Как найти диаметр вписанной окружности прямоугольного треугольника

Все формулы для радиуса вписанной окружности

Радиус вписанной окружности в треугольник

a , b , c — стороны треугольника

p — полупериметр, p=( a + b + c )/2

Формула радиуса вписанной окружности в треугольник ( r ):

Радиус вписанной окружности в равносторонний треугольник

a — сторона треугольника

r — радиус вписанной окружности

Формула для радиуса вписанной окружности в равносторонний треугольник ( r ):

Радиус вписанной окружности равнобедренный треугольник

1. Формулы радиуса вписанной окружности если известны: стороны и угол

a — равные стороны равнобедренного треугольника

b — сторона ( основание)

α — угол при основании

О — центр вписанной окружности

r — радиус вписанной окружности

Формула радиуса вписанной окружности в равнобедренный треугольник через стороны ( r ) :

Формула радиуса вписанной окружности в равнобедренный треугольник через сторону и угол ( r ) :

2. Формулы радиуса вписанной окружности если известны: сторона и высота

a — равные стороны равнобедренного треугольника

b — сторона ( основание)

h — высота

О — центр вписанной окружности

r — радиус вписанной окружности

Формула радиуса вписанной окружности в равнобедренный треугольник через сторону и высоту ( r ) :

Узнать ещё

Знание — сила. Познавательная информация

Окружность, вписанная в прямоугольный треугольник

Если в задаче дана окружность, вписанная в прямоугольный треугольник, то ее решение может быть связано со свойством отрезков касательных, проведенных из одной точки, и теоремой Пифагора.

Кроме того, следует учесть, что радиус вписанной в прямоугольный треугольник окружности вычисляется по формуле

где a и b — длины катетов, c — гипотенузы.

Рассмотрим две задачи на вписанную в прямоугольный треугольник окружность.

Точка касания окружности, вписанной в прямоугольный треугольник, делит гипотенузу на отрезки 4 см и 6 см. Найти периметр и площадь треугольника и радиус окружности.

Дано: ∆ ABC, ∠C=90º,

окружность (O, r) — вписанная,

K, M, F — точки касания со сторонами AC, AB, BC,

1) По свойству отрезков касательных, проведенных из одной точки,

AK=AM=6 см,

2) AB=AM+BM=6+4=10 см,

3) По теореме Пифагора:

Второй корень не подходит по смыслу задачи. Значит, CK+CF=2 см, AC=8 см, BC=6 см.

Ответ: 24 см, 24 см², 2 см.

Найти площадь прямоугольного треугольника, гипотенуза которого равна 26 см, а радиус вписанной окружности — 4 см.

Дано:∆ ABC, ∠C=90º,

окружность (O, r) — вписанная,

K, M, F — точки касания со сторонами AC, AB, BC,

1) Проведем отрезки OK и OF.

(как радиусы, проведенные в точки касания).

Четырехугольник OKCF — прямоугольник (так как у него все углы — прямые).

А так как OK=OF (как радиусы), то OKCF — квадрат.

2) По свойству касательных, проведенных из одной точки,

3) AC=AK+KC=(x+4) см, BC=BF+CF=26-x+4=(30-x) см.

Окружность, вписанная в треугольник. Основное свойство биссектрисы угла

Существование окружности, вписанной в треугольник. Основное свойство биссектрисы угла

Определение 1 . Биссектрисой угла называют луч, делящий угол на две равные части.

Теорема 1 (Основное свойство биссектрисы угла) . Каждая точка биссектрисы угла находится на одном и том же расстоянии от сторон угла (рис.1).

Доказательство . Рассмотрим произвольную точку D , лежащую на биссектрисе угла BAC , и опустим из точки D перпендикуляры DE и DF на стороны угла (рис.1). Прямоугольные треугольники ADF и ADE равны, поскольку у них равны острые углы DAF и DAE , а гипотенуза AD – общая. Следовательно,

что и требовалось доказать.

Теорема 2 (обратная теорема к теореме 1) . Если некоторая точка находится на одном и том же расстоянии от сторон угла, то она лежит на биссектрисе угла (рис.2).

Доказательство . Рассмотрим произвольную точку D , лежащую внутри угла BAC и находящуюся на одном и том же расстоянии от сторон угла. Опустим из точки D перпендикуляры DE и DF на стороны угла (рис.2). Прямоугольные треугольники ADF и ADE равны, поскольку у них равны катеты DF и DE , а гипотенуза AD – общая. Следовательно,

что и требовалось доказать.

Определение 2 . Окружность называют окружностью, вписанной в угол , если она касается касается сторон этого угла.

Теорема 3 . Если окружность вписана в угол, то расстояния от вершины угла до точек касания окружности со сторонами угла равны.

Доказательство . Пусть точка D – центр окружности, вписанной в угол BAC , а точки E и F – точки касания окружности со сторонами угла (рис.3).

Прямоугольные треугольники ADF и ADE равны, поскольку у них равны катеты DF и DE (как радиусы окружности радиусы окружности ), а гипотенуза AD – общая. Следовательно

что и требовалось доказать.

Замечание . Теорему 3 можно сформулировать и по-другому: отрезки касательных касательных , проведенных к окружности из одной точки, равны.

Определение 3 . Биссектрисой треугольника называют отрезок, являющийся частью биссектрисы угла треугольника, и соединяющий вершину треугольника с точкой на противоположной стороне.

Теорема 4 . В любом треугольнике все три биссектрисы пересекаются в одной точке.

Доказательство . Рассмотрим две биссектрисы, проведённые из вершин A и C треугольника ABC , и обозначим точку их пересечения буквой O (рис. 4).

Опустим из точки O перпендикуляры OD , OE и OF на стороны треугольника. Поскольку точка O лежит на биссектрисе угла BAC , то в силу теоремы 1 справедливо равенство:

Поскольку точка O лежит на биссектрисе угла ACB , то в силу теоремы 1 справедливо равенство:

Следовательно, справедливо равенство:

откуда с помощью теоремы 2 заключаем, что точка O лежит на биссектрисе угла ABC . Таким образом, все три биссектрисы треугольника проходят через одну и ту же точку, что и требовалось доказать

Определение 4 . Окружностью, вписанной в треугольник , называют окружность, которая касается всех сторон треугольника (рис.5). В этом случае треугольник называют треугольником, описанным около окружности .

Следствие . В любой треугольник можно вписать окружность, причем только одну. Центром вписанной в треугольник окружности является точка, в которой пересекаются все биссектрисы треугольника.

Формулы для радиуса окружности, вписанной в треугольник

Формулы, позволяющие найти радиус вписанной в треугольник окружности , удобно представить в виде следующей таблицы.

a, b, c – стороны треугольника,
S – площадь,
r – радиус вписанной окружности,
p – полупериметр

.

a – сторона равностороннего треугольника,
r – радиус вписанной окружности

Фигура Рисунок Формула Обозначения
Произвольный треугольник
Равнобедренный треугольник
Равносторонний треугольник
Прямоугольный треугольник

где
a, b, c – стороны треугольника,
S –площадь,
r – радиус вписанной окружности,
p – полупериметр
.

где
a, b, c – стороны треугольника,
r – радиус вписанной окружности,
p – полупериметр
.

где
a – сторона равностороннего треугольника,
r – радиус вписанной окружности

Произвольный треугольник
Равнобедренный треугольник
Равносторонний треугольник
Прямоугольный треугольник
Произвольный треугольник

где
a, b, c – стороны треугольника,
S –площадь,
r – радиус вписанной окружности,
p – полупериметр
.

где
a, b, c – стороны треугольника,
r – радиус вписанной окружности,
p – полупериметр
.

Равнобедренный треугольник

Равносторонний треугольник

где
a – сторона равностороннего треугольника,
r – радиус вписанной окружности

Прямоугольный треугольник

Вывод формул для радиуса окружности, вписанной в треугольник

Теорема 5 . Для произвольного треугольника справедливо равенство

где a, b, c – стороны треугольника, r – радиус вписанной окружности, – полупериметр (рис. 6).

с помощью формулы Герона получаем:

что и требовалось.

Теорема 6 . Для равнобедренного треугольника справедливо равенство

где a – боковая сторона равнобедренного треугольника, b – основание, r – радиус вписанной окружности (рис. 7).

то, в случае равнобедренного треугольника, когда

что и требовалось.

Теорема 7 . Для равностороннего треугольника справедливо равенство

где a – сторона равностороннего треугольника, r – радиус вписанной окружности (рис. 8).

то, в случае равностороннего треугольника, когда

что и требовалось.

Замечание . Рекомендуем читателю вывести в качестве упражнения формулу для радиуса окружности, вписанной в равносторонний треугольник, непосредственно, т.е. без использования общих формул для радиусов окружностей, вписанных в произвольный треугольник или в равнобедренный треугольник.

Теорема 8 . Для прямоугольного треугольника справедливо равенство

Доказательство . Рассмотрим рисунок 9.

Поскольку четырёхугольник CDOF является прямоугольником прямоугольником , у которого соседние стороны DO и OF равны, то этот прямоугольник – квадрат квадрат . Следовательно,

В силу теоремы 3 справедливы равенства

Следовательно, принимая также во внимание теорему Пифагора, получаем

что и требовалось.

Замечание . Рекомендуем читателю вывести в качестве упражнения формулу для радиуса окружности, вписанной в прямоугольный треугольник, с помощью общей формулы для радиуса окружности, вписанной в произвольный треугольник.

источники:

ВИДЕОУРОК

Вписанная окружность
прямоугольного треугольника.

Радиус окружности,
вписанной в прямоугольный треугольник,

можно найти по формуле:

где  r
искомый радиус,
а  и  b – катеты,

с – гипотенуза треугольника.

Радиус вписанной в
прямоугольный треугольник окружности

равен произведению катетов, делённому на сумму
катетов и гипотенузы,

где  r
искомый радиус,
а  и  b – катеты,

с – гипотенуза треугольника.

Радиус вписанной в
прямоугольный треугольник окружности равен площади этого треугольника, делённой
на полупериметр:

где  р – полупериметр

ЗАДАЧА:

Точка касания окружности, вписанной в прямоугольный треугольник,
делит один из катетов на отрезки 
2 см  и  8 см,
отсчитывая от вершины прямого угла. Найдите периметр треугольника.

РЕШЕНИЕ:

Начертим чертёж:

ВМ
= В
N = х.

(2 + х)2 + (2 + 8) 2 = (8
+
х)2,

х2 + 4х + 4
+ 100 =

= х2 + 16х + 64,

12х = 40,

х =
10/3 (см).

Р = (2 + 8) + (8 + 10/3) + (10/3 + 2) = 262/3 (см).

ЗАДАЧА:

Вписанная окружность прямоугольного треугольника  АВС  касается гипотенузы  АВ  в точке 
К. Найдите радиус
вписанной окружности, если 
АК = 4 см, ВК
= 6
см.

РЕШЕНИЕ:

За свойством касательных имеем:

АК = АМ = 4 см
ВК = ВN = 6 см.


Обозначим радиус вписанной окружности
через 
х:

СN = СM = NО = МО = х.

Тогда 

АС =
(4 + х)
см
ВС = (6 + х) см,

АВ =
4
см +
6
см =
10
см.

По теореме Пифагора для треугольника  АВС
можно записать соотношение
:

(4 + х)2 + (6 + х)2 = 102.

Решим это квадратное уравнение:

16 + 8x + x2
+ 36 + 12
x + x2 = 100,

2x2 + 20x + 52 – 100 = 0,

2x2 + 20x – 48 = 0,

x2 + 10x – 24 = 0,

x1 = 2,  x2 = –10.

x2  не
удовлетворяет условию задачи.

ОТВЕТ:  2 см.

ЗАДАЧА:

Точка касания окружности, вписанной в прямоугольный треугольник,
делить гипотенузу на отрезки 
8 см  и  12
см. Найдите периметр треугольника.

РЕШЕНИЕ:

Начертим чертёж:

(8 + 12)2
= (8 +
х)2 + (12 + х)2,

400 = 64 + 16x + x2
+
x2 + 24x + 144,

2x2 + 40x – 192 = 0,

x2 + 20x – 96 = 0,

x1 = 4,  x2 = –24.

x2  не
подходит.

Р
= 8 + 12 + 12 + 4 + 4 + 8 = 48
(см).

ОТВЕТ:  48 см.

Описанная окружность
прямоугольного треугольника.

Центром окружности, описанной
вокруг прямоугольного треугольника, будет середина его гипотенузы.

Диаметр окружности,
описанной вокруг прямоугольного треугольника, равен его гипотенузе.

Медиана прямоугольного
треугольника, проведённая к его гипотенузе, равна половине гипотенузы и
является радиусом окружности, описанной около этого треугольника.

ОА = ОВ = ОС = R

Радиус описанной окружности равен половине
гипотенузы:

ЗАДАЧА:


Отрезок  ВС – диаметр окружности, изображённой на рисунку.

Угол  АВС = 55°.

Найдите
величин
у
угла  АСВ
?

РЕШЕНИЕ:

ВСдиаметр,
поэтому  ВАС = 90°,

АСВ = 180° – (90° + 55°) = 35°.

ЗАДАЧА:

Перпендикуляр,
опущенный из точки окружности на его диаметр, делит диаметр на отрезки, разность
между которыми равна 
5 см. Найдите радиус окружности, если длина перпендикуляра равна  6 см.

РЕШЕНИЕ:

Пусть  АВ – диаметр окружности с
центром в точке 
О, СD
АВ,

где  С – точка окружности,

СD = 6 см, АD = х см,

ВD – АD = 5 см.

Тогда 

DВ = (х + 5) см.

Треугольник  АСВ – прямоугольный (угол  С  прямой, так как
он вписанный и опирается на диаметр
).

СD – перпендикуляр, проведений из вершины прямого угла на
гипотенузу. Тогда
:

АD DВ = СD2,

х(х + 5) = 62,

х2
+ 5х – 36 = 0
,

x1 = –9,  x2 = 4.

x1  не подходит.

Поэтому, АD = 4 см,

DВ = 4 + 5 = 9 (см).

АВ
= А
D
+
DВ
=

=
4
+ 9 = 13
(см).

Тогда

r = АВ :
2 = 13 : 2 = 6,5
(см).

ОТВЕТ:  6,5 см

ЗАДАЧА:

Из точки на окружности проведены две перпендикулярные
хорды, разность между которыми равна 
4 см. Найдите эти хорды, если радиус окружности равен  10
см.

РЕШЕНИЕ:

Пусть задана окружность радиуса  R,

в
которой
проведен
ы
хорд
ы  АВ  и 
АС (АВ АС),

R = АО = ВО = СО =
10 см,

АС – АВ =
4
см.

Пусть  АВ = х см, тогда 

АС = (4
+ х)
см.

Так как  А = 90°, то треугольник 
ВАС – 
прямоугольный,
в
котором 

ВС = 2ОВ= 2 10 = 20 см.

Из
прямоугольного треугольника  ВАС  имеем:

АВ2 + АС2
=
ВС2,

х2 + (4 + х)2
= 20
2,

х2 + 16 + 8х
+
х2 = 400,

х2 + 4х
192 = 0,

х1 = 12, 

х2
= –16 –
не подходит.

Поэтому,
АВ = 12
см,

АС
= 4 + 12 = 16
(см).

ОТВЕТ:  12
см, 16 см

ЗАДАЧА:

Угол между биссектрисой и
медианой прямоугольного треугольника, проведёнными из вершины прямого угла,
равен 
14°.
Найдите меньший угол этого треугольника.

РЕШЕНИЕ:

Начертим чертёж.

Так как треугольник
прямоугольный и медиана 
ВМ  иcходит
из прямого угла 
В, то точка  М  является центром
описанной окружности вокруг треугольника 
АВС.
Следовательно,

АМ
= МС = МВ =
R,

где  R
радиус описанной окружности.

Найдём сначала угол  МВС.
Учитывая, что 
BD – биссектриса, то

DВС = 90/2 = 45°. Тогда

МВС = МВD + DВС,

МВС = 14° + 45° = 59°.

Рассмотрим
равнобедренный треугольник 
МВС  со сторонами 

МВ = МС,

в
котором углы при основании 
ВС  равны, то есть

С = МВС
 = 59°.

Так
как сумма острых углов в прямоугольном треугольнике равна 
90°, то

А + С  = 90°,

А = 90°С =

= 90° – 59° = 31°.

ЗАДАЧА:

Периметр
прямоугольного треугольника равен 
72 м, а радиус вписанной в него окружности – 6 м. Найдите диаметр описанной окружности.

РЕШЕНИЕ:

DO = OF = OE = r = 6 м.    

Поэтому  AD =
AF =
6
м.

FC = EC, BD = BE (отрезки касательных, проведённых из
одной точки
)

Пусть  


BD = BE = x, 

FC = EC = y,



Тогда  


AB
= x +
6, AC = y + 6

BC = x + y.

AB + AC + BC = 

= x + 6 + y + 6
+ x + y =
72.

2x + 2y + 12 = 72,

2x + 2y = 60,

x + y = 30.

(x + y) – гипотенуза, или диаметр описанной окружности.

ОТВЕТ:  30 м.

ЗАДАЧА:

В окружности на расстоянии  6
см  от его центра проведена хорда длинной 
16
см. Найдите радиус окружности.

РЕШЕНИЕ:

Начертим чертёж:

Пользуясь теоремой
Пифагора, находим радиус.

ЗАДАЧА:

Две окружности, радиусы которых равны  4 см  и  9 см, имеют внешнее касание. Найдите расстояние между
точками касания данных окружностей с их общей внешней касательной
.

РЕШЕНИЕ:

ВК АD, АК = 9 – 4 = 5 см.

Из  ВКА:

Если в задаче дана окружность, вписанная в прямоугольный треугольник, то ее решение может быть связано со свойством отрезков касательных, проведенных из одной точки, и теоремой Пифагора.

Кроме того, следует учесть, что радиус вписанной в прямоугольный треугольник окружности вычисляется по формуле

    [r = frac{{a + b - c}}{2},]

где a и b — длины катетов, c — гипотенузы.

Рассмотрим две задачи на вписанную в прямоугольный треугольник окружность.

Задача 1.

Точка касания окружности, вписанной в прямоугольный треугольник, делит гипотенузу на отрезки 4 см и 6 см. Найти периметр и площадь треугольника и радиус окружности.

окружность вписана в прямоугольный треугольникДано: ∆ ABC, ∠C=90º,

окружность (O, r) — вписанная,

K, M, F — точки касания со сторонами AC, AB, BC,

BM=4 см, AM=6 см.

Найти:

    [{P_{Delta ABC,}}{S_{Delta ABC}},r.]

Решение:

1) По свойству отрезков касательных, проведенных из одной точки,

окружность, вписанная к прямоугольный треугольникAK=AM=6 см,

BF=BM=4 см,

CK=CF=x см.

2) AB=AM+BM=6+4=10 см,

AC=AK+CK=(6+x) см,

BC=BF+CF=(4+x) см.

3) По теореме Пифагора:

    [A{C^2} + B{C^2} = A{B^2}]

    [{(6 + x)^2} + {(4 + x)^2} = {10^2}]

    [36 + 12x + {x^2} + 16 + 8x + {x^2} = 100]

    [2{x^2} + 20x - 48 = 0]

    [{x^2} + 10x - 24 = 0]

По теореме Виета,

    [{x_1} = 2,{x_2} =  - 12.]

Второй корень не подходит по смыслу задачи. Значит, CK+CF=2 см, AC=8 см, BC=6 см.

4)

    [{P_{Delta ABC}} = AB + AC + BC,]

    [{P_{Delta ABC}} = 10 + 8 + 6 = 24(cm),]

    [{S_{Delta ABC}} = frac{1}{2}AC cdot BC,]

    [{S_{Delta ABC}} = frac{1}{2} cdot 8 cdot 6 = 24(c{m^2}),]

    [r = frac{{AC + BC - AB}}{2},]

    [r = frac{{8 + 6 - 10}}{2} = 2(cm).]

Ответ: 24 см, 24 см², 2 см.

Задача 2.

Найти площадь прямоугольного треугольника, гипотенуза которого равна 26 см, а радиус вписанной окружности — 4 см.

радиус окружности, вписанной в прямоугольный треугольникДано:∆ ABC, ∠C=90º,

окружность (O, r) — вписанная,

K, M, F — точки касания со сторонами AC, AB, BC,

AB=26 см, r=4 см.

Найти:

    [{S_{Delta ABC}}]

Решение:

1) Проведем отрезки OK и OF.

вписанная в прямоугольный треугольник окружность

    [OK bot AC,OF bot BC]

(как радиусы, проведенные в точки касания).

Четырехугольник OKCF — прямоугольник (так как у него все углы — прямые).

А так как OK=OF (как радиусы), то OKCF — квадрат.

2) По свойству касательных, проведенных из одной точки,

AM=AK=x см,

BF=BM=(26-x) см,

CF=CK=r=4 см.

3) AC=AK+KC=(x+4) см, BC=BF+CF=26-x+4=(30-x) см.

По теореме Пифагора,

    [A{C^2} + B{C^2} = A{B^2}]

    [{(x + 4)^2} + {(30 - x)^2} = {26^2}]

    [{x^2} + 8x + 16 + 900 - 60x + {x^2} = 676]

    [2{x^2} - 52x + 240 = 0]

    [{x^2} - 26x + 120 = 0]

    [{x_1} = 20,{x_2} = 6.]

Если AM=20 см, то AC=24 см, BC=10 см.

Если AM=6 см, то AC=10 см, BC=24 см.

    [4){S_{Delta ABC}} = frac{1}{2}AC cdot BC,]

    [{S_{Delta ABC}} = frac{1}{2} cdot 24 cdot 10 = 120(c{m^2}).]

Ответ: 120 см².

1. Формулы радиуса вписанной окружности если известны: диагональ, стороны и угол

Радиус вписанной окружности в ромб

a — сторона ромба

D — большая диагональ

d — меньшая диагональ

α — острый угол

О — центр вписанной окружности

r — радиус вписанной окружности

Формула радиуса вписанной окружности в ромб через диагонали ( r ) :

Формула 1 радиуса вписанной окружности в ромб

Формула радиуса вписанной окружности в ромб через сторону и угол ( r ) :

Формула 2 радиуса вписанной окружности в ромб

Формула радиуса вписанной окружности в ромб через диагональ и угол ( r ) :

Формула 3 радиуса вписанной окружности в ромб

Формула 4 радиуса вписанной окружности в ромб

Формула радиуса вписанной окружности в ромб через диагональ и сторону ( r ) :

Формула 5 радиуса вписанной окружности в ромб

Формула 6 радиуса вписанной окружности в ромб

2. Радиус вписанной окружности ромба, равен половине его высоты

Радиус вписанной окружности в ромб

a — сторона ромба

h — высота

О — центр вписанной окружности

r — радиус вписанной окружности

Формула радиуса вписанной окружности в ромб ( r ) :

Формула 7 радиуса вписанной окружности в ромб

Тема: Окружность (Вписанная и описанная окружности)
Условие задачи полностью выглядит так:

694 Найдите диаметр окружности, вписанной в прямоугольный треугольник, если гипотенуза треугольника равна с, а сумма катетов равна m.

Задача из главы Окружность по предмету Геометрия из задачника Геометрия. 7-9 класс, Атанасян, Бутузов, Кадомцев, Позняк, Юдина (8 класс)

Если к данной задачи нет решения — не переживайте. Наши администраторы стараются дополнять сайт решениями для тех задач
и упражнения где это требуется и которые не даны в решебниках и сборниках с ГДЗ. Попробуйте зайти позже. Вероятно, вы найдете то, что искали :)

Рады приветствовать учеников всех учебных заведений всех возрастов на нашем сайте!
Здесь вы найдете решебники и решения задач бесплатно, без регистрации.

Понравилась статья? Поделить с друзьями:
  • Как найти объемный вес грунта
  • Как составить таблицу список литературы
  • Как найти очень старую игру
  • Как составить точный график
  • Пересолила фарш на пельмени как исправить