос используем описанную в статье методику. Сначала выпишем соответствующее уравнение:

S = pi*r2 + pi*r*g =>

r2 + 14*r — 150/3,14 = 0

При получении последнего равенства мы разделили левую и правую его части на число Пи. Рассчитываем дискриминант D. Имеем:

D = 142 — 4*1*(-150/3,14) = 387,0828

Полученный дискриминант приведен с точностью до 0,0001. Формула для корней уравнения r имеет следующий вид:

r = (-14±√D)/2

Очевидно, что один из корней будет отрицательным. Его не будем вычислять. Определим лишь искомый положительный радиус фигуры:

r = (-14+√387,0828)/2 = 2,837 см

Чтобы найти диаметр конуса, остается умножить это значение на два и записать ответ: d = 5,674 см.

В конце отметим, что, зная два любых параметра круглого конуса прямого, можно определить любую его характеристику, включая объем и площадь поверхности.

Фигура конус является объектом изучения стереометрии. Основными свойствами конуса являются наличие у него объема и площади поверхности, которые можно вычислить с помощью линейных параметров. Одним из них является диаметр конуса. В данной статье покажем, как этот диаметр можно рассчитать по другим известным характеристикам фигуры.

Круглый прямой конус

В общем случае конусом является фигура, построенная в результате движения отрезка вдоль некоторой кривой на плоскости, при этом второй конец отрезка зафиксирован в определенной точке пространства. Сам отрезок называется генератрисой, или образующей, а кривая — директрисой, или направляющей.

Согласно приведенному определению, кривая, которая ограничивает фигуру, может быть совершенно любого типа. Самыми известными из них являются парабола, гипербола, эллипс и окружность. В последнем случае говорят о круглом конусе.

Круглый конус может быть наклонным и прямым. Обе фигуры показаны ниже на рисунке.

Прямой и наклонный конусы

Здесь r — радиус окружности, которая ограничивает основание фигуры. Буквой h обозначена высота, которая представляет опущенный на основание из вершины конуса перпендикуляр. Буквой a обозначена ось конуса. Видно, что в случае прямой фигуры его высота совпадает с осью, то есть пересекает окружность в ее центре.

Каждая объемная фигура, которая имеет конечные линейные размеры, обладает в пространстве некоторой…

Помимо радиуса r и высоты h, важным линейным параметром конуса является длина его образующей g. Как было сказано, образующая — это отрезок, соединяющий директрису с высотой. Для прямого круглого конуса все образующие равны друг другу.

Далее в статье, раскрывая вопрос касательно того, как найти диаметр конуса, будет рассматриваться только конус круглый и прямой.

Вычисление диаметра фигуры через линейные параметры и угол при основании

Описанную пространственную фигуру можно получить, если вращать вокруг любого катета прямоугольный треугольник. Этот факт демонстрирует рисунок ниже.

Конус - фигура вращения

Из рисунка видно, что два катета AC и AB являются радиусом r и высотой h объемной фигуры соответственно. Генератриса g — это гипотенуза BC. Эти соответствия позволяют записать формулу диаметра конуса через известные g и h:

d = 2*√(g2 — h2)

При записи этой формулы использовалась теорема Пифагора, а также определение диаметра, который в два раза больше радиуса основания конуса.

Если известен угол φ между основанием и любой из образующих g фигуры, тогда диаметр конуса можно определить по следующим формулам:

d = 2*g*cos(φ);

d = 2*h/tg(φ)

Оба равенства являются следствием применения определения тригонометрических функций тангенса и косинуса.

Каждая объемная фигура, которая имеет конечные линейные размеры, обладает в пространстве некоторой…

Вычисление диаметра через площадь поверхности и генератрису

Поверхность рассматриваемого конуса образована конической поверхностью и круглым основанием. Развертка конуса показана ниже.

Развертка конуса

Общая площадь развертки определяется по следующей формуле:

S = pi*r2 + pi*r*g

Если известна площадь S и генератриса g, тогда это уравнение позволяет вычислить радиус фигуры, а значит, и ее диаметр. Заметим, что речь идет об уравнении второго порядка относительно радиуса r. Решать его следует с использованием дискриминанта. При решении, как правило, получаются два корня, один из которых отрицательный. Он должен быть отброшен, ввиду его не физического значения.

С использованием описанной методики в конце статьи будет решена задача, и будет получен ответ на вопрос о том, чему равен диаметр конуса.

Определение диаметра через объем и высоту

Конусы разных диаметров

Теперь покажем, как найти диаметр конуса, зная его объем V и высоту h. Для этого необходимо вспомнить, что объем конуса, как и объем любой пирамиды, можно определить, пользуясь следующим равенством:

Все пространственные фигуры, которые изучает специальный раздел геометрии — стереометрия, можно…

V = 1/3*S*h

Здесь S — площадь основания. Поскольку площадь основания в рассматриваемом случае является площадью круга, то это выражение можно переписать в таком виде:

V = 1/3*pi*r2*h

Остается выразить отсюда радиус и умножить его в два раза, и мы получим ответ на вопрос о том, как найти диаметр конуса через величины V и h. Имеем:

r = √(3*V/(pi*h));

d = 2*r = 2*√(3*V/(pi*h))

Заметим, что в правой части получается размерность длины. Это доказывает правильность полученной формулы.

Все записанные в статье формулы для диаметра d фигуры также являются справедливыми для радиуса, который будет в два раза меньше диаметра.

Задача на определение диаметра через известную площадь конуса и его образующую

Дан конус, площадь поверхности которого составляет 150 см2. Генератриса равна 14 см. Чему равен диаметр конуса?

Для получения ответа на поставленный вопрос используем описанную в статье методику. Сначала выпишем соответствующее уравнение:

S = pi*r2 + pi*r*g =>

r2 + 1 r — 150/3,14 = 0

При получении последнего равенства мы разделили левую и правую его части на число Пи. Рассчитываем дискриминант D. Имеем:

D = 142 — 1*(-150/3,14) = 387,0828

Полученный дискриминант приведен с точностью до 0,0001. Формула для корней уравнения r имеет следующий вид:

r = (-14±√D)/2

Очевидно, что один из корней будет отрицательным. Его не будем вычислять. Определим лишь искомый положительный радиус фигуры:

r = (-14+√387,0828)/2 = 2,837 см

Чтобы найти диаметр конуса, остается умножить это значение на два и записать ответ: d = 5,674 см.

В конце отметим, что, зная два любых параметра круглого конуса прямого, можно определить любую его характеристику, включая объем и площадь поверхности.

Найди верный ответ на вопрос ✅ «Как найти диаметр основания конуса*помогите если длинна оброзующей 37 высота конуса = 12 …» по предмету 📙 Алгебра, а если ответа нет или никто не дал верного ответа, то воспользуйся поиском и попробуй найти ответ среди похожих вопросов.

Искать другие ответы

Главная » Алгебра » Как найти диаметр основания конуса*помогите если длинна оброзующей 37 высота конуса = 12

Высота конуса равна …

В этой статье рассмотрим задачи на нахождение элементов  конуса. Конечно же, их можно отнести к одним из самых простых задач, которые входят в открытый банк заданий ЕГЭ по математике.

Как и многие задачи этой части, решаются они в одно-два действия. Несмотря на то, что это это стереометрическая задача, для решения достаточно знать теорему Пифагора. Рассмотрим задачи:

Высота конуса равна 57, а диаметр основания — 152. Найдите образующую конуса.

Высота конуса равна

Рассмотрим осевое сечение конуса. По теореме Пифагора:

Ответ: 95

Как извлекать корень из большого числа читайте здесь.

Высота конуса равна 21, а длина образующей — 75 . Найдите диаметр основания конуса.

Диаметр основания конуса равен двум радиусам. Радиус мы можем найти по теореме Пифагора из прямоугольного треугольника:

Следовательно, диаметр основания конуса равен 144. 

Ответ: 144

Диаметр основания конуса равен 56, а длина образующей — 100 . Найдите высоту конуса.

Рассмотрим осевое сечение конуса. По теореме Пифагора:

Ответ: 96

Высота конуса равна 4, а диаметр основания — 6. Найдите образующую конуса.

Посмотреть решение

Высота конуса равна 4, а длина образующей — 5. Найдите диаметр основания конуса.

Посмотреть решение

Диаметр основания конуса равен 6, а длина образующей — 5. Найдите высоту конуса.

Посмотреть решение

В будущем рассмотрим и другие задачи с конусами, не пропустите. Успехов вам!

С уважением, Александр Крутицких.

P.S: Буду благодарен Вам, если расскажете о сайте в социальных сетях.

Категория: Стереометрия КОНУС ЦИЛИНДР | ЕГЭ-№2

НЕ ОТКЛАДЫВАЙ! Заговори на английском!

ДОЛОЙ обидные ошибки на ЕГЭ!!

Подготовка к ЕГЭ, онлайн-обучение с Фоксворд!

Замучили боль и скованность в мышцах спины?

*Нажимая на кнопку, я даю согласие на рассылку, обработку персональных данных и принимаю политику конфиденциальности.

Понравилась статья? Поделить с друзьями:
  • Загруженный файл не соответствует формату pdf a iso 19005 1 как исправить
  • Как быстрей найти товар
  • Как найти сотрудника в томске
  • Ноготь растет вверх как исправить гелем
  • Гипербола как найти координаты центра