Как найти динамическая вязкость масла

Технические характеристики моторных масел — это количественное выражение определенных свойств масла в физических величинах или коэффициентах. Они показывают, при каких условиях моторное масло защищать двигатель от износа, коррозии, загрязнений, возникающих в ходе работы. Информацию о типовых характеристиках можно найти в листе технического описания (TDS, Technical Data Sheet).

Вязкость моторных масел

Вязкость – очень важная характеристика моторного масла, которая влияет на множество аспектов: количество отводимой от узла трения теплоты, износ вкладышей подшипников и шеек коленвала, способность обеспечивать гидродинамическое трение.

Один из способов понять, что такое вязкость – представить, что вы пытаетесь плыть. Если жидкость слишком густая, вам сложно двигаться и приходится тратить много энергии. И наоборот, если субстанция слишком жидкая, то вы будете опускаться на дно. Поэтому важен правильный баланс. Масло должно быть достаточно густым, чтобы выдерживать разделение движущихся частей, но достаточно тонким, чтобы обеспечивать топливную экономичность.

Молекулы жидких тел при перемещении вызывают трение. Это трение и называется вязкостью. При повышении давления, уменьшается объем и усиливается взаимное притяжение молекул и увеличивается сопротивление течению, вязкость масла увеличивается. При повышении температуры процесс прямо противоположный — вязкость уменьшается.

Работа, затрачиваемая на перемещение молекул, рассеивается в виде тепла. Если масляная пленка толще зазора, увеличивается сила трения, что приводит к повышению температуры и снижению КПД. Поэтому автопроизводители рассчитывают зазоры под рабочие температуры двигателя, специально заставляя его работать под повышенными нагрузками при прогреве.

Вязкость моторного масла: кинематическая и динамическая

Кинематическая вязкость моторного масла

Кинематическая вязкость – это показатель, выражающийся в отношении динамической вязкости к плотности масла. Он характеризует текучесть масла при нормальной и высокой температуре. Измеряется в сантистоксах (1 сСт = 10-6 мм2/с). Для замера используется стеклянный вискозиметр. Принцип измерения достаточно прост: замеряется время вытекания определенного количества масла из сосуда с калиброванным отверстием на дне.

В отчете ASTM 1989 года сообщается, что стремительный рост неньютоновских всесезонных масел сделал кинематическую вязкость практически бесполезным параметром для определения реальной вязкости в критически важных зонах двигателя. Поэтому был разработан параметр HTHS, о котором мы расскажем далее.

Индекс вязкости

Индекс вязкости моторного масла (ИВ, Viscosity index, VI) – это показатель, характеризующий степень изменения вязкости в зависимости от температуры °C. Чем выше индекс вязкости, тем в более широком температурном диапазоне смазочный материал способен сохранять рабочие свойства. Наибольшим индексом вязкости обладают базовые масла III (VHVI – Very High Viscosity Index, очень высокий индекс вязкости), IV (PAO – ПАО, полиальфаолефины) и V групп.

Индекс вязкости определяется по методу ASTM D2270. Для расчета необходимы показатели кинематической вязкости при 40°C и 100°C.

Динамическая вязкость

Высокотемпературная вязкость HTHS

Создание полимерных загустителей позволило производить универсальные всесезонные масла, которые способны обеспечивать уверенный пуск двигателя при отрицательных температурах и сохранять рабочие параметры при высоких. Принцип их действия достаточно прост: при низких температурах они сжимаются, занимая меньше места и снижая вязкость, а при повышении температуры, наоборот, увеличиваются в размерах, увеличивая вязкость.

Однако, у полимеров есть одна интересная особенность. При высокой скорости сдвига полимеры выстраиваются в направлении потока и сжимаются (например, в очень маленьких зазорах, где толщина масляной пленки предельно мала, но скорость движения очень высокая), что приводит к потере вязкости. Она может быть как кратковременной (при снижении скорости сдвига полимер восстановится), так и необратимой (полимер разрушается).

Скорость сдвига — это интенсивность изменения скорости одного слоя потока относительно второго. Величина выражается во взаимно обратных секундах [1/s]. В двигателе моторное заполняет зазоры между двумя поверхностями, которые двигаются с большой скоростью относительно друг друга (например, поршень и цилиндр). При этом процессе происходит скольжение слоев жидкости (моторного масла).

HTHS: масло и скорость сдвига

Для определения стойкости полимера к деструкции используется тест Курта Орбана (ASTM D 6278), при котором загущенное масло прокачивается топливным насосом высокого давления под давлением 175 бар. Масла для легковых автомобилей должны выдерживать 30 циклов такого испытания, а для коммерческих – 90. Вязкость после теста должна оставаться в рамках стандарта SAE J300.

Загущенные масла не являются ньютоновскими жидкостями, т.е их характеристики не линейно зависимы от внешних факторов. Поэтому инженерами был разработан параметр HTHS, который определяет вязкость масла в условиях, похожих на условия работы в ДВС – при температуре 150°C и скорости сдвига 106 с-1.

HTHS – это параметр динамической вязкости, который измеряется при высокой температуре (150°C) и высокой скорости сдвига 106 с-1

В уже упомянутом отчете ASTM 1989 года говорится, что стандарт SAE J300 не совершенен и 12-летние усилия по разработке нового стандарта ни к чему не привели. Однако зафиксированных случаев поломок, связанных с недостаточной вязкостью HTHS, выявлено не было, поэтому редакция SAE J300 и по сей день является актуальной.

Бытует миф, что моторные масла с низким HTHS приводят к ускоренному износу двигателя. Низковязкие масла предназначены только для специально сконструированных двигателей с минимальными зазорами. Кроме того, высокое содержание модификаторов трения позволяет защищать двигатель даже в условиях граничного трения.

Наиболее вредны масла с низким HTHS для изношенных двигателей. Дело в том, что абразивные частицы, которые, как правило, присутствуют в неновом двигателе, могут привести к тому, что тонкая масляная плёнка разрывается и начинается незащищённое трение, которое потом приводит к очень быстрому выходу деталей из строя. Слишком большие зазоры и неоптимальный режим работы топливной системы, работа мотора на малых оборотах и в режиме прогрева, приводят к тому, что топливо попадает в масло, снижая и без того малую вязкость и ухудшая его смазочные свойства.

Динамическая вязкость CCS

Cannon CCS

Параметр динамической вязкости, определяемый на имитаторе холодного пуска (Cold Cranking Simulator) по методу ASTM D 2983. Иногда его еще называют вязкость проворачивания. Этим методом определяется кажущаяся вязкость в диапазоне от 500 до 200000 сПауз Он показывает, насколько двигателю будет трудно провернуть холодное масло в цилиндро-поршневой группе. Прибор представляет собой низкотемпературную баню, куда погружены миниатюрный электродвигатель соединенный с ротором, установленный внутри статора с очень малым зазором от его стенки. Объем между ротором и статором заполнен маслом, характеристики которого и необходимо измерить. После охлаждения масла до нужной температуры, запускается электродвигатель и ротор начинает вращаться. Причем, чем гуще масло, тем скорость вращения ниже. Измеряя эту скорость, прибор и рассчитывает низкотемпературную вязкость CCS. Единица измерения — мПа*с

Динамическая вязкость MRV

Вязкость прокачивания (pumping viscosity), определяемая на мини-ротационном вискозиметре по методу ASTM D 4684, говорит нам о способности масла течь и создавать необходимое давление в системе смазки в начальной стадии работы холодного двигателя. При испытании определяется либо напряжение сдвига, необходимое для разру­шения желе, либо вязкость при отсутствии напряжения сдвига. Прокачивание обеспечивается только для масел с вязкостью не более 60 000 mPa s. Наименьшая температура, при которой масло может прокачиваться, называется нижней температурой прокачивания, ее значение близко к наименьшей температуре эксплуатации. Тест проводится при температуре на 5 градусов ниже, чем CCS.

Стандарт SAE J300

Классификация моторных масел по SAE признана во всем мире. По ней все масла делятся на:

  • зимние (обозначаются литерой W: SAE 0W, SAE 5W и т.д.)
  • зимние
  • всесезонные.
Класс вязкости SAE Проворачиваемость (CCS), мПас-с Прокачиваемость (MRV), мПа-с Кинеметическая вязкость при 100°C, не ниже Кинеметическая вязкость при 100°C, не выше Вязкость HTHS, мПа-с
0W 6200 при -35°C 60000 при -40°C 3.8
5W 6600 при -30°C 60000 при -35°C К
10W 7000 при -25°C 60000 при -30°C 4.1
15W 7000 при -20°C 60000 при -25°C 5.6
20W 9500 при -15°C 60000 при -20°C 5.6
25W 13000 при -10°C 60000 при -15°C 9.3
8 4.0 6.1 1,7
12 5.0 7.1 2,0
16 6.1 8.2 2,3
20 6.9 9.3 2.6
30 9.3 12.5 2.9
40 12.5 16.3 2.9*
40 12.5 16.3 3.7**
50 16.3 21.9 3.7
60 21.9 26.1 3.7

Как определить вязкость моторного масла?

Расшифровка вязкости – дело нехитрое. На канистре обязательно указывается класс вязкости по SAE. По нему можно определить низкотемпературные свойства, а также вязкость при рабочей температуре. Например, SAE 0W-40 означает, что масло гарантированно прокачается по системе при температуре вплоть до -40 градусов Цельсия, а вязкость при 100 градусах составит от 12,5 до 16,3 сСт.

Можно ли смешивать моторные масла разной вязкости?

Можно, но только в экстренных случаях. Не имея специального оборудования, сложно понять, какой вязкости в итоге получится микс смазочных материалов. Но такой микс все равно лучше, чем отсутствие масла в двигателе.

5W-30 и 5W-40 – в чем разница?

5W-30 имеет кинематическую вязкость при 100℃ в пределах 9,3-12,5 сСт, 5W-40 – 12,5-16,3 сСт.

В чем разница между 5W-40 и 10W-40

Технические характеристики моторных масел SAE 10W-XX обеспечивают гарантированный запуск двигателя при температурах до -25°C, а 5W-XX – до минус 30°C. В остальном отличий нет. Однако, чаще всего, масла 5W-40 являются синтетическими, а 10W-40 – полусинтетическими. Но, бывают исключения. Например, многие современные масла для дизельных двигателей.

Температура вспышки (flash point)

Температура вспышки — самая низкая температура, при которой пары смазочного материала образуют смесь с воздухом, воспламеняющуюся при контакте с огнем. Само масло при этом еще не воспламеняется. Параметр характеризует наличие в масле легколетучих фракций, которые при смешивании с воздухом образуют горючую смесь. Чем меньше этот показатель, тем меньше расход на угар и выше качество базовых масел. Определяют в открытом или закрытом тигле, в последнем случае она на 20-25 градусов ниже.

Испаряемость по методу Ноака

Испаряемость по NOACK — показатель, который определяет, сколько масла будет израсходовано за один час при температуре 250 градусов Цельсия. Испаряемость зависит от качества базовых масел, так как этот показатель зависит от наличия легких, летучих фракций. Хорошие масла имеют испаряемость ниже 14%. Испаряемость по NOACK характеризует склонность масла к угару/испарению. Испаряемость по НОАК выражается в процентах, и чем эта цифра меньше, тем меньше расход масла на угар.

Как определяют испаряемость по НОАК?

Стандартизирован тест Селби-Ноака в методе ASTM D5800. Образец масла весом 65 г помещают в специальный аппарат, нагревают до 245,2 °С и в течение 60 минут пропускают над нагретым образцом постоянный поток воздуха с помощью вакуумного насоса.

Для качественных моторных масел показатель испаряемости обычно не превышает 14-15%. Косвенно по этому числу можно оценивать качество базовых масел.

Температура застывания (solidification point)

Температура застывания — это температура, при которой масло теряет свою подвижность и тягучесть. Застывшим считается масло, которое удерживается в неподвижном состоянии 5 секунд под углом 90 градусов.

Производители снижают температуру застывания с помощью специальных присадок — депрессоров, которые не дают парафину укрупняться,  увеличивать плотность, создавая псевдокристаллические структуры. Снижение динамической вязкости CCS добивается путем подбора нужного базового масла и полимера-загустителя. Поэтому температура застывания и низкотемпературная вязкость могут быть никак не связаны между собой. Кроме того, чрезмерное содержание депрессора может приводить к увеличению вязкости CCS.

Температура потери текучести (pour point)

Температура потери текучести — это самая низкая температура, при которой моторное масло еще сохраняет текучесть. Она показывает возможность переливания моторного масла без необходимости подогрева. Температура застывания, согласно стандартам, на 3°С выше температуры потери текучести. Метод измерения — ASTM D97.

Кислотное число (Total Acid Number, TAN)

TAN — показатель, характеризующий наличие в масле кислот, которые приводят к коррозии металлов. По этому показателю можно косвенно судить о качестве базового масла. В хорошо очищенных маслах II и III группы, например, TAN будет меньше, чем в I группе. Стандартный метод измерения — ASTM D664

Общее щелочное число (Total Base Number, TBN)

Щелочное число — это показатель, выражающая количество гидроксидов калия в 1 гр моторного масла. Он напрямую влияет на срок службы моторного масла. В обычных маслах этот показатель находится в диапазоне от 5 до 12 мг KOH на грамм.

В процессе сгорания топливно-воздушной смеси неизбежно образуются различные кислоты (особенно при использовании некачественного топлива с высоким содержанием серы), которые вызывают старение масла и даже способны вызывать коррозию. Именно для этого в моторное масло и добавляются щелочные присадки, нейтрализующие их.

Моющие свойства моторного масла характеризует наличие нейтральных солей, а не щелочное число. Поэтому невысокое содержание щелочи не является прямым показателем моющих свойств.

Кроме того, высокий показатель TBN приводит к повышению сульфатной зольности, которая негативно влияет на катализаторы выхлопной системы, турбины, может оседать на маслосъемных кольцах, а в случае угара масла приводить к образованию твердых абразивных веществ.

Именно поэтому в последнее время получили среднезольные и малозольные масла c пониженным содержанием сульфатной золы, фосфора и серы.

Зольность сульфатная

Сульфатная зольность — это важная характеристика моторного масла, которая показывает количество неорганических примесей, которые остаются после полного сгорания. Эти примеси являются следствием содержания в масле присадок на основе соединений металлов.

При сгорании высокозольного масла может образовываться твердый абразив, который при долгом воздействии приведет к полировке стенок цилиндра. Гладкие, как зеркало, поверхности не способны удерживать масляную пленку, а это приводит к высокому расходу масла.

Высокая зольность оказывает негативное влияние на клапаны (особенно актуально для двигателей, работающих на газу, а также оснащенных непосредственным впрыском топлива), подшипники турбин, катализаторы с мелкими сотами.

Для определения зольности используются такие международные стандарты, как DIN 51 575, ASTM D482, ISO 6245.

Полнозольные (Full SAPS) масла

По классификации ACEA — A1/B1, A3/B3, A3/B4, A5/
B5. Такие масла могут негативно сказываться на многоступенчатых каталитических нейтрализаторах и фильтрах DPF. Типичное значение зольности — 0,9 — 1,1%.

Среднезольные (Mid SAPS) масла

Согласно классификации ACEA имеют обозначения C2 и C3. Зольность таких масел колеблется в диапазоне 0,6-0,9%.

Малозольные (Low SAPS) масла

По классификации ACEA — C1 и C4. По стандарту содержание сульфатной золы не должно превышать 0,5%.

ОПРЕДЕЛЕНИЕ ОСНОВНЫХ ФИЗИЧЕСКИХ ПАРАМЕТРОВ СМАЗОЧНЫХ МАСЕЛ

  • Авторы
  • Руководители
  • Файлы работы
  • Наградные документы

Шмельков М.С. 1Ворона Н.О. 1


1МБОУ Школа 129 г.о.Самара

Абрамова М.В. 1Бухарибекова м.м. 2


1МБОУ Школа № 129 г.о.Самара

2МБОУ Школа 129 г.о.Самара


Текст работы размещён без изображений и формул.
Полная версия работы доступна во вкладке «Файлы работы» в формате PDF

IV Международный конкурснаучно-исследовательских и творческих работ учащихся

«СТАРТ В НАУКЕ»

СЕКЦИЯ «ФИЗИКА»

ОПРЕДЕЛЕНИЕ ОСНОВНЫХ ФИЗИЧЕСКИХ ПАРАМЕТРОВ СМАЗОЧНЫХ МАСЕЛ

Работу выполнили: ученики 11 «А» кл.

Ворона Никита и

Шмельков Максим

МБОУ Школа № 129

г.о. Самара

Научный руководитель: Абрамова

Маргарита Валентиновна

учитель физики,

МБОУ Школа № 129

г.о. Самара

Москва, 2017г

Содержание: стр.

I Введение 3

1. Актуальность работы

2. Цели и задачи

3. Методы исследования

II Теоретическая часть 4

1. Вязкость жидкости. Внутреннее трение.

2. ГОСТ 33-2000 («Нефтепродукты. Прозрачные и 7

непрозрачные жидкости. Определение кинематической

вязкости и расчет динамической вязкости»)

3. ГОСТ 4333-87 («Определение температуры

вспышки и воспламенения масел в открытом тигле»)

4. ГОСТ 6370-83 («Метод определения механических

примесей в машинных маслах»)

III Практическая часть 8

  1. Определение кинематической и динамической вязкости

смазочных масел с помощью Вискозиметра ВПЖ-4.

2. Определение температур вспышки и воспламенения 13

масел в открытом тигле.

3. Определения механических примесей в машинных маслах

IV Выводы 16

V Список использованной литературы 17

I Введение

Актуальность темы

Вот уже второй год мы обучаемся в классе «Роснефть» и усиленно занимаемся физикой, химией и математикой. Наша будущая профессия связана с нефтяной промышленностью, с заводом по переработки нефти (КНПЗ). Посещая лаборатории завода, знакомясь с продукцией, которую завод выпускает, нас заинтересовал такой продукт как смазочные материалы (масла), полученные в результате переработки нефти. Как известно, основными функциями смазочных масел, являются уменьшение трения между трущимися поверхностями, предотвращение износа материала этих частей и охлаждение узлов трения. Масла, применяемые в поршневых двигателях внутреннего сгорания, должны также препятствовать прорыву рабочей смеси и продуктов сгорания из цилиндра двигателя в его картер. Уменьшение трения достигается тем, что при наличии жидкой смазки сухое трение металлических поверхностей заменяется жидкостным трением слоев масла между собой, а коэффициент жидкостного трения в десятки и сотни раз меньше коэффициента сухого трения. Наличие жидкостного слоя между трущимися поверхностями позволяет также почти полностью избежать их механического истирания и разрушения. Наконец, третья функция смазочного масла — снятие выделяющегося при трении тепла. Для всей группы моторных масел важное эксплуатационное значение имеет вязкостно-температурная характеристика, т.к. при низких температурах вязкость масла не должна быть слишком высокой, чтобы не затруднялся запуск двигателя. Вязкость масла и наличие в нем механических примесей влияют на работу оборудования (двигателя ВС, насоса, …), на износ запчастей, что является определяющим фактором расчета стоимости работы и получения прибыли на практике. Но, кроме этого параметра масла, необходимо учитывать и температуру, при которой масло может в двигателе воспламениться. В этом, пожалуй, и состоит актуальность выбранной нами темы.

Гипотеза: Существуют оптимальные методы определения вязкости, температуры вспышки и доли механических примесей смазочных масел.

Объект исследования: внутреннее трение.

Предмет исследования: смазочные масла Mobil

Методика исследования

Для решения этих задач наша работа была организована в несколько этапов:

  • подбор литературы и изучение её по данной теме; знакомство с экспериментальной установкой в лабораториях СамГУ и КНПЗ; составления плана практической части работы; составление таблиц для занесения результатов эксперимента;

  • проведение исследования и обработка данных;

  • анализ результатов и выводы по ним.

Цель работы — поиск оптимальных методов определения важных физических параметров смазочных масел.

Задачи исследования:

1. Изучить литературу по теме исследования.

2. Выделить методы определения вязкости жидкости.

3. Ознакомиться с техникой безопасности при работе в лаборатории КНПЗ и СамГУ.

3. Подготовить оборудование, необходимое для выполнения эксперимента и выполнить эксперимент.

4. Собрать и обработать данные, провести обработку результатов измерений. Сделать выводы.

5. Показать практическую значимость определения вязкости смазочных масел.

II Теоретическая часть.

Внутреннее трение. Вязкость жидкости.

Всем реальным жидкостям и газам присуща вязкость или внутреннее трение. Вязкость проявляется в том, что возникшее в жидкости или газе движение после прекращения действия причин, его вызвавших, постепенно прекращается. ВЯЗКОСТЬ — это свойство жидкости, определяющее ее текучесть и чем выше вязкость — тем гуще жидкость(чем меньше ее текучесть, тем больше в ней вязкость). Когда двигатель холодный, масло обладает тенденцией сгущаться. В этом случае важно, чтобы оно оставалось жидким даже при низких температурах, чтобы протекать через двигатель, защищать его детали и способствовать пуску. Чем меньше вязкость, тем в большей степени масло будет сохранять свою текучесть в холодную погоду или при пуске двигателя. Вязкость моторного масла, во-первых, является показателем его смазывающих свойств, так как от вязкости зависит качество смазывания, распределение масла на поверхностях трения и, тем самым износ двигателя. Во-вторых, от вязкости зависят потери энергии при работе двигателя. Чем выше вязкость, тем толще масляная пленка и надежнее смазывание, но тем больше потери мощности на преодоление жидкостного трения.

Что же такое внутреннее трение? Внутреннее трение (вязкость) – это свойство реальных жидкостей оказывать сопротивление перемещению одной части жидкости относительно другой. Выберем площадку ΔS, вдоль которой соприкасаются два соседних слоя L и M (рис.1).

Обозначими1 ии2 скорости слоев на расстояниях λ от площадки S (λ – средняя длина свободного пробега молекул). Когда слои жидкости или газа движутся относительно друг друга с различными скоростями и1 ии2 (рис. 1), то частицы, переходя из одного слоя в другой, переносят и свой импульс. Следовательно, в слое Lпоявляются молекулы с большими скоростями, а в слое M – с меньшими. Каждая молекула, имеющая массу m при переходе из одного слоя в другой, изменяет свой импульс на m∆u . Если температура жидкости или газа постоянна, то все молекулы имеют одинаковую скорость теплового движения υ. За время Δt молекула пролетает расстояние υΔt. Число молекул в слоях М и L, прилегающих к площадке ∆S равно N0=n0(υ)∆SΔt, где n0 – концентрация молекул.

В результате хаотического движения только N0 перейдет из слоя в слой (перейдет в заданном направлении: снизу вверх рис.1), т.е.

N0 = n0(υ)∆SΔt,

где n0 концентрация частиц в слое, υ – средняя скорость теплового движения молекул, υ=.

Суммарное изменение импульса, происходящее в каждом слое:

Согласно второму закону Ньютона, ежесекундное изменение импульса слоя есть приложенная к нему внешняя сила:

Таким образом, перенос импульса от одного слоя к другому воспринимается как сила трения F, действующая на данный слой со стороны соседних слоев.

Закон внутреннего трения был установлен И. Ньютоном и имеет

вид: (1)

Сила трения пропорциональна площади ΔS, лежащей в плоскости соприкосновения двух слоев газа или жидкости, градиенту скорости и действует по касательной к поверхности раздела слоев.

η – динамическая вязкость или коэффициент внутреннего трения.

Из (1):

(2).

Физический смысл коэффициента внутреннего трения (или вязкости) из формулы (2): вязкость численно равна силе, действующей на единицу площади при градиенте скорости, равном единице. Вязкость вычисляется по формуле: (3)

Размерность коэффициента вязкости . В некоторых случаях принято пользоваться так называемой кинематической вязкостью, равной динамической вязкости жидкости, деленной на плотность жидкости = n (4), размерность этой величины — мм2/с.

Градиент скорости определяется в направлении, перпендикулярном площадке ΔS, сверху и снизу от которой движутся слои с различными скоростями и1 и и2. Знак минус в (1) показывает, что импульс переносится в направлении уменьшения скорости. градиент скорости направленного движения слоев. Градиентом (grad) физической величины называют вектор, характеризующий быстроту изменения этой величины вдоль данной оси на единицу длины. Направлен градиент в сторону наибольшего возрастания этой величины.

Для определения динамической и кинематической вязкости жидкости (масел MOBIL) мы применили ГОСТ 33-2000(полный аутентичный текст международного стандарта ИСО 3104-94 «Нефтепродукты. Прозрачные и непрозрачные жидкости. Определение кинематической вязкости и расчет динамической вязкости»). Сущность этого метода заключается в измерении калиброванным стеклянным вискозиметром времени истечения, в секундах, определенного объема испытуемой жидкости под влиянием силы тяжести при постоянной температуре.

Для определения температуры вспышки, мы применили

ГОСТ 4333-87 («Определение температуры вспышки и воспламенения масел в открытом тигле»). Суть этого метода заключается в последовательном контролируемом нагревании масла и фиксации вспышки (возгорания) паров машинного масла над его поверхностью) с помощью специального фитиля.

Для определения наличия механических примесей в смазочных маслах, мы применили ГОСТ 6370-83 («Метод определения механических примесей в машинных маслах»). Сущность метода заключается в фильтровании испытуемых продуктов с предварительным растворением медленно фильтрующихся продуктов в бензине или толуоле, промывании осадка на фильтре растворителем с последующим высушиванием и взвешиванием.

III Практическая часть

Вискозиметр ВПЖ-4

В лаборатории КНПЗ (Куйбышевского нефтеперерабатывающего завода), я познакомилась со способом определения вязкости жидкости при помощи капиллярного стеклянного вискозиметра ВПЖ-4 (рис.1). Вискозиметр типа ВПЖ может быть использован для определения кинематической вязкости непрозрачных жидкостей (какими чаще всего являются нефть и масла). Вискозиметры ВПЖ-4 измеряют вязкость при положительных температурах. Это наиболее точные из вискозиметров, время течения жидкости в них не зависит от гидростатического давления и количества жидкости, налитой в вискозиметр. Измерение вязкости основано на определении времени истечения через капилляр объема жидкости из измерительного резервуара.

Динамическую вязкость ŋ вычисляют как произведение кинематической вязкости n жидкости на ее плотность ρ. Кинематическая вязкость характеризует текучесть моторного масла в условиях нормальных и высоких температурах. По общепринятому стандарту ее измеряют при 40 и 100 градусах по Цельсию. Измеряется кинематическая вязкость в сантистоксах (cST или сСт), либо в капилляр-визкозиметрах – в этом случае кинематическая вязкость отражает время вытекания определенного количества масла из сосуда с калиброванным отверстием на дне (капиллярный вискозиметр) под действием силы тяжести. В зависимости от плотности смазочного материала кинематическая и динамическая вязкость численно отличаются друг от друга. Динамическая вязкость — это физическая величина, характеризующая силу сопротивления, возникающую при перемещении со скоростью 1 см/с двух слоев жидкости площадью в 1см2, находящихся на расстоянии в 1 сантиметр друг от друга. В отличие от кинематической, динамическая вязкость не зависит от плотности самой смазки. Определяется динамическая вязкость при помощи вискозиметров, которые имитируют реальные условия работы моторных масел.

  1. При движении жидкости под действием силы тяжести при данном гидростатическом давлении, давление жидкости пропорционально ее плотности ρ. Для всех вискозиметров время истечения определенного объема жидкости прямо пропорционально ее кинематической вязкости n, где n=ŋ/ρ, ŋдинамическая вязкость.
  1. Наполненный маслом вискозиметр выдерживаем в водяной бане до тех пор, пока он не прогреется до температуры испытания (400С). После того, как образец достиг температурного равновесия, доводим объем образца (масла) до требуемого уровня. Используя подсос, устанавливаем высоту столбика образца в капилляре вискозиметра до уровня, находящегося приблизительно на 7 мм выше первой (верхней) временной метки. При свободном истечении образца определяем с точностью до 0,1с время, необходимое для перемещения мениска от первой до второй метки. Если время истечения окажется меньше установленного минимального (200с), подбираем вискозиметр с меньшим диаметром капилляра и повторяем определение.

Повторяем определение, ещё раз, для получения второго значения и записываем результат. Так как два измерения, полученные нами, согласуются с установленной величиной определяемости, то рассчитываем среднее арифметическое значение двух измерений времени истечения. (Если же два измерения не согласуются, следует повторить определение после тщательной очистки и сушки вискозиметра и фильтрации образца)

За результат испытания принимают среднее арифметическое результатов кинематической вязкости в двух вискозиметрах, если расхождение между ними не превышает значений ±1,2

Тип вискозиметра

Наименование вискозиметра

Пределы кинематической вязкости, мм2

 

А

ВПЖ-4

0,6-10000

 

Диаметр вискозиметра 0,99 мм

Постоянная вискозиметра 0,09087 мм22

Постоянная вискозиметра С зависит от гравитационного ускорения в месте калибровки и, следовательно, указывается лабораторией по стандартизации.

Если ускорение силы тяжести отличается более чем на 0,1%, постоянную калибровки корректируют по формуле C=(g1/g2)C0

Формула для расчета гравитационного ускорения:

Географическая широта места эксперимента:

φ=53°12′00″ С.Ш.

Высота над уровнем моря: h=117 м

Получен результат: g=9,813522 м/с² (территория КНПЗ, Самара)

Кинематическую вязкость n, мм2/с, рассчитала по формуле:

n= (g/9,807)·C0 ·t = C·t

Предварительно выполнила расчеты, определив значение С-калибровочной постоянной вискозиметра:

С= (g/9,807)·C0 =0,09087 мм²/с².

Кинематическую вязкость n, мм2/с, рассчитывают по формуле n=Ct,

где С— калибровочная постоянная вискозиметра, мм22;

t— среднее арифметическое значение времени истечения, с.

Динамическую вязкость ŋ(МПа·с), рассчитываем на основании кинематической вязкости по формуле

ŋ = n·ρ 10-3,

где ρ — плотность при той же температуре, при которой определялась кинематическая вязкость, кг/м3;

n — кинематическая вязкость, мм2/с.

Записываем результаты испытания кинематической и динамической вязкости до четырех значащих цифр и температуру испытания. Результаты определения кинематической и динамической вязкости округляем до 0,01 % измеренной или расчетной величины соответственно.

1cSt=10-6 м2

1мм2/с = 10-6 м2

Температура

масла,

°С

Плотность масла,

кг/м3

Постоянная Вискозиметра х 10-6м22

времени истечения, с

Кинематическая вязкость,

х10-6 м2

(cSt)

2

40

829,1

0,09087

457,8

41,6

3

60

813,1

0,09087

336,7

30,6

4

80

799,7

0,09087

231,1

21,0

5

98,8

784,9

0,09087

200,1

18,18

Из таблицы видно, что зависимость кинематической вязкости от температуры – обратнопропорциональная.

Для расчетов зависимости кинематической вязкости масла от температуры использовала калькулятор CASIO. Перевела его в режим

«Статистические вычисления» (STAT)

«Статистические вычисления» (STAT)

Получив математическую формулу зависимости кинематической вязкости от температуры, вводим данные в программу компьютера для построения графика и получаем:

В своей работе я так же определила температуру вспышки и воспламенения масла в открытом тигле, поскольку этот параметр очень важен при эксплуатации смазочных масел.

Сущность методов заключается в нагревании пробы нефтепродукта (масла) в открытом тигле с установленной скоростью до тех пор, пока не произойдет вспышка паров (температура вспышки) нефтепродукта над его поверхностью от зажигательного устройства и пока при дальнейшем нагревании не произойдет загорание продукта (температура воспламенения) с продолжительностью горения не менее 5с. Температура пробы после нагревания должна быть ниже предполагаемой температуры вспышки не менее чем на 56°С. Аппарат устанавливают на горизонтальном столе в таком месте, где нет заметного движения воздуха и вспышка хорошо видна. Для защиты от движения воздуха аппарат с трех сторон окружают экраном или щитом. Перед проведением каждого испытания аппарат охлаждают. При работе с токсичными продуктами или продуктами, содержащими ароматические углеводороды (продукты пиролиза), пары которых являются токсичными, аппарат помещают вместе с экраном или со щитом в вытяжной шкаф. При температуре на 56°С ниже предполагаемой температуры вспышки движение воздуха в вытяжном шкафу следует поддерживать без создания сильных потоков над тиглем, для чего необходимо работать при закрытой верхней заслонке вентиляционного устройства вытяжного шкафа. В тигель помещают термометр в строго вертикальном положении так, чтобы нижний конец термометра находился на расстоянии 6 мм от дна тигля и на равном расстоянии от центра и от стенок тигля. Тигель заполняют нефтепродуктом (маслом MOBIL) так, чтобы верхний мениск точно совпадал с меткой. При наполнении тигля выше метки избыток нефтепродукта удаляют пипеткой или другим соответствующим приспособлением. Удаляют пузырьки воздуха с поверхности пробы.

Не допускается смачивание стенок тигля выше уровня жидкости.Тигель с пробой нагревают пламенем газовой горелки или при помощи электрообогрева сначала со скоростью 14-17°С в минуту. Когда температура пробы будет приблизительно на 56°С ниже предполагаемой температуры вспышки, скорость подогрева регулируют так, чтобы последние 28°С перед температурой вспышки нефтепродукт нагревался со скоростью 50-60С в минуту. Зажигают пламя зажигательного устройства и регулируют его таким образом, чтобы размер диаметра пламени был примерно 4 мм. Его сравнивают с лекалом (шариком-шаблоном). Начиная с температуры не менее чем на 28°С ниже температуры вспышки, каждый раз применяют зажигательное устройство при повышении температуры пробы на 2°С.

Пламя зажигательного устройства перемещают в горизонтальном направлении, не останавливаясь над краем тигля, и проводят им над центром тигля в одном направлении в течение 1с.При последующем повышении температуры перемещают пламя зажигания в обратном направлении. За температуру вспышки принимают температуру, показываемую термометром при появлении первого синего пламени над частью или над всей поверхностью испытуемого нефтепродукта. В случае появления неясной вспышки она должна быть подтверждена последующей вспышкой через 20С.

Для определения температуры воспламенения продолжают нагрев пробы со скоростью 5-6°С в минуту, повторяя испытание пламенем зажигательного приспособления через каждые 2°С подъема температуры нефтепродукта. За температуру воспламенения принимают температуру, показываемую термометром в тот момент, в который испытуемый нефтепродукт при поднесении к нему пламени зажигательного приспособления загорается и продолжает гореть не менее5с.

За результат испытания принимают среднеарифметическое значение результатов двух определений, округленное до целого числа и выраженное в градусах Цельсия.

Температура воспламенения масла,

°С

1

215,5

2

217

Среднее значение температура воспламенения масла 216,250С.

∆t = 216,25 — 215,5 = 0,750С

∆t = 216,25 – 217 = 0,750С

Два результата испытаний, полученные одним исполнителем, признаются достоверными (с 95%-ной доверительной вероятностью), если расхождение между ними не превышает значений, указанных в табл.1.Таблица 1

Наименование показателя

Сходимость, °С

   

Температура вспышки

5

   

Температура воспламенения

8

   

Термин

Пояснение

Температура вспышки нефтепродукта в открытом тигле

Минимальная температура, при которой пары продукта, нагреваемого в условиях, установленных настоящим стандартом, образуют с окружающим воздухом смесь, вспыхивающую при поднесении к ней пламени

Температура воспламенения нефтепродукта

Минимальная температура, при которой продукт, нагреваемый в условиях, установленных настоящим стандартом, загорается при поднесении к нему пламени и горит не менее 5 с

Определения механических примесей

в машинных маслах

    1. ПОДГОТОВКА

1. Бумажный фильтр промываем тем же растворителем , который применим при испытании(бензином).

Бумажный фильтр поместили в чистый сухой стаканчик для взвешивания.

2. Стаканчик с фильтром с открытой крышкой посушили в сушильном шкафу при температуре (105 ± 2) °С в течение 45 мин, после чего стаканчик закрываем крышкой. Стаканчик с фильтром охладили в эксикаторе в течение 30 мин и взвесили с погрешностью не более 0,0002 г.

3. Стаканчик с фильтром высушиваем и взвешиваем до получения расхождения между двумя последовательными взвешиваниями не более 0,0004 г. Повторные высушивания фильтра производим в течение 30 мин.

    1. ИСПЫТАНИЯ

1. В стакан поместили подготовленную пробу испытуемого продукта (машинного масла) и разбавили подогретым растворителем (бензином). Перед испытанием предварительно определили минимальный объем пробы и растворителя, необходимого для ее растворения (использовали специальную таблицу соотношений объема пробы и растворителя).

2. Бензин для растворения пробы подогрели на водяной бане до температуры 40оС . Не допускаем кипение растворителя при подогреве. Содержимое стакана фильтруем через подготовленный бумажный фильтр, помещенный в стеклянную воронку. Раствор налили на фильтр по стеклянной палочке, воронку с фильтром наполнили раствором не более чем на 3/4 высоты фильтра. Остаток на стакане смыли на фильтр чистым бензином до тех пор, пока капля фильтрата, помещенная на фильтровальную бумагу, не будет оставлять масляного пятна после испарения. Остатки масла, приставшие к стенкам стакана, снимаем стеклянной палочкой и смываем на фильтр горячим чистым бензином, нагретым до 40 °С .

3. После фильтрации фильтр с осадком при помощи промывалки с резиновой грушей промыли подогретым до 40°С бензином до тех пор, пока на фильтре не будет следов нефтепродукта и растворитель не будет стекать совершенно прозрачным и бесцветным.

4. По окончании промывки фильтр с осадком перенесли в стаканчик для взвешивания с открытой крышкой, в котором сушился чистый фильтр. Стаканчик с фильтром с открытой крышкой сушим в сушильном шкафу при температуре (105 ± 2) °С не менее 45 мин. Затем стаканчик закрываем крышкой, стаканчик с фильтром охлаждаем в эксикаторе в течение 30 мин и взвешиваем, с погрешностью не более 0,0002 г.

5. Стаканчик с фильтром высушиваем и взвешиваем до получения расхождения между двумя последовательными взвешиваниями не более 0,0004 грамм. Повторные высушивания фильтра так же, как и последующие охлаждения, проводят в течение 30 мин.

    1. ОБРАБОТКА РЕЗУЛЬТАТОВ

4.1. Массовую долю механических примесей (X) в процентах вычисляют по формуле

где m1 — масса стаканчика для взвешивания с бумажным фильтром и механическими примесями , г;

m2— масса стаканчика для взвешивания с чистым подготовленным бумажным фильтром , г;

m3 -масса пробы, г.

За результат испытания принимают среднее арифметическое результатов двух параллельных определений.

Механические примеси, %

До 0,01%

Массовая доля механических примесей до 0,005 % включительно оценивается как их отсутствие.

Выводы:

1. Мы познакомились с оптимальным методом определения вязкости смазочных масел.

2. В результате проведенных опытов мы выяснили, что коэффициент внутреннего трения зависит от плотности масла.

3. Коэффициент вязкости масла весьма сильно зависит от температуры.

С увеличением температуры вязкость жидкостей резко падает.

4. Вязкость – характеристика внутреннего трения жидкости. Это трение возникает между слоями жидкости при ее движении. Чем больше трение, тем больше силы необходимо приложить, чтобы вызвать движение («сдвиг»). Сдвиг имеет место при физическом перемещении или разрушении жидкости: разливе, растекании, разбрызгивании, перемешивании и т.п. Для сдвига жидкостей с высокой вязкостью необходимо приложить больше силы, чем для маловязких материалов.

Список используемой литературы

1. Евграфова Н.Н., Каган В.Л. Курс физики. М.: «Высшая школа», 1984 г., стр 486.

2. Ильин В.И./Механика Ньютона – основа единой физики – М.: Т – Око, 1992

3. Зисман Г.А., О.М.Тодес. Курс общей физики/К.:Днипро, 1994.Т.1

4. Орлов В.А., Никифоров Г.Г/Физика: Школьный курс – М.: АСТ – ПРЕСС, 2000. – 668с.

5. Прокофьев В.Л., Дмитриев В.Д. Физика (учебное пособие для техникумов) М.: «Высшая школа», 1983, стр 543.

6. Савельев И.В.. Курс общей физики/М.:Наука,1970.Т.1,параграф 51-60, 112.

7. Селезнев Ю.Л. Основы элементарной физики. Издательство «Наука», 1974 г. 543.

8. ГОСТ332000Нефтепродукты. Прозрачные и непрозрачные жидкости..

http://vsegost.com/Catalog/33/3341.shtml

9. ГОСТ 4333-48: Методы определения температур вспышки и воспламенения в открытом тигле. http://standartgost.ru/

10. ГОСТ 6370-83 («Метод определения механических примесей в машинных маслах»).

20

Просмотров работы: 512

вязкость масла

Вязкость масла – один из наиболее важных параметров автомобильного моторного масла. Большинство автовладельцев слышали об этом параметре, видели обозначение вязкости на этикетках канистр с маслом, но мало кто знает, что обозначают эти буквы и цифры и на что они влияют. В своей статье мы расскажем о вязкости масла, системах обозначения вязкости и о том как выбрать вязкость масла для двигателя вашего автомобиля.

Для чего используется масло

вязкость масла

Автомобильное масло обеспечивает правильное функционирование различных систем. Оно используется для уменьшения трения, охлаждения, смазки, передачи давления на детали и узлы автомобиля, вывода продуктов сгорания. Самые тяжелые условия работы приходятся на моторные масла. Они должны не терять своих свойств в случае мгновенных перепадов тепловых и механических нагрузок, под воздействием кислорода воздуха и агрессивных веществ, возникающих при неполном сгорании топлива.

Масло создает масляную пленку на поверхности трущихся деталей и снижают износ, защищает от ржавчины, снижает воздействие химически активных компонентов, которые возникают в процессе работы двигателя. Циркулируя в картере двигателя, масло обеспечивает отвод тепла, выводит из зоны контакта трущихся деталей продукты износа (металлическую стружку), уплотняет зазоры между стенками цилиндров и деталями поршневой группы.

Что такое вязкость масла

Вязкость – самая важная характеристика для моторного масла, которая меняется в зависимости от температуры. Масло не должно быть слишком вязким в морозы, чтобы у стартера была возможность провернуть коленчатый вал и у масляного насоса была возможность прокачать масло в системе смазки. При высоких температурах у масла не должна быть малая вязкость, чтобы создавать масляную пленку между трущимися деталями и обеспечивать необходимое давление в системе.

вязкость масла

Обозначения моторных масел по классификации SAE

вязкость масла

Классификация SAE (Американское Общество Автомобильных Инженеров) характеризует вязкость и определяет в какой сезон можно использовать масло. В паспорте на автомобиль производитель регламентирует подходящие марки.

Масла по классификации SAE делятся на:

  • Зимние – в маркировке присутствует буква – W (winter) 0W, 5W, 10W, 15W, 20W, 25W;
  • Летние – 20, 30, 40, 50, 60;
  • Всесезонные – 0W-30, 5W-40 и т.д.

вязкость масла

Цифра стоящая перед буквой W в обозначении моторного масла указывает на его низкотемпературную вязкость, то есть на порог температуры, при которой двигатель автомобиля, заправленный этим маслом, может завестись «на холодную», а масляный насос прокачает масло без угрозы сухого трения деталей мотора. Например, для масла 10W40, минимальной температурой является -10 градусов (от цифры, стоящей перед буквой W отнимаем 40), а критической температурой при которой стартер сможет провернуть мотор является -25 градусов (от цифры, стоящей перед буквой W отнимаем 35). Таким образом, чем меньше цифра стоящая перед буквой W в обозначении масла, тем на более низкую температуру воздуха оно рассчитано.

Цифра стоящая после буквы W в обозначении моторного масла указывает на его высокотемпературную вязкость, то есть минимальную и максимальную вязкость масла при его рабочих температурах (от 100 до 150 градусов). Чем выше цифра стоящая после буквы W, тем выше вязкость этого моторного масла при рабочих температурах.

Какая высокотемпературная вязкость должна быть у моторного масла для двигателя вашего автомобиля знает только его производитель, именно поэтому рекомендуется строго соблюдать требования автопроизводителя к моторным маслам, которые указаны в руководстве по эксплуатации вашего автомобиля.

Подробнее узнать о моторных маслах, выполняемых ими функциях, видах моторных масел, присадках которые входят в их состав, обозначениях моторных масел, ознакомиться со списком лучших моторных масел по соотношению цена-качество вы можете в нашей статье Моторное масло

Масла с разной степнью вязкостью рекомендуется использовать при разных температурных режимах:

SAE 0W-30 — от -30° до +20°C;

SAE 0W-40 — от -30° до +35°C;

SAE 5W-30 — от -25° до +20°C;

SAE 5W-40 — от -25° до +35°C;

SAE 10W-30 — от -20° до +30°C;

SAE 10W-40 — от -20° до +35°C;

SAE 15W-40 — от -15° до +45°C;

SAE 20W-40 — от -10° до +45°C.

Обозначение моторных масел по стандарту API

Стандарт API (American Petroleum Institute) определяет, где масло должно использоваться. Состоит из двух латинских букв. Первая буква S – бензиновый двигатель, C – дизель. Вторая буква – дата разработки автомобиля.

вязкость масла

Бензиновые двигатели:

  • SC — авто, которые выпускались до 1964 г;
  • SD — авто, которые выпускались 1964-1968 г;
  • SE — экземпляры, которые выпускались в 1969-1972 г.;
  • SF — авто, которые выпускались в период 1973-1988 г.;
  • SG — авто, разработанные 1989-1994 г., для эксплуатации в жестких условиях;
  • SH — авто, разработанные 1995-1996 годов, для жестких условий эксплуатации;
  • SJ — экземпляры, с датой выпуска 1997-2000 г, имеющие лучшее энергосбережение;
  • SL — авто, с началом выпуска 2001-2003 г., и имеющие увеличенный срок эксплуатации;
  • SM — авто, выпускаемые с 2004 г.;
  • SL+повышенная стойкость к окислению.

Для дизельных двигателей:

  • CB — авто выпущенные до 1961 г., высокое содержание серы в топливе;
  • CC — авто выпущенные до 1983 г., работающие в тяжелых условиях;
  • CD — авто выпускавшиеся до 1990 г., котрым пришлось работать в тяжелых условиях и большим количеством серы в топливе;
  • CE — авто выпущенные до 1990 г. и двигатель имеет турбину;
  • CF — авто выпускавшиеся с 1990 г., с турбиной;
  • CG-4 — экземпляры выпускаемые с 1994 г., с наличием турбины;
  • CH-4 — авто с 1998 г выпуска., под нормы токсичности, применяемые в США;
  • CI-4 — турбированые авто с клапаном EGR;
  • CI-4 plus — аналогично предыдущему, под высокие нормы токсичности США.

Кинематическая и динамическая вязкости масла

Для определения качества масла определяют его кинематическую и динамическую вязкость.

вязкость масла

Кинематическая вязкость – это показатель текучести при нормальных (+40 оC) и высоких (+100 оC) температурах. Определяется с помощью капиллярного вискозиметра. Для его определения считается время, которое требуется маслу для истечения при заданных температурах. Измеряется в мм2/сек.

Динамическая вязкость – показатель, определяющий реакцию смазочного материала в имитаторе реальных нагрузок – ротационном вискозиметре. Прибор имитирует реальные нагрузки в двигателе с учетом давления в магистралях и температуре +150 оC и контролирует, как себя ведет смазывающая жидкость, как изменяется ее вязкость именно в моменты нагрузок.

Характеристики автомобильных масел

  • температура вспышки;
  • температура застывания;
  • индекс вязкости;
  • щелочное число;
  • кислотное число.

Температура вспышки – это величина, характеризующая наличие в масле легких фракций, которые испаряются и выгорают очень быстро, ухудшая качество масла. Минимальная температура вспышки не должна быть ниже 220оC.

Температура застывания – величина, при которой масло теряет текучесть. Температура указывает момент кристаллизации парафина и полного твердения масла.

Индекс вязкости – характеризует зависимость вязкости масла от изменения температуры. Чем выше этот показатель, тем выше температурный диапазон работоспособности масла. Продукты с низким индексом вязкости позволяют эксплуатировать двигатель только в узком диапазоне температур. Так как при нагревании становятся слишком жидкими и перестают смазывать, а при охлаждении быстро густеют.

вязкость масла

Щелочное число (TBN) показывает количество щелочных материалов (гидроксида калия) в одном грамме моторного масла. Единица измерения — мгKOH/г. Наличествует в моторной жидкости в виде моющих диспергирующих присадок. Их присутствие помогает нейтрализовать вредные кислоты и бороться с отложениями, появляющимися во время работы мотора. Со временем TBN падает. Большое падение щелочного числа приводит к коррозии и грязи в картере двигателя. Самым главным фактором падения щелочного числа — наличие серы в топливе. Поэтому масла для дизельных двигателей, где сера в присутствует в большем количестве, должны иметь более высокое TBN.

Кислотное число (TAN) характеризует наличие продуктов окисления в результате длительной работы и перегрева моторной жидкости. Его увеличение говорит об уменьшении ресурса работы масла.

Масляная основа и присадки

вязкость масла

Автомобильные масла состоят из масляной основы и присадок. Присадками называются специальные вещества, которые добавляют в масло для улучшения его свойств.

Масляная основа бывает:

  • минеральная;
  • гидрокрекинговая;
  • полусинтетическая (смесь минерального и синтетического);
  • синтетическая (направленный синтез).

В современных маслах доля присадок составляет 15-20%.

По назначению присадки разделяются на:

  • моющие и диспергирующие – не дают слипаться мелким остаткам (смолы, битум и т. д.) и, имея в своем составе щелочь, нейтрализуют кислоты, не дают уплотняться шламовым отложениям;
  • противоизносные – создают защитный слой на металлических деталях и за счет снижения трения снижают износ трущихся поверхностей;
  • индексные – увеличивают вязкость масла в случае высоких температур, а на низких увеличивают его текучесть;
  • пеногасители – уменьшают образование пены (воздушно-масляной смеси), которая ухудшает отвод тепла и качество смазки;
  • модификаторы трения – снижают коэффициент трения между металлическими деталями.

Минеральные, синтетические и полусинтетические моторные масла

Масло – это смесь углеводородов с определенной структурой расположения атомов углерода. Они могут быть соединены в длинные цепочки или разветвляться. Чем длиннее и прямее цепи атомов углерода, тем лучше масло.

вязкость масла

Минеральные масла получают из нефти, используя при этом разные способы:

  • самый простой способ – перегонка нефти  с экстракцией рафинатов растворителем;
  • более сложный способ – гидрокрекинг;
  • еще более сложный — каталитический гидрокрекинг.

Синтетическое масло получается из природного газа с помощью наращивания длины цепочек углеводородов. Таким способом легче получить более длинные цепочки. «Синтетика» — гораздо качественней, чем минеральные масла, примерно в три-пять раз. Единственный его недостаток – очень высокая цена.

«Полусинтетика» — смесь минерального и синтетического масла.

Подробнее узнать о трансмиссионных маслах, выполняемых ими функциях и их свойтсвах, видах трансмиссионных масел, их обозначениях, а также ознакомиться со списком лучших трансмиссионных масел по соотношению цена-качество вы можете в нашей статье Трансмиссионные масла

Какая вязкость масла лучше подходит для двигателя вашего автомобиля

Для Вашего автомобиля подходит только та вязкость, которая указана в сервисной книжке. Все параметры двигателя протестированы производителем, моторное масло подобрано с учетом всех параметров и режимов работы.

Прогрев двигателя и вязкость моторного масла

В начале работы автомобиля масло в двигателе холодное и вязкое. Холодное масло оказывает большее гидродинамическое сопротивление, что может привести к недостатку масла в парах трения и повышенному износу двигателя. При прогреве двигателя масло быстро прогревается и входит в рабочий режим. Именно поэтому, производители не рекомендуют сразу сильно нагружать двигатель (начинать движение без качественного прогрева) в сильные морозы.

Вязкость моторного масла в рабочих температурах

вязкость масла

В условиях высокой нагрузки коэффициент трения увеличивается, и растет температура. Из-за высокой температуры масло разжижается и толщина пленки уменьшается. Коэффициент трения уменьшается и масло охлаждается. То есть, температура и толщина пленки изменяются в строго определенных производителем диапазонах. Именно такой режим позволит маслу хорошо выполнять свое назначение.

Что происходит, когда вязкость масла выше нормы

Если вязкость выше нормы, то, даже когда двигатель уже прогрелся, вязкость масла не упадет до рассчитанного инженером значения. В условиях нормальных нагрузок температура двигателя будет повышаться, пока вязкость не придет в норму. Из этого следует вывод – рабочая температура при работе плохо подобранного моторного масла будет постоянно повышена, что увеличивает износ деталей и узлов мотора.

При больших нагрузках – при экстренном разгоне или на длинном крутом подъеме, температура двигателя поднимется еще выше и может превысить температуру, при которой масло сохраняет свои рабочие свойства. Оно окислится, и в нем будут образовываться лак, нагар, кислоты.

Еще один недостаток слишком вязкого масла – часть мощности двигателя будет уходить на потери от больших усилий прокачки в системе.

Что происходит, когда вязкость масла ниже нормы

Вязкость масла ниже нормы не принесет ничего хорошего для двигателя.Масляная пленка в зазорах будет ниже нормы и просто не будет успевать отводить тепло из зоны трения. Поэтому в этих точках под нагрузкой масло будет сгорать. Продукты угара и металлическая стружка в зазорах между поршнем и цилиндром могут привести к заклиниванию двигателя.

Слишком жидкое масло на новом двигателе, когда зазоры еще не слишком большие, будет работать, но когда двигатель уже не новый, и зазоры сами по себе увеличатся, то процесс угара масла будет ускоряться.

Тонкая масляная пленка в зазорах не сможет обеспечить нормальную компрессию и часть продуктов сгорания бензина будет попадать в масло. Мощность падает, рабочая температура повышается, процесс истирания и угара масла ускоряется.

Такие масла используются на специальных автомобилях, режимы которых рассчитаны на работу именно с этими маслами.

Итоги

Масла одного класса вязкости, имеющие одинаковые спецификации, выполненные компанией, входящей в «большую пятерку» и имеющие одну масляную основу, обычно не вступают в агрессивное взаимодействие. Но если Вы не желаете иметь больших неприятностей, доливать лучше не больше 10-15% от общего объема. В ближайшее время после долива масло, лучше масло поменять полностью.

Перед выбором масла следует выяснить:

  • дату выпуска автомобиля;
  • наличие или отсутствии форсирования;
  • наличие турбины;
  • условия эксплуатации двигателя (городской, бездорожье, спортивные соревнования, перевозка грузов);
  • минимальную окружающую температуру воздуха;
  • степень износа мотора;
  • степень совместимости двигателя и масла в Вашем авто.

Чтобы понять, когда следует менять масло, надо ориентироваться на документацию к автомобилю. Для некоторых машин есть увеличенные периоды (30 000- 50 000 км). Для России с учетом качества топлива, условий эксплуатации и сурового климата следует производить замену через 7 500 – 10 000 км.

Требуется периодически контролировать качество и количество масла. Обращайте внимание на его внешний вид. Пробег автомобиля и количество мото-часов (времени работы) двигателя могут не соответствовать друг другу. Находясь в пробке, двигатель работает в нагруженном тепловом режиме, но одометр не крутится (авто не едет). В результате автомобиль проехал не так много, а двигатель проработал много. В таком случае лучше масло менять раньше, не дожидаясь требуемого пробега по одометру.

Функционирование большинства механизмов требует соблюдение определенных условий. Внутренняя работа агрегатов, в данном случае двигателя внутреннего сгорания, сопряжена с высокими оборотами конструктивных узлов и деталей, которые соприкасаются друг с другом, и происходит процесс трения. Без специальной защиты металлические элементы быстро выйдут из строя, так как поверхности будут нагреваться и стираться. Для предотвращения деструкции применяется расходный материал – техническое масло. В автомобильных агрегатах – это моторное масло. Как и любое смазочное вещество, оно имеет набор особенных параметров, главным из которых считается вязкость.

Определение вязкости

Само понятие вязкости масла подразумевает под собой возможность смазочной жидкости доставлять сопротивление движению одного элемента относительно другого. При этом выделяется тепло, которое нивелируется самим веществом, отводя его за пределы рабочей среды.

вязкость масла

Данный параметр не является постоянной величиной и может (и будет) изменяться в зависимости от температурного режима, молекулярной структуры масла и стабильности силового устройства. Однако вязкость масла – это показатель смазывающего материала в какой-то определенный и конкретный промежуток времени.

Для обоснованного и правильного подбора смазочной жидкости к автомобильному двигателю необходимо иметь понятие о вязкости кинематического и динамического характера. Синонимами этих показателей являются высокотемпературная и низкотемпературная вязкость соответственно.

В помощь автовладельцу призваны стандарты данного параметра, которые устанавливает международное Сообщество автомобильных инженеров, имеющее знакомое каждому профессиональному водителю аббревиатуру – SAE. Один из нормативов характеризует динамику и кинематику консистенции автомобильного масла.

Динамический параметр

Динамическая вязкость масла определяет силовое сопротивление смазочного материала, которое появляется при циркуляции двух слоев жидкости, разделенных расстоянием в сантиметр и движущихся с заданной скоростью (1 см/с). Для определения данного параметра существует специальный прибор, называющийся вискозиметр, единицей измерения которого является Па*с (Паскаль-секунда) для динамики и м²/с (квадратный метр на секунду) для кинематики.

вязкость масла

В соответствие с международным стандартом описываемый вязкостной показатель определяется маркировкой со следующей градацией температурного режима:

  • 0W – масляный продукт будет эффективно прокачиваться вплоть до -35 ℃;
  • 5W – тот же вариант эксплуатации, но до температуры в -30 ℃;
  • 10W – до -25 ℃;
  • 15W – до -20 ℃;
  • 20W – до -15 ℃.

Стоит отметить, что температура полного замерзания смазки будет на 5-10 градусов ниже от маркировки вязкости по каждой позиции.

Соответственно, можно заметить, что масла с маркировкой ниже 10W (по вышеописанному списку) не могут считаться на территории России и стран СНГ всесезонными. По-настоящему всесезонкой будут только смазочные жидкости первых двух позиций – 0W и 5W.

Кинематический показатель

Кинематическая вязкость масла – это показатель при воздействии высоких температур. Ее определение сводится к временной возможности протекания жидкости определенного количества через отверстие заданного диаметра. Показатель замера выражается в сантистоксах (сСт), м²/с или мм²/с. При этом 1сСт равен 1 мм²/с или 0,000001 м²/с.

маркировка вязкости

Самыми востребованными коэффициентами данной вязкости на рынке смазочных материалов являются показатели от 20 до 60, соответствующие нормативу SAE. При этом чем ниже числовое значение, тем консистенция смазки более жидкая.

Оба показателя вязкости масла имеют прямую зависимость от плотности смазывающего вещества.

Индекс

В характеристики вязкости присутствует еще один немаловажный показатель. Это ее индекс. Он обозначает понижение вязкости кинематического характера при повышении температуры масляной жидкости. Индекс вязкости масла — параметр относительный. По его показаниям можно судить о возможности эксплуатации смазочного материала в разных температурных режимах.

масляная жидкость

Качественный смазывающий продукт обусловлен наличием высокого вязкостного индекса, потому как технические характеристики хорошего масла практически не зависят от воздействия внешних условий функционирования. А если индекс небольшой, то на продукт очень сильно влияют и погодные условия, и температура двигателя, и даже стиль вождения.

Данный параметр обладает зависимостью от химической составляющей моторного масла. В минеральных смазках он невысокий, порядка 130, а в синтетике достигает 180. Полусинтетика, соответственно, находится где-то посередине, имея индекс в районе 150.

На чтение 16 мин. Просмотров 13.3k. Опубликовано 17.11.2020

Моторное масло выполняет одну из важнейших функций – предотвращает трение деталей двигателя, выводит все продукты сгорания используемого топлива, а также позволяет цилиндрам оставаться герметичными. Все моторные масла производятся из нефти, в процессе перегонки которой выводятся тяжелы фракции. После первичной обработки к полученному продукту добавляются различные присадки, благодаря которым масло отвечает тем или иным характеристикам.

Самым главным свойством является индекс вязкости моторного масла, который имеет обозначение SAE.

Индекс вязкости моторного масла

Кинематическая вязкость моторного масла – это способность этой жидкости сохранять необходимые свойства в определенном диапазоне температур. Если говорить проще, то – это возможность масла оставаться жидким и текучим между сопряженными деталями при различных условиях. Диапазон температурных режимов зависит от многих показателей, главным из которых является климат региона, в котором автотранспортное средство эксплуатируется. Не стоит путать кинематическую вязкость с динамической, так как последняя показывает насколько меняется вязкость жидкости при изменениях скорости движения деталей двигателя.

Кинематическая вязкость моторного масла

Раньше по вязкости водители определяли минеральная перед ними жидкость, синтетическая или полусинтетическая. Возможно, вы еще помните когда, спрашивая в магазине масло «САЕ», вы получали одно из трех: 15w-40 (минеральное), моторное масло 10w- 40, характеристики которого свидетельствовали о том, что жидкость полусинтетическая и 5w 40 – полностью синтетический продукт.

Сегодня ситуация кардинально изменилась и на рынке можно встретить и полусинтетическую «жижу» с маркировкой 15w 40 или, например, моторное масло «Шелл Хеликс» 10w- 40, характеристики которого также свидетельствуют о том что ничего натурального в его составе нет. Больше всего путаницы сейчас получается при выборе продукта для грузового сегмента, поэтому очень важно знать действующие характеристики и вязкость масел.

Содержание

  1. Вязкость как один из важнейших параметров моторного масла
  2. Международный стандарт вязкости масел
  3. Какая вязкость больше всего подходит для двигателя
  4. Что означают цифры в обозначении вязкости масла (расшифровка)
  5. Индекс вязкости моторного масла
  6. Кинематическая и динамическая вязкость масла
  7. Что означает динамическая и кинематическая вязкость
  8. Расшифровка маркировки 5W30
  9. Преимущества и недостатки
  10. Синтетическое или полусинтетическое
  11. Технические характеристики 5W-40 — расшифровка
  12. Преимущества моторных масел SAE 5w-40
  13. В чем разница между 5w30 и 5w40
  14. Последствия: что будет при неправильном выборе?
  15. Совместимость: можно ли доливать и смешивать 5W30 и 5W40?

Вязкость как один из важнейших параметров моторного масла

Всю необходимую информацию производители указывают на этикетке, поэтому необходимо уметь ее читать и анализировать.

залив масла

Кроме всего прочего, следует различать саму вязкость, которая бывает как кинематической, так и динамической. Типы вязкости имеют определенные различия. Они заключаются в плотности, отличающихся методах измерения и предназначены для определения показателей различных классов смазки.

Кинематическая вязкость моторного масла определяет его текучесть при нормальной (стандартной) рабочей температуре, а также максимальной. За основу проведения испытаний берут 40 и 100 градусов по Цельсию, а измерения проводятся в сантистоксах .

По полученным результатам осуществляются расчеты индекса вязкости, поэтому, если вы хотите приобрести действительно хорошее масло — выбирайте, чтобы индекс превышал значение 200. Чаще всего наиболее подходящий индекс имеют всесезонные масла.

Что касается динамической вязкости — то она отображает силу сопротивления в ходе перемещения жидкостей, которая от плотности никак не зависит. Единицей измерения динамической вязкости является сантипуаз .

Ниже приведена таблица вязкости моторного масла для работы двигателя в холодных условиях.

Международный стандарт вязкости масел

О важности такого свойства, как вязкость масла, стало известно еще с тех времен, как был выпущен первый автомобиль. С тех самых времен инженеры пытались произвести классификацию смазочных материалов. Основываясь на определенных качествах, все имевшиеся масла были разделены на следующие типы:

  • маловязкие смазки
  • средневязкие
  • тяжелые

После того, как были изобретены подходящие для определения вязкости приборы — американским обществом автомобильных инженеров (SAE) была разработана наиболее точная классификация — SAE J300.

Данная классификация моторных масел в процессе своего развития претерпевала определенные изменения и сегодня представляет 11 классов вязкости.

Их полный список выглядит следующим образом:

  1. SAE 0W;
  2. SAE 5W;
  3. SAE 10W;
  4. SAE 15W;
  5. SAE 20W;
  6. SAE 25W;
  7. SAE 20;
  8. SAE 30;
  9. SAE 40;
  10. SAE 50;
  11. SAE 60.

В связи с этим, классы вязкости моторных масел стали в спецификации SAE по степени вязкости, которая определяется условиями, близкими к реально существующим. Вследствие этого и произошло разделение масел на летние и зимние виды.

Летние смазкине имеют буквенного обозначения и обладают более высокой вязкостью, вследствие чего обеспечивают качественную смазку всех деталей двигателя при высокой температуре окружающей среды.

Однако, при низких температурах такие масла становятся чересчур плотными и создают серьезную проблему при запуске холодного двигателя.

Зимнее масло является менее вязким, благодаря чему проблем при холодном пуске двигателя не возникает. Зато в жаркое время года оно становится слишком текучим, поэтому не в состоянии обеспечить детали силового агрегата должной защитой.

Благодаря изобретению всевозможных присадок, появилась новая категория масел, объединивших в себе хорошее соотношение зимних и летних характеристик. Такие смазывающие материалы получили название всесезонных.

Какая вязкость больше всего подходит для двигателя

Как правило, большинство автолюбителей считают, что высокая вязкость при высоких температурах – это наилучший показатель. Особенно всем греет душу, что подобные масла используются для спортивных авто. Увы, данные показатели не смогут превратить старенькую буханку в гоночный болид, а вот двигатель испортить таким составом можно за считанные дни.

Специалисты рекомендуют ни в коем случае не заливать в мотор масло, вязкость которого не отвечает рекомендациям автопроизводителя. Дело в том что, только производитель способен учесть режим езды на конкретном авто и рассчитать нужную вязкость масла.

И чтобы окончательно убедить водителей не использовать «не подходящее», масло в 2008 году был проведен официальный эксперимент, результаты которого в дальнейшем оказались на страницах известного журнала «За рулем». Один из участников гонок по бездорожью залил в двигатель некогда популярной «восьмерки» высокотемпературное масло вязкостью 50 единиц. В результате показатели автомобиля упали, а износ двигателя значительно увеличился.

Что означают цифры в обозначении вязкости масла (расшифровка)

Вязкость масла - что означают цифры&

Вязкость масла – это тот параметр, который на упаковке обозначают буквами SAE. Давно прошли те времена, когда по вязкости можно было определить его вид: минеральное, полусинтетическое или синтетическое моторное масло. Автомобилисты со стажем, наверняка, ещё помнят, когда на рынке спрашивали масло SAE. Тогда было все легко и просто: 15w-40 – минералка, 10w-40 – полусинтетика, а 5w-40 – синтетика.

Сегодня все по другому. Можно запросто найти полусинтетику 15w-40 или синтетику 10w-40, особенно в грузовом сегменте. Что же означают все эти цифры и буквы? Давайте разбираться по порядку.

По классификации SAE масла принято делить на зимние (с индексом “w”), летние и всесезонные. Стандартные параметры вязкости для зимних и летних масел обозначаются следующим образом:

  • Зимние масла: SAE 0w, 5w, 10w, 15w, 20w;
  • Летние масла: SAE 30, 40, 50.

Всесезонные масла имеют смешенную спецификацию, то есть сочетают в себе одновременно и зимний, и летний параметр вязкости, разделенный в обозначении знаком тире: SAE 0w-30, 0w-40, 5w-30, 5w-40, 5w-50, 10w-30, 10w-40, 15w-40, 20w-50.

Как вы, наверное, уже догадались, практически все масла, представленные на сегодняшний день в продаже, являются всесезонными и имеют смешанную спецификацию.

Вот мы и добрались непосредственно к расшифровке того, что означают цифры вязкости масла. В обозначении вязкости по SAE цифры означают следующее:

  1. Первая цифра (зимний параметр), например, 0w – указывает на минимальную температуру безопасного холодного пуска. Это означает, что чем меньше первая цифра, тем на более низкую температуру рассчитано масло.
  2. Вторая цифра (летний параметр) указывает на возможность применения масла в определенных температурных условиях.

Бытует миф, что цифры летнего параметра вязкости масла – означают температуру максимально допустимой окружающей среды, при которой возможна эксплуатация автомобиля. Например, масло с вязкостью 5w-30 рассчитано на температуру +30 °С. Это не правда! Никакого отношения эти цифры к температуре окружающей среды не имеют. Запомните, летний параметр – это цифры условные и они никакого отношение к окружающей среде не имеют.

Таблицу с диапазонами применяемости масел по SAE в зависимости от температур смотрите ниже.

Индекс вязкости моторного масла

Индекс — цифровое выражение текучести масла при разных температурах.

вязкость масла в зависимости от температуры воздуха

Кинематическая и динамическая вязкость масла

Вязкость моторного масла - что это такое, расшифровка по SAE

Именно те показатели, о которых я говорил в начале статьи. От них и зависит установленная вязкость SAE, те самые цифры, которые производитель указывает на канистре.

Кинематическая вязкость показывает текучесть масла при температуре в 40 градусов и 100. Измеряется капиллярным вискозиметром – определяется время истечения жидкости при определенной температуре. Обозначается мм2/с.

Динамическая вязкость тоже измеряется опытным путем. Она показывает силу сопротивления масляной жидкости, возникающую во время движения двух слоев масла, удаленных друг от друга на расстояние 1 см и движущихся со скоростью 1 см/с. Измеряется эта величина в Паскаль-секундах. Как видно из таблицы выше, для разных вязкостей масел температура определения динамической вязкости разная.

Что означает динамическая и кинематическая вязкость

Кинематическая вязкость – два показателя, в пределах которых должно находиться масло, чтобы относиться к той или иной категории SAE. Динамическая вязкость показывает, при какой температуре масло обеспечит безопасный пуск мотора. Чем ниже фактический показатель от принятого верхнего барьера, тем ниже будет температура, при которой можно безопасно запускать мотор с указанным маслом.

К примеру, масло 10W при -25 градусах должно иметь динамическую вязкость не более 7000. То есть, если фактический показатель масла почти равен 7000, при -25 мотор заводить уже не рекомендуется, лучше делать это не ниже -20. А вот есть масло показывает динамическую вязкость 6500, то уже применимо при -25, 6000 – ниже -25 и так далее.

Расшифровка маркировки 5W30

Прежде всего следует отметить, что маркировка, позволяющая быстро определить основные характеристики смазывающего вещества, осуществляется по общепринятой международной классификации SAE.

В соответствии с данным стандартом у моторного масла 5W30 первая цифра «5» указывает на вязкость в условиях низких температур, а вторая «30» — означает параметр текучести в условиях отрицательных температур.

Продукт является всесезонным, чем и обусловлена высочайшая популярность среди автомобилистов. Фактически, универсальность масла указывает на допустимость применения в двигателях, работающих на разных видах топлива. А температурный диапазон применения охватывает практически все климатические зоны нашей страны.

Преимущества и недостатки

Полностью синтетическое масло имеет отличные технические характеристики. Масло 5W30 идеально подходит для машин, эксплуатируемых в условиях городской езды, при воздействии достаточно агрессивных внешних факторов.

Автомасла серии 5W30 обладают уникальными свойствами, которые обеспечиваются за счет введения в состав продукта специальной многокомпонентной присадки.

Эти присадки позволяют обеспечить высший уровень усиленной защиты силового агрегата от преждевременного износа, в том числе:

  • Антикоррозийную устойчивость;
  • Стойкость к окислительным процессам;
  • Отменные моющие свойства;
  • Высокие показатели влагоотделения.

После заливки масла 5W30 в систему смазки, на всех, подвижных и неподвижных деталях мотора, образуется прочная, устойчивая к различным видам нагрузок пленка. Она и обеспечивает высший уровень защиты деталей от всевозможных видов нагрузок.

марка 5W30

А достаточно высокий уровень вязкости тонко сбалансирован с показателями текучести. Результат – силовой агрегат надежно защищен как при холодном запуске при низких отрицательных температурах, так и во время работы на максимальной нагрузке.

Все вышеперечисленные характеристики обеспечили полностью синтетическому моторному маслу 5W30 повышенную популярность у самого широкого круга автомобилистов. При правильной эксплуатации, соблюдении рекомендаций производителя и соблюдения всех основных параметров применения, недостатков масло 5W30 не имеет. Равно, как и аналогов!

японское масло 5 W30

Синтетическое или полусинтетическое

Синтетическое или полусинтетическое - что лучше

Синтетические и полусинтетические масла различаются как по свойствам, так и по цене. Синтетика обладает большими возможностями и стоит дороже, полусинтетика отличается большим расходом и стоит дешевле.

Синтетическое масло – искусственно созданное. Оно синтезируется из нефти или природного газа с добавлением присадок. Преимущества синтетического масла:

  1. Устойчивость к перепадам температур
  2. Значительно увеличивает срок работы двигателя, при правильном выборе
  3. Лучше работает в условиях нагрузки (работа на холостых оборотах, пуск и прогрев)
  4. Устойчиво к перепадам температур
  5. Экономично. Синтетическое масло медленнее отрабатывается, потому что проникает в самые мелкие зазоры.

Недостаток синтетического масла – это его высокая стоимость.

Полусинтетическое масло производится из смеси минеральных и синтетических компонентов в разном процентном соотношении, допускается смешивание как 70% синтетических компонентов с 30% минеральных, так и состав 50% на 50%, от этого будет зависеть и стоимость масла. Полусинтетические составы тоже дополняются пакетом присадок. Преимущества и недостатки полусинтетической смазки:

  1. Создает нормальные условия работы двигателя
  2. Защищает от износа
  3. Обладает хорошей проникающей способностью
  4. Низкая испаряемость
  5. Высокие технические показатели
  6. Доступная цена – в среднем стоит в 1,5 раза дешевле синтетического

Для моторов предыдущих поколений не рекомендуется использовать синтетические составы, они более агрессивны к сальникам, чем минеральные и полусинтетические, могут стать причиной течи. Оптимальным выбором для таких моторов будет полусинтетика, современные полусинтетические масла прекрасно выполняют свои функции, если выбирать их согласно рекомендации для двигателя и соблюдать интервалы замены не более 7000 км или 1 год.

Технические характеристики 5W-40 — расшифровка

5W-40 – это всесезонное масло, которое должно сохранять текучесть при отрицательных и положительных температурах в установленных пределах, чтобы относиться к этому классу по SAE. Как я уже говорил в других статьях, SAE может являться указателем климата, при котором можно использовать это масло, только отчасти и только в отношении низкотемпературного показателя. В целом же это указание на вязкость масла при разных температурах.

SAE 5W-40 показатели вязкости таблицей:

Характеристика Показатель Расшифровка
Прокачиваемость -35℃ Минимальная температура, при которой масло прокачивается по каналам
Проворачиваемость -30℃ Минимальная температура, при которой двигатель можно запускать.
Кинематическая вязкость при 100 градусах 12,6-16,3 мм2/с В этих пределах должен находиться показатель, чтобы масло могло маркироваться 5W-40.
Кинематическая вязкость при 40 градусах 89-97 мм2/с То же, но при другой температуре. Этот показатель менее важен, чем вязкость при рабочей температуре.
Динамическая вязкость CCS при -30 градусах Не более 6600 мПас То есть чем ближе показатель к этому пределу, тем хуже будет прокручиваться коленвал уже при – 30 градусах.
Температура вспышки От 224℃ Может варьировать +/- 10-15 градусов.
Температура замерзания Около -45℃ Может варьировать. Этот показатель указывает на температуру, при которой масло полностью замерзнет и не сможет прокачиваться по каналам.

Из этой таблицы хорошо видно, что вторые два символа в маркировке 40 показывают, какую вязкость будет иметь масло именно при рабочей температуре, то есть, указывает на толщину масляной пленки и то, насколько просто и быстро масло будет проходить по системе. Этот показатель очень важно подбирать именно по рекомендации производителя, так как разные двигатели имеют разные конструкционные особенности.

Первая цифра 5 – это указание на низкотемпературную вязкость, то есть при -30℃ масло сохранит достаточную текучесть, чтобы прокрутить коленвал.

По ГОСТ масло будет маркироваться 3з/14. По API чаще всего имеет класс SN, по ACEA A1/B1 2010.

Преимущества моторных масел SAE 5w-40

Смазка 5w-40 обрела высокую популярность благодаря выдающимся свойствам и неприхотливости в отношении погодных условий. Используемые в синтетике этой вязкости присадки обеспечивают жидкости антикоррозийные, антикислотные и моющие характеристики. По сравнению со смазками на минеральной основе, синтетические масла способны превосходно работать при внушительных перепадах температуры.

Изделие 5w-40 позволяет автолюбителям стоять в пробках, передвигаться по бездорожью или свободной дороге с неизменно высокими показателями. Производство жидкости ведётся по самым передовым технологиям, исключающим сворачивание смазки и поломки мотора. А также производители подвергают свою продукцию многочисленным тестам и выводят наилучшие формулы.

Все составы с вязкостью 5w-40 обладают следующими преимуществами:

  • Обеспечение эффективного запуска мотора в морозы.
  • Повышение ресурса силового агрегата.
  • Качественное обволакивание элементов двигателя прочной защитной плёнкой, которая не разрешается, если соблюдены все условия использования.
  • Устойчивость к окислительным процессам и предупреждение возникновения коррозии.
  • Отличные моющие свойства, гарантирующие чистоту деталей мотора.
  • Отсутствие испарения.

В чем разница между 5w30 и 5w40

Как уже было сказано, масло 5w40 при высоких температурах более вязкое и менее текучее. То есть, при проходе поршня на стенках цилиндров остается пленка толще, чем при использовании 5w30. Это основанная разница между 5w30 и 5w40, поскольку при низких температурах они ведут себя одинаково. Однако более толстая пленка не всегда является плюсом.

Маркировка 5w30 и 5w40 на канистре с маслом

Маркировка моторного масла 5w30 и 5w40 на канистре

Что будет, если применять в двигателе масло с большей или меньшей высокотемпературной вязкостью, чем указано в руководстве пользователя:

  • При большей вязкости образующаяся пленка на внутренних поверхностях будет больше, чем требуется. В некоторые места смазка просто может не поступать из-за слишком большой вязкости. Это, безусловно, плохо: может грозить преждевременным износом деталей, еще большим повышением рабочей температуры двигателя. Такие неприятности грозят, если заливать марку 5w40 туда, где рекомендована 5w30.
  • В обратном случае (использования 5w40 вместо 5w30) меньше смазки расходуется на угар. В принципе, это удлиняет межсервисный интервал, на что указывают некоторые производители и продавцы автомасел. Но, если производитель автомобиля рекомендовал 5w40, то марка 5w30 может образовывать слишком тонкую пленку на рабочих поверхностях. В результате может произойти слишком быстрый износ стенок цилиндров мотора и поршневых колец.

Последствия: что будет при неправильном выборе?

  1. Если вместо рекомендованной смазки 5W40 лить 5W30, то низкая вязкость уменьшит толщину масляной плёнки. Это приведёт к повышенной нагрузке и трению между узлами агрегата, что приведёт к быстрому их износу (например, цилиндров и поршневых колец). Также угар моторного масла с индексом 30 больше, чем индексом 40. а это значит, что смазку 5W40 надо менять реже по сравнению с 5W30.
  2. Если вместо рекомендованной смазки 5W30 лить 5W40, то масляная стенка будет толстая, что приведёт к смазке всех деталей узлов ДВС. Но процесс распределения масла будет затруднён из-за повышенной вязкости. Это приведёт к возрастанию силы трения, повышению температуры в моторе и ускорению износа его узлов.

моторное масло 5w30 или 5w40 синтетика
Что произойдёт, если не менять масло в двигателе

Совместимость: можно ли доливать и смешивать 5W30 и 5W40?

При некоторых аварийных случаях экстренно требуется долить моторную жидкость в двигатель. Но не всегда получается долить именно ту смазку, которая была налита изначально. Это же относится к индексу вязкости.

Можно ли смешивать моторные масла 5W30 и 5W40? Нельзя смешивать как синтетику и минералку, так и полусинтетику с другими видами. Масла с разными индексами вязкости можно смешивать при условии, если эти смазки одного производителя и с одинаковой базовой основой. Если присадки будут разными, то могут появиться непредсказуемые реакции после смешивания моторных жидкостей с разной вязкостью.

различие моторных масел 5w30 и 5w40

Даже если после смешивания разных моторных жидкостей нет видимых последствий, то надо как можно быстрее слить эту смесь и заменить масляный фильтр. Иногда может потребоваться промывка ДВС перед сменой моторной жидкости.

Смешивать масло 5W30 и 5W40 можно, но на небольшой срок (как утверждают некоторые специалисты, не более 3 тыс. км пробега), с одинаковыми присадками и одного производителя. Также оригинальные европейские масла, соответствующие стандартам ACEA, SAE и API всегда совместимы (даже при смешивании синтетики с минеральным).

Источники

  • https://avto-moto-shtuchki.ru/avtotekhnika/52-markirovka-motornogo-masla-rasshifrovka.html
  • https://oilspec.ru/vybor-masla/vyazkosti-masla-tablitsa
  • https://unit-car.com/termini-i-sokrasheniya/191-vyazkost-masla-sae.html
  • https://pomaslam.ru/harakteristiki/indeks-vyazkosti-masla.html
  • https://maslo.expert/vyazkost/vjazkostnye-pokazateli-sae.html
  • https://pomaslam.ru/motornye/maslo-5w30.html
  • https://maslo.expert/vyazkost/5w30-harakteristiki.html
  • https://maslo.expert/vyazkost/motornoe-maslo-5w-40-harakteristiki-rasshifrovka-vyazkost-temperaturnyj-rezhim.html
  • https://AvtoNov.com/%D0%BC%D0%BE%D1%82%D0%BE%D1%80%D0%BD%D0%BE%D0%B5-%D0%BC%D0%B0%D1%81%D0%BB%D0%BE-5w30-%D0%B8-5w40-%D0%B2-%D1%87%D0%B5%D0%BC-%D1%80%D0%B0%D0%B7%D0%BD%D0%B8%D1%86%D0%B0/
  • https://motorist.guru/sovety/motornoe-maslo-5w30-i-5w40-v-chem-raznicza.html

Понравилась статья? Поделить с друзьями:
  • Как найти пройденный путь математика 5 класс
  • Код ошибки driver power state failure windows 10 как исправить
  • Найдите значение выражения как решать такие примеры
  • Как найти судака зимой на пруду
  • Как найти свой биологический возраст