Как найти дискриминант деленный на 4




Дискриминант, делённый на 4 — D/4 — удобно использовать для упрощения вычислений при решении квадратных уравнений, если коэффициент b при x — чётное число.

Формула дискриминанта, деленного на 4 —

    [frac{D}{4} = {(frac{b}{2})^2} - ac]

Как и для случая с обычным дискриминантом, количество корней  квадратного уравнения зависит от знака D/4.

  • Если D/4>0, квадратное уравнение имеет два корня:

        [{x_{1,2}} = frac{{ - frac{b}{2} pm sqrt {frac{D}{4}} }}{a}]

  • Если D/4=0, квадратное уравнение имеет один корень

        [x = frac{{ - b}}{{2a}}]

  • Если D/4<0, квадратное уравнение не имеет действительных корней.

Рассмотрим примеры решения квадратных уравнений с помощью формулы четверти дискриминанта.

    [1)5{x^2} + 16x + 3 = 0]

    [a = 5;b = 16;c = 3]

Так как b=16 — чётное число, вместо обычного дискриминанта вычислим дискриминант, делённый на 4 (иногда его еще обозначают через D1):

    [frac{D}{4} = {(frac{b}{2})^2} - ac = {(frac{{16}}{2})^2} - 5 cdot 3 = 64 - 15 = 49]

Так как D/4>0, уравнение имеет два корня:

    [{x_{1,2}} = frac{{ - frac{b}{2} pm sqrt {frac{D}{4}} }}{a} = frac{{ - frac{{16}}{2} pm sqrt {49} }}{5} = frac{{ - 8 pm 7}}{5}]

    [{x_1} = frac{{ - 8 + 7}}{5} = - frac{1}{5} = - 0,2;]

    [{x_2} = frac{{ - 8 - 7}}{5} = - frac{{15}}{5} = - 3]

Ответ: -0,2; -3.

    [2)3{x^2} - 28x + 9 = 0]

    [a = 3;b = - 28;c = 9]

    [frac{D}{4} = {(frac{b}{2})^2} - ac = {(frac{{ - 28}}{2})^2} - 3 cdot 9 = ]

    [ = 196 - 27 = 169]

Поскольку D/4>0, уравнение имеет два корня:

    [{x_{1,2}} = frac{{ - frac{b}{2} pm sqrt {frac{D}{4}} }}{a} = frac{{ - frac{{ - 28}}{2} pm sqrt {169} }}{3} = ]

    [ = frac{{14 pm 13}}{3}]

    [{x_1} = = frac{{14 + 13}}{3} = frac{{27}}{2} = 9;]

    [{x_2} = frac{{14 - 13}}{3} = frac{1}{3}]

Ответ: 9; 1/3.

    [3)9{x^2} + 42x + 49 = 0]

    [a = 9;b = 42;c = 49]

    [frac{D}{4} = {(frac{b}{2})^2} - ac = {(frac{{42}}{2})^2} - 9 cdot 49 = ]

    [ = 441 - 441 = 0]

Так как D/4=0, данное квадратное уравнение имеет один корень

    [x = frac{{ - b}}{{2a}} = frac{{ - 42}}{{2 cdot 9}} = - frac{7}{3} = - 2frac{1}{3}]

Ответ: -2 1/3.

    [4){x^2} - 20x + 136 = 0]

    [a = 1;b = - 20;c = 136]

    [frac{D}{4} = {(frac{b}{2})^2} - ac = {(frac{{ - 20}}{2})^2} - 1 cdot 136 = ]

    [ = 100 - 136 = - 36]

Так как D/4<0, уравнение не имеет корней в действительных числах.

Ответ: нет корней.

Для решения квадратных уравнений вполне достаточно помнить обычную формулу дискриминанта и связанные с ним формулы корней. И все же, дополнительное знание формулы четверти дискриминанта не будет лишним.

Во-первых, с меньшими (по модулю) числами проще работать. Во-вторых, эта формула иногда ускоряет процесс нахождения корней уравнения.

    [5)2{x^2} + 8x + 5 = 0]

    [a = 2;b = 8;c = 5]

    [frac{D}{4} = {(frac{b}{2})^2} - ac = {(frac{8}{2})^2} - 2 cdot 5 = 6]

    [{x_{1,2}} = frac{{ - frac{b}{2} pm sqrt {frac{D}{4}} }}{a} = frac{{ - frac{8}{2} pm sqrt 6 }}{2} = frac{{ - 4 pm sqrt 6 }}{2}]

Если находить корни через формулу обычного дискриминанта, придётся раскладывать его на множители, выносить множитель из-под корня, затем общий множитель — за скобки и сокращать дробь.

Ответ:

    [frac{{ - 4 pm sqrt 6 }}{2}.]

Наверняка ты знаком с обычным дискриминантом, а что, если я тебе скажу, что его можно упростить? 🙂

Дискриминант, делённый на 4 (его записывают как D/4) — удобно использовать для упрощения вычислений при решении квадратных уравнений, если коэффициент b при x — чётное число(2, 4, 6….).

Формулу найдёшь ниже, а количество корней ничем не отличается от обычного дискриминанта

Если вы нашли ошибку, пожалуйста, выделите фрагмент текста и нажмите Ctrl+Enter. Мы обязательно поправим!

  • где
    • x — переменная,
    • a,b,c — постоянные (числовые) коэффициенты.

    В общем случае решение квадратных уравнений сводится к нахождению дискриминанта

    • D>0 — уравнение имеет 2 различных вещественных корня
    • D=0 — уравнение имеет 2 совпадающих вещественных корня
    • D<0 — уравнение имеет 2 мнимых корня (для непродвинутых пользователей — корней не имеет)

    В общем случае корни уравнения равны:

    Очевидно, в случае с нулевым дискриминантом, оба корня равны

    Если коэффициент при х четный, то имеет смысл вычислять не дискриминант, а четверть дискриминанта:

    В таком случае корни уравнения вычисляются по формуле:

    Теорема Виета о корнях квадратного уранения.

    то есть квадратное уравнение с единичным коэффициентом при старшем члене.

    В этом случае целесообразно применять теорему Виета, которая позволяет получить относительно корней уравнения следующую систему уравнений:

    Дискриминант квадратного уравнения

    Дискриминант квадратного уравнения — это выражение, находящееся под корнем в формуле нахождения корней квадратного уравнения. Дискриминант обозначается латинской буквой D.

    Вид уравнения Формула корней Формула
    дискриминанта
    ax 2 + bx + c = 0 b 2 — 4ac
    ax 2 + 2kx + c = 0 k 2 — ac
    x 2 + px + q = 0
    p 2 — 4q

    Все формулы нахождения корней квадратных уравнений можно записать короче с помощью дискриминанта:

    Вид уравнения Формула
    ax 2 + bx + c = 0 , где D = b 2 — 4ac
    ax 2 + 2kx + c = 0 , где D = k 2 — ac
    x 2 + px + q = 0 , где D =
    , где D = p 2 — 4q

    Дискриминант позволяет определить, имеет ли уравнение корни и сколько их, не решая само уравнение:

    1. Если дискриминант больше нуля, то уравнение имеет два корня.
    2. Если дискриминант равен нулю, то уравнение имеет один корень.
    3. Если дискриминант меньше нуля, то уравнение не имеет корней.

    Несмотря на то, что есть несколько формул дискриминанта, чаще всего используют первую:

    D = b 2 — 4ac,

    так как она относится к формуле:

    ,

    которая является универсальной формулой нахождения корней квадратного уравнения. Данная формула подходит даже для неполных квадратных уравнений.

    Решение квадратных уравнений через дискриминант

    Для решения квадратного уравнения по формуле можно сначала вычислить дискриминант и сравнить его с нулём. В зависимости от результата, либо искать корни по формуле, либо сделать вывод, что корней нет.

    Пример 1. Решить уравнение:

    3x 2 — 4x + 2 = 0.

    Определим, чему равны коэффициенты:

    a = 3, b = -4, c = 2.

    D = b 2 — 4ac = (-4) 2 — 4 · 3 · 2 = 16 — 24 = -8,

    Ответ: корней нет.

    x 2 — 6x + 9 = 0.

    Определим, чему равны коэффициенты:

    a = 1, b = -6, c = 9.

    D = b 2 — 4ac = (-6) 2 — 4 · 1 · 9 = 36 — 36 = 0,

    Уравнение имеет всего один корень:

    x 2 — 4x — 5 = 0.

    Определим, чему равны коэффициенты:

    a = 1, b = -4, c = -5

    D = b 2 — 4ac = (-4) 2 — 4 · 1 · (-5) = 16 + 20 = 36,

    Решение квадратных уравнений

    Квадратные уравнения изучают в 8 классе, поэтому ничего сложного здесь нет. Умение решать их совершенно необходимо.

    — это уравнение вида ax 2 + bx + c = 0, где коэффициенты a , b и c — произвольные числа, причем a ≠ 0.

    Прежде, чем изучать конкретные методы решения, заметим, что все квадратные уравнения можно условно разделить на три класса:

    1. Не имеют корней;
    2. Имеют ровно один корень;
    3. Имеют два различных корня.

    В этом состоит важное отличие квадратных уравнений от линейных, где корень всегда существует и единственен. Как определить, сколько корней имеет уравнение? Для этого существует замечательная вещь — дискриминант.

    Дискриминант

    Пусть дано квадратное уравнение ax 2 + bx + c = 0. Тогда — это просто число D = b 2 − 4 ac .

    Эту формулу надо знать наизусть. Откуда она берется — сейчас неважно. Важно другое: по знаку дискриминанта можно определить, сколько корней имеет квадратное уравнение. А именно:

    1. Если D < 0, корней нет;
    2. Если D = 0, есть ровно один корень;
    3. Если D > 0, корней будет два.

    Обратите внимание: дискриминант указывает на количество корней, а вовсе не на их знаки, как почему-то многие считают. Взгляните на примеры — и сами все поймете:

    1. x 2 − 8 x + 12 = 0;
    2. 5 x 2 + 3 x + 7 = 0;
    3. x 2 − 6 x + 9 = 0.

    Выпишем коэффициенты для первого уравнения и найдем дискриминант:
    a = 1, b = −8, c = 12;
    D = (−8) 2 − 4 · 1 · 12 = 64 − 48 = 16

    Итак, дискриминант положительный, поэтому уравнение имеет два различных корня. Аналогично разбираем второе уравнение:
    a = 5; b = 3; c = 7;
    D = 3 2 − 4 · 5 · 7 = 9 − 140 = −131.

    Дискриминант отрицательный, корней нет. Осталось последнее уравнение:
    a = 1; b = −6; c = 9;
    D = (−6) 2 − 4 · 1 · 9 = 36 − 36 = 0.

    Дискриминант равен нулю — корень будет один.

    Обратите внимание, что для каждого уравнения были выписаны коэффициенты. Да, это долго, да, это нудно — зато вы не перепутаете коэффициенты и не допустите глупых ошибок. Выбирайте сами: скорость или качество.

    Кстати, если «набить руку», через некоторое время уже не потребуется выписывать все коэффициенты. Такие операции вы будете выполнять в голове. Большинство людей начинают делать так где-то после 50-70 решенных уравнений — в общем, не так и много.

    Корни квадратного уравнения

    Теперь перейдем, собственно, к решению. Если дискриминант D > 0, корни можно найти по формулам:

    Формула корней квадратного уравнения

    Основная формула корней квадратного уравнения

    Когда D = 0, можно использовать любую из этих формул — получится одно и то же число, которое и будет ответом. Наконец, если D < 0, корней нет — ничего считать не надо.

    1. x 2 − 2 x − 3 = 0;
    2. 15 − 2 x − x 2 = 0;
    3. x 2 + 12 x + 36 = 0.

    Первое уравнение:
    x 2 − 2 x − 3 = 0 ⇒ a = 1; b = −2; c = −3;
    D = (−2) 2 − 4 · 1 · (−3) = 16.

    D > 0 ⇒ уравнение имеет два корня. Найдем их:

    Решение простого квадратного уравнения

    Второе уравнение:
    15 − 2 x − x 2 = 0 ⇒ a = −1; b = −2; c = 15;
    D = (−2) 2 − 4 · (−1) · 15 = 64.

    D > 0 ⇒ уравнение снова имеет два корня. Найдем их

    Наконец, третье уравнение:
    x 2 + 12 x + 36 = 0 ⇒ a = 1; b = 12; c = 36;
    D = 12 2 − 4 · 1 · 36 = 0.

    D = 0 ⇒ уравнение имеет один корень. Можно использовать любую формулу. Например, первую:

    Как видно из примеров, все очень просто. Если знать формулы и уметь считать, проблем не будет. Чаще всего ошибки возникают при подстановке в формулу отрицательных коэффициентов. Здесь опять же поможет прием, описанный выше: смотрите на формулу буквально, расписывайте каждый шаг — и очень скоро избавитесь от ошибок.

    Неполные квадратные уравнения

    Бывает, что квадратное уравнение несколько отличается от того, что дано в определении. Например:

    1. x 2 + 9 x = 0;
    2. x 2 − 16 = 0.

    Несложно заметить, что в этих уравнениях отсутствует одно из слагаемых. Такие квадратные уравнения решаются даже легче, чем стандартные: в них даже не потребуется считать дискриминант. Итак, введем новое понятие:

    Уравнение ax 2 + bx + c = 0 называется , если b = 0 или c = 0, т.е. коэффициент при переменной x или свободный элемент равен нулю.

    Разумеется, возможен совсем тяжелый случай, когда оба этих коэффициента равны нулю: b = c = 0. В этом случае уравнение принимает вид a x 2 = 0. Очевидно, такое уравнение имеет единственный корень: x = 0.

    Рассмотрим остальные случаи. Пусть b = 0, тогда получим неполное квадратное уравнение вида ax 2 + c = 0. Немного преобразуем его:

    Решение неполного квадратного уравнения

    Решение неполного квадратного уравнения

    Поскольку арифметический квадратный корень существует только из неотрицательного числа, последнее равенство имеет смысл исключительно при (− c / a ) ≥ 0. Вывод:

    1. Если в неполном квадратном уравнении вида ax 2 + c = 0 выполнено неравенство (− c / a ) ≥ 0, корней будет два. Формула дана выше;
    2. Если же (− c / a ) < 0, корней нет.

    Как видите, дискриминант не потребовался — в неполных квадратных уравнениях вообще нет сложных вычислений. На самом деле даже необязательно помнить неравенство (− c / a ) ≥ 0. Достаточно выразить величину x 2 и посмотреть, что стоит с другой стороны от знака равенства. Если там положительное число — корней будет два. Если отрицательное — корней не будет вообще.

    Теперь разберемся с уравнениями вида ax 2 + bx = 0, в которых свободный элемент равен нулю. Тут все просто: корней всегда будет два. Достаточно разложить многочлен на множители:

    Разложение уравнения на множители

    Вынесение общего множителя за скобку

    Произведение равно нулю, когда хотя бы один из множителей равен нулю. Отсюда находятся корни. В заключение разберем несколько таких уравнений:

    1. x 2 − 7 x = 0;
    2. 5 x 2 + 30 = 0;
    3. 4 x 2 − 9 = 0.

    x 2 − 7 x = 0 ⇒ x · ( x − 7) = 0 ⇒ x 1 = 0; x 2 = −(−7)/1 = 7.

    5 x 2 + 30 = 0 ⇒ 5 x 2 = −30 ⇒ x 2 = −6. Корней нет, т.к. квадрат не может быть равен отрицательному числу.

    4 x 2 − 9 = 0 ⇒ 4 x 2 = 9 ⇒ x 2 = 9/4 ⇒ x 1 = 3/2 = 1,5; x 2 = −1,5.

      , часть 1
  •  Задвижки, фильтры, кланы, клапаны, виброкомпенсаторы ABRA

    Межфланцевые прокладки. Герметики. Уплотнительные материалы

    Таблицы DPVA.ru — Инженерный Справочник

    Free counters!


    Адрес этой страницы (вложенность) в справочнике dpva.ru:  главная страница  / / Техническая информация / / Математический справочник / / Решение уравнений и неравенств. Системы уравнений. Формулы. Методы.  / / Квадратные уравнения. Решение квадратных уравнений. Дискриминант. Формула дискриминанта. ( Дискриминат на 4 и на 1). Теорема Виета. 3 способа.

    Квадратное уравнение. Решение квадратных уравнений. Дискриминант. Формула дискриминанта. Теорема Виета.     Версия для печати.

    Квадратным уравнением называется уравнение вида:

                     квадратное уравнение - общий вид,

    • где
      • x — переменная,
      • a,b,c — постоянные (числовые) коэффициенты.

    В общем случае решение квадратных уравнений сводится к нахождению дискриминанта

    Формула дискриминанта: Дискриминант, формула дискриминанта .

    О корнях квадратного уравнения можно судить по знаку дискриминанта (D) :

    • D>0 — уравнение имеет 2 различных вещественных корня
    • D=0 — уравнение имеет 2 совпадающих вещественных корня
    • D<0 — уравнение имеет 2 мнимых корня (для непродвинутых пользователей — корней не имеет)

    В общем случае корни уравнения равны:

                    Корни квадратного уравнения через   дискриминант. .

    Очевидно, в случае с нулевым дискриминантом, оба корня равны

                    Корни квадратного уравнения с нулевым дискриминантом .

    Если коэффициент при х четный, то имеет смысл вычислять не дискриминант, а четверть дискриминанта:

                    Корни квадратного уравнения через четверть дискриминанта

    В таком случае корни уравнения вычисляются по формуле:

                    Корни квадратного уравнения через четверть дискриминанта.

    Теорема Виета о корнях квадратного уранения.

    Приведенным квадратным уравнением называется уравнение вида

                    Приведенное квадратное уравнение - вид,

    то есть квадратное уравнение с единичным коэффициентом при старшем члене.

    В этом случае целесообразно применять теорему Виета, которая позволяет получить относительно корней уравнения следующую систему уравнений:

                    Теорема Виета относительно корней квадратного уравнения .

    Следует заметить, что любое квадратное уравнение может стать приведенным, если его поделить на коэффициент при старшем члене, то есть при х2

    • Таблицы квадратов. Натуральных чисел от 1 до 30 и от 1 до 100. Удобная расчетная таблица 1,00 — 9,99.
    • Таблица квадратов натуральных чисел от 1 до 99 (от 1 до 9, от 10 до 99 ).
    • Таблица квадратов натуральных (целых) чисел от 1 до 999
    Распечатать: Квадратное уравнение. Решение квадратных уравнений. Дискриминант. Формула дискриминанта. Теорема Виета

    Поиск в инженерном справочнике DPVA. Введите свой запрос:

    Поиск в инженерном справочнике DPVA. Введите свой запрос:

    Если Вы не обнаружили себя в списке поставщиков, заметили ошибку, или у Вас есть дополнительные численные данные для коллег по теме, сообщите , пожалуйста.

    Вложите в письмо ссылку на страницу с ошибкой, пожалуйста.

    Коды баннеров проекта DPVA.ru
    Начинка: KJR Publisiers

    Консультации и техническая
    поддержка сайта: Zavarka Team

    Проект является некоммерческим. Информация, представленная на сайте, не является официальной и предоставлена только в целях ознакомления. Владельцы сайта www.dpva.ru не несут никакой ответственности за риски, связанные с использованием информации, полученной с этого интернет-ресурса.
    Free xml sitemap generator

    www.dpva.ru Инженерный справочник.

    Что такое квадратные уравнения?

    А теперь подробно с примерами обсудим квадратные уравнения.

    Любые уравнения, сводящиеся к виду (ax^2+bx+c=0), называются квадратными. Где буквы ( b,; с) — любые числа, (aneq0). Почему (aneq0) мы обсудим ниже.

    Обратите внимание на порядок слагаемых в квадратном уравнении:
    (a) — всегда стоит первая и обязательно умножается на (x^2), она называется старшим коэффициентом (или первым);
    (b) — принадлежит второму слагаемому и всегда умножается просто на переменную (x), это у нас второй коэффициент;
    (c) — называют свободным членом, она не умножается ни на какую переменную.

    В дальнейшем старайтесь приводить квадратное уравнение к виду (ax^2+bx+c=0), чтобы слагаемые стояли именно в таком порядке. Это очень важно при решении уравнений, и поможет избежать множества ошибок.

    Потренируемся определять значения коэффициентов ( a, ; b,; с), чтобы запомнить порядок:

    Пример 1
    $$2x^2+3x+4=0;$$
    $$a=2 quad b=3 quad c=4.$$

    Пример 2
    $$5x^2-3x-0,7=0;$$
    $$a=5 quad b=-3 quad c=-0,7.$$

    Пример 3
    $$-x^2+2x+10=0;$$
    Минус перед (x^2) можно представить в виде (-x^2=-1*x^2). Единицу обычно не пишут, поэтому минус перед первым слагаемым означает, что (a=-1):
    $$a=-1 quad b=2 quad c=10.$$

    Пример 4
    $$3+x^2-5x=0;$$
    Слагаемые стоят в неправильном порядке. Так коэффициенты находить неудобно, поэтому переставим все слагаемые в нужном порядке. От перемены мест слагаемых сумма не меняется:
    $$x^2-5x+3=0;$$
    $$a=1 quad b=-5 quad c=3.$$

    Пример 5
    $$2x^2-3x=0;$$
    В уравнении нет свободного члена (c), поэтому он будет равен (0):
    $$a=2 quad b=-3 quad c=0.$$

    Пример 6
    $$-4x^2+1=0;$$
    А здесь уже нет второго коэффициента (b):
    $$a=-4 quad b=0 quad c=1.$$

    Уравнения, приведенные в примерах №5 и 6, называются неполными квадратными уравнениями, так как в них коэффициенты (b) или (c) равны нулю.

    А вот если в уравнении коэффициенты ( a, ; b,; с) не равны 0, то такое уравнение называется полным.

    От того, полное ли квадратное уравнение или неполное, зависит, как мы будем его решать. Начнем с неполных уравнений, они немного легче, но почему-то как раз в них все часто ошибаются.

    Неполные квадратные уравнения

    Неполное квадратное уравнение — это уравнение, в котором один из коэффициентов (b) или (c) равен нулю, (aneq0).

    Как решать квадратное уравнение (ax^2+bx=0)?

    Рассмотрим уравнение, в котором (c=0), оно будет иметь вид:
    $$ax^2+bx=0;$$
    Чтобы его решить, нужно вынести общий множитель (x) за скобки:
    $$x(ax+b)=0;$$
    И вспомнить правило, что произведение равно нулю, когда хотя бы один из множителей равен нулю. Здесь два множителя: (x) и ((ax+b)). Приравниваем их к нулю и решаем каждое по-отдельности:
    $$x=0;$$
    Тут решать-то нечего, сразу дан корень.
    Второе:
    $$ax+b=0;$$
    Обычное линейное уравнение:
    $$ax=-b;$$
    $$x=frac{-b}{a};$$

    Получили, что уравнение имеет сразу два корня:(x=0) и (x=frac{-b}{a}).

    Разберем на примере:

    Пример 7
    $$2x^2+8x=0;$$
    Выносим общий множитель (x):
    $$x(2x+8)=0;$$
    $$quad x_1=0 quad и quad 2x+8=0;$$
    $$2x+8=0;$$
    $$2x=-8;$$
    $$x_2=-4.$$
    Ответ: (x_1=0 quad и quad x_2=-4.)

    Как решать квадратное уравнение (ax^2+с=0)?

    Вот с такими уравнениями надо быть очень внимательными. Важно помнить, что любое число (выражение), возведенное в квадрат, всегда больше или равно нуля, оно не может быть отрицательным.

    Общая схема решения уравнений вида (ax^2+с=0):

    • Выражаем (x^2) из уравнения:
      $$ax^2+c=0;$$
      $$ax^2=-c;$$
      $$x^2=frac{-c}{a};$$
    • Если (-frac{c}{a} geq 0):
      $$x_1=sqrt{-frac{c}{a}};$$
      $$x_2=-sqrt{-frac{c}{a}};$$
    • Если (-frac{c}{a} lt 0):
      РЕШЕНИЙ НЕТ.

    Пример 8
    $$2x^2-8=0;$$
    $$2x^2=8;$$
    $$x^2=frac{8}{2};$$
    $$x^2=4;$$
    $$x=pmsqrt{4};$$
    $$x_1=2;$$
    $$x_2=-2;$$
    Ответ: (x_1=2 quad и quad x_2=-2.)

    Пример 9
    $$4x^2+36=0;$$
    $$2x^2=-36;$$
    $$x^2=frac{-36}{2}=-18;$$
    Так как (-18 < 0), а (x^2) не может быть отрицательным, то это уравнение не имеет корней.
    Ответ: Нет корней.

    Пример 10
    $$frac{1}{2}x^2-frac{1}{18}=0;$$
    $$frac{1}{2}x^2=frac{1}{18};$$
    Чтобы избавиться от (frac{1}{2}), умножим уравнение слева и справа на (2):
    $$x^2=frac{2}{18};$$
    $$x^2=frac{1}{9};$$
    $$x=pmsqrt{frac{1}{9}};$$
    $$x_1=frac{1}{3};$$
    $$x_2=-frac{1}{3};$$
    Ответ: (x_1=frac{1}{3} quad и quad x_2=-frac{1}{3}.)

    Решение квадратных уравнений через дискриминант

    Квадратные уравнения (ax^2+bx+c=0), у которых все коэффициенты ( a, ; b,; с) не равны 0, называются полными квадратными уравнениями.

    Чтобы их решать, нужно уметь находить дискриминант квадратного уравнения. Ничего страшного в этом нет, несмотря на странное называние. Дискриминантом уравнения (ax^2+bx+c=0) называют выражение:
    $$D=b^2-4ac;$$

    1. Если дискриминант получился больше нуля ((D ge 0)), то квадратное уравнение имеет два корня, которые можно найти по формулам:
      $$x_1=frac{-b+sqrt{D}}{2a};$$
      $$x_2=frac{-b-sqrt{D}}{2a};$$
    2. Если дискриминант равен нулю ((D=0)), то квадратное уравнение имеет один корень:
      $$x=frac{-b}{2a};$$
    3. Если дискриминант меньше нуля ((D<0)), то квадратное уравнение не имеет корней.

    Примеры квадратных уравнений

    Пример 11
    $$2x^2-9x+4=0;$$
    Прежде чем решать уравнение, я рекомендую выписать все коэффициенты:
    $$a=2 quad b=-9 quad c=4.$$
    Используя значения коэффициентов, можем посчитать дискриминант:
    $$D=b^2-4ac=(-9)^2-4*2*4=81-32=49;$$
    Ура, дискриминант посчитан и он больше нуля! Значит корней будет два, найдем их по формулам:
    $$x_1=frac{-b+sqrt{D}}{2a}=frac{-(-9)+sqrt{49}}{2*2}=frac{9+7}{4}=frac{16}{4}=4;$$
    $$x_2=frac{-b-sqrt{D}}{2a}=frac{-(-9)—sqrt{49}}{2*2}=frac{9-7}{4}=frac{2}{4}=frac{1}{2};$$
    Ответ: (x_1=4 quad и quad x_2=frac{1}{2}.)

    Пример 12
    $$10x^2+x-21=0;$$
    $$a=10 quad b=1 quad c=-21.$$
    $$D=b^2-4ac=1^2-4*10*(-21)=1+840=841;$$
    $$x_1=frac{-b+sqrt{D}}{2a}=frac{-1+sqrt{841}}{2*10}=frac{-1+29}{20}=frac{28}{20}=frac{7}{5};$$
    $$x_2=frac{-b-sqrt{D}}{2a}=frac{-1-sqrt{841}}{2*10}=frac{-1-29}{20}=frac{-30}{20}=frac{-3}{2};$$
    Ответ: (x_1=frac{7}{5} quad и quad x_2=-frac{3}{2}.)

    Пример 13
    $$(x-7)^2=2x^2+11x+23;$$
    Это уравнение еще нужно привести к стандартному виду, для этого раскроем скобки по формуле «квадрат разности» ((a-b)^2=a^2-2ab+b^2):
    $$x^2-14x+49=2x^2+11x+23;$$
    Перекинем все слагаемые в левую часть, не забывая при этом менять знак на противоположный:
    $$x^2-14x+49-2x^2-11x-23=0;$$
    Приводим подобные слагаемые:
    $$-x^2-25x+26=0;$$
    $$a=-1 quad b=-25 quad c=26.$$
    $$D=b^2-4ac=(-25)^2-4*(-1)*26=625+104=729;$$
    $$x_1=frac{-b+sqrt{D}}{2a}=frac{-(-25)+sqrt{729}}{2*(-1)}=frac{25+27}{-2}=frac{52}{-2}=-26;$$
    $$x_2=frac{-b-sqrt{D}}{2a}=frac{-(-25)-sqrt{729}}{2*(-1)}=frac{25-27}{-2}=frac{-2}{-2}=1;$$
    Ответ: (x_1=-26 quad и quad x_2=1.)

    Пример 14
    $$3x^2+7x+6=0;$$
    $$a=3 quad b=7 quad c=6.$$
    $$D=b^2-4ac=7^2-4*3*6=49-72=-23;$$
    Стоп! Дискриминант получился отрицательный, это означает, что у этого квадратного уравнения не будет корней.
    Ответ: Нет корней.

    Пример 15
    $$4x^2-4x+1=0;$$
    $$a=4 quad b=-4 quad c=1.$$
    $$D=b^2-4ac=(-4)^2-4*4*1=16-16=0;$$
    Дискриминат получился равен нулю. В этом случае у квадратного уравнения будет всего один корень, который можно найти по формуле:
    $$x=frac{-b}{2a}=frac{-(-4)}{2*4}=frac{4}{8}=frac{1}{2};$$
    Ответ: (x=frac{1}{2}.)

    Полезно знать! Если дискриминант получился равен нулю, то перед вами формула полного квадрата. Это значит, что квадратный многочлен можно разложить по формуле ((apm b)^2=a^2pm 2ab+b^2).
    И пример №15 можно решить, используя эту формулу:
    $$4x^2-4x+1=0;$$
    $$(2x-1)^2=0;$$
    Квадрат равен нулю только в том случае, если выражение под квадратом равно нулю:
    $$2x-1=0;$$
    $$2x=1;$$
    $$x=frac{1}{2};$$
    Ответ получили точно такой же, как и при решении через дискриминант.

    Дискриминант деленный на 4

    Квадратные уравнения иногда удобно решать по упрощенной формуле дискриминанта. Но применять ее можно не во всех случаях, а только, если коэффициент (b) в уравнении (ax^2+bx+c=0) четный (делится на 2).

    Итак, представим, что коэффициент (b) четный, тогда дискриминант можно посчитать по формуле:
    $$D_4=left(frac{b}{2}right)^2-ac;$$
    А корни уравнения находятся по формулам:
    $$x_1=frac{-frac{b}{2}+sqrt{D_4}}{a};$$
    $$x_2=frac{-frac{b}{2}-sqrt{D_4}}{a};$$
    Кстати, обычный дискриминант (D) отличается от (D_4) в 4 раза:
    $$D_4=frac{D}{4}=frac{b^2-4ac}{4}=frac{b^2}{4}-frac{4ac}{4}=left(frac{b}{2}right)^2-ac;$$
    Поэтому (D_4) называют «дискриминантом деленным на 4».

    Эти формулы нужны, чтобы, когда это возможно, сократить вычисления. Разберем на примере:

    Пример 16
    $$7x^2-20x-1067=0;$$
    $$a=7 quad b=-20 quad c=-1067.$$
    (b=-20) — четный, поэтому воспользуемся дискриминантом деленным на 4:
    $$D_4=left(frac{b}{2}right)^2-ac=left(frac{-20}{2}right)^2-7*(-1067)=(-10)^2+7469=100+7469=7569;$$
    $$x_1=frac{-frac{b}{2}+sqrt{D_4}}{a}=frac{-frac{-20}{2}+sqrt{7569}}{7}=frac{10+87}{7}=frac{97}{7};$$
    $$x_2=frac{-frac{b}{2}-sqrt{D_4}}{a}=frac{-frac{-20}{2}-sqrt{7569}}{7}=frac{10-87}{7}=frac{-77}{7}=-11;$$
    Ответ: (x_1=frac{97}{7} quad и quad x_2=-11.)

    Возникает вопрос, зачем вообще нужен этот (D_4), если все можно считать через обычный дискриминант? Если бы мы считали пример №16 как обычно, то наш дискриминант, который и так получился не маленьким — ((D_4=7659)), был бы в четыре раза больше. А чем больше числа, тем сложнее расчеты.

    Теорема Виета для решения квадратных уравнений

    Теорема Виета — это еще один способ упростить решение полных квадратных уравнений. Ее очень часто используют для решения несложных квадратных уравнений в уме и для анализа квадратного многочлена, особенно это актуально в сложных заданиях с параметром в ЕГЭ.

    Прежде чем сформулировать теорему Виета, познакомимся с приведенными квадратными уравнениями.

    Приведенное квадратное уравнение

    Квадратные уравнения (ax^2+bx+c=0), у которых коэффициент (a) при (x^2) равен (1), называют приведенными.

    Например:
    $$x^2+4x-3=0;$$
    $$x^2-140x-65=0;$$
    Любое полное квадратное уравнение всегда можно свести к приведенному. Для этого надо поделить все уравнение на коэффициент (a):

    Пример 17
    Привести квадратное уравнение к приведенному.
    $$3x^2-15x+9=0;$$
    Разделим уравнение на (a=3). (Так можно делать: если левую и правую части уравнения поделить на одно и то же число, то корни уравнения от этого не изменятся.)
    $$frac{3x^2-15x+9}{3}=frac{0}{3};$$
    В результате каждое слагаемое поделится на (3):
    $$frac{3x^2}{3}-frac{15x}{3}+frac{9}{3}=0;$$
    $$x^2-5x+3=0;$$

    Формулы Виета

    Сумма корней приведенного квадратного уравнения (x^2+bx+c=0) равна второму коэффициенту (b) со знаком минус, а произведение корней равно свободному члену (c).

    Пусть (x_1), и (x_2) — корни квадратного уравнения (x^2+bx+c=0), тогда справедливы формулы:
    $$ begin{cases}
    x_1+x_2=-b; \
    x_1*x_2=c. \
    end{cases}$$
    На первый взгляд может показаться, что это очень запутанно, но на самом деле, теорема Виета часто помогает решить уравнение в уме. Попробуем на практике:

    Пример 18
    $$x^2+4x+3=0;$$
    $$a=1 quad b=4 quad c=3.$$
    Воспользуемся теоремой Виета и выпишем формулы:
    $$ begin{cases}
    x_1+x_2=-b; \
    x_1*x_2=c. \
    end{cases}$$
    Подставим коэффициенты:
    $$ begin{cases}
    x_1+x_2=-4; \
    x_1*x_2=3. \
    end{cases}$$

    Нужно найти такие (x_1) и (x_2), которые удовлетворяют и первому, и второму уравнениям в системе. Подобрать корни достаточно просто: рассмотрим второе уравнение, какие два числа дают при умножении (3ку)?

    Либо: (3=1*3);
    Либо: (3=(-1)*(-3)).

    Осталось проверить, будут ли найденные множители удовлетворять первому уравнению в системе, просто подставим их:
    $$1+3 neq -4;$$
    $$-1+(-3) = -4;$$
    Вот мы и нашли корни системы уравнений: (x_1=-1) и (x_2=-3). А самое главное, мы нашли корни исходного квадратного уравнения.
    Ответ: (x_1=-1 quad и quad x_2=-3.)

    Если потренироваться, то все эти вычисления можно легко проводить в уме, если коэффициенты небольшие. Главное запомнить, что произведение корней должно быть равно свободному члену (c), а сумма корней равна ((-b)).

    Теорема Виета, если (aneq1)

    По теореме Виета можно решать не только приведенные квадратные уравнения (у которых (a=1)). Но перед тем, как применять формулы Виета, надо привести уравнение к приведенному, поделив на первый коэффициент (a):
    $$ax^2+bx+c=0; quad mid :a$$
    $$frac{ax^2}{a}+frac{bx}{a}+frac{c}{a};$$
    $$x^2+frac{b}{a}*x+frac{c}{a};$$
    Получили приведенное квадратное уравнение, для которого можно записать формулы Виета, где вторым коэффициентом будет (frac{b}{a}), а свободным членом (frac{c}{a}):
    $$ begin{cases}
    x_1+x_2=-frac{b}{a}; \
    x_1*x_2=frac{c}{a}. \
    end{cases}$$

    Пример 19
    $$12x^2+x-1=0;$$
    $$a=12 quad b=1 quad c=-1.$$
    Коэффициент (a=12 neq 1), поэтому разделим все уравнение на (a=12):
    $$12x^2+x-1=0; quad mid :12$$
    $$x^2+frac{1}{12}x-frac{1}{12}=0;$$
    $$a=1 quad b=frac{1}{12} quad c=-frac{1}{12}.$$

    Теорема Виета:
    $$ begin{cases}
    x_1+x_2=-frac{1}{12}; \
    x_1*x_2=-frac{1}{12}. \
    end{cases}$$

    Подбираем корни:
    $$x_1=-frac{1}{3};$$
    $$x_2=frac{1}{4};$$

    Ответ: (x_1=-frac{1}{3} quad и quad x_2=frac{1}{4}.)

    Теорема Виета удобна, когда у квадратного уравнения небольшие коэффициенты и можно легко подобрать корни. В остальных случаях лучше пользоваться дискриминантом.

    Понравилась статья? Поделить с друзьями:
  • Идеи для бизнеса как найти идею
  • Как найти пещеру в mine survival
  • Как составить учебные модули
  • Как составить стратегию выхода на рынок
  • Как составить резюме фрилансеру без опыта