Как найти дисперсию для дискретного ряда

Как найти дисперсию?

Спасибо за ваши закладки и рекомендации

Дисперсия — это мера разброса значений случайной величины $X$ относительно ее математического ожидания $M(X)$ (см. как найти математическое ожидание случайной величины). Дисперсия показывает, насколько в среднем значения сосредоточены, сгруппированы около $M(X)$: если дисперсия маленькая — значения сравнительно близки друг к другу, если большая — далеки друг от друга (см. примеры нахождения дисперсии ниже).

Если случайная величина описывает физические объекты с некоторой размерностью (метры, секунды, килограммы и т.п.), то дисперсия будет выражаться в квадратных единицах (метры в квадрате, секунды в квадрате и т.п.). Ясно, что это не совсем удобно для анализа, поэтому часто вычисляют также корень из дисперсии — среднеквадратическое отклонение $sigma(X)=sqrt{D(X)}$, которое имеет ту же размерность, что и исходная величина и также описывает разброс.

Еще одно формальное определение дисперсии звучит так: «Дисперсия — это второй центральный момент случайной величины» (напомним, что первый начальный момент — это как раз математическое ожидание).

Нужна помощь? Решаем теорию вероятностей на отлично

Формула дисперсии случайной величины

Дисперсия случайной величины Х вычисляется по следующей формуле:
$$
D(X)=M(X-M(X))^2,
$$
которую также часто записывают в более удобном для расчетов виде:
$$
D(X)=M(X^2)-(M(X))^2.
$$

Эта универсальная формула для дисперсии может быть расписана более подробно для двух случаев.

Если мы имеем дело с дискретной случайной величиной (которая задана перечнем значений $x_i$ и соответствующих вероятностей $p_i$), то формула принимает вид:
$$
D(X)=sum_{i=1}^{n}{x_i^2 cdot p_i}-left(sum_{i=1}^{n}{x_i cdot p_i} right)^2.
$$
Если же речь идет о непрерывной случайной величине (заданной плотностью вероятностей $f(x)$ в общем случае), формула дисперсии Х выглядит следующим образом:
$$
D(X)=int_{-infty}^{+infty} f(x) cdot x^2 dx — left( int_{-infty}^{+infty} f(x) cdot x dx right)^2.
$$

Пример нахождения дисперсии

Рассмотрим простые примеры, показывающие как найти дисперсию по формулам, введеным выше.

Пример 1. Вычислить и сравнить дисперсию двух законов распределения:
$$
x_i quad 1 quad 2 \
p_i quad 0.5 quad 0.5
$$
и
$$
y_i quad -10 quad 10 \
p_i quad 0.5 quad 0.5
$$

Для убедительности и наглядности расчетов мы взяли простые распределения с двумя значениями и одинаковыми вероятностями. Но в первом случае значения случайной величины расположены рядом (1 и 2), а во втором — дальше друг от друга (-10 и 10). А теперь посмотрим, насколько различаются дисперсии:
$$
D(X)=sum_{i=1}^{n}{x_i^2 cdot p_i}-left(sum_{i=1}^{n}{x_i cdot p_i} right)^2 =\
= 1^2cdot 0.5 + 2^2 cdot 0.5 — (1cdot 0.5 + 2cdot 0.5)^2=2.5-1.5^2=0.25.
$$
$$
D(Y)=sum_{i=1}^{n}{y_i^2 cdot p_i}-left(sum_{i=1}^{n}{y_i cdot p_i} right)^2 =\
= (-10)^2cdot 0.5 + 10^2 cdot 0.5 — (-10cdot 0.5 + 10cdot 0.5)^2=100-0^2=100.
$$
Итак, значения случайных величин различались на 1 и 20 единиц, тогда как дисперсия показывает меру разброса в 0.25 и 100. Если перейти к среднеквадратическому отклонению, получим $sigma(X)=0.5$, $sigma(Y)=10$, то есть вполне ожидаемые величины: в первом случае значения отстоят в обе стороны на 0.5 от среднего 1.5, а во втором — на 10 единиц от среднего 0.

Ясно, что для более сложных распределений, где число значений больше и вероятности не одинаковы, картина будет более сложной, прямой зависимости от значений уже не будет (но будет как раз оценка разброса).

Пример 2. Найти дисперсию случайной величины Х, заданной дискретным рядом распределения:
$$
x_i quad -1 quad 2 quad 5 quad 10 quad 20 \
p_i quad 0.1 quad 0.2 quad 0.3 quad 0.3 quad 0.1
$$

Снова используем формулу для дисперсии дискретной случайной величины:
$$
D(X)=M(X^2)-(M(X))^2.
$$
В случае, когда значений много, удобно разбить вычисления по шагам. Сначала найдем математическое ожидание:
$$
M(X)=sum_{i=1}^{n}{x_i cdot p_i} =-1cdot 0.1 + 2 cdot 0.2 +5cdot 0.3 +10cdot 0.3+20cdot 0.1=6.8.
$$
Потом математическое ожидание квадрата случайной величины:
$$
M(X^2)=sum_{i=1}^{n}{x_i^2 cdot p_i}
= (-1)^2cdot 0.1 + 2^2 cdot 0.2 +5^2cdot 0.3 +10^2cdot 0.3+20^2cdot 0.1=78.4.
$$
А потом подставим все в формулу для дисперсии:
$$
D(X)=M(X^2)-(M(X))^2=78.4-6.8^2=32.16.
$$
Дисперсия равна 32.16 квадратных единиц.

Пример 3. Найти дисперсию по заданному непрерывному закону распределения случайной величины Х, заданному плотностью $f(x)=x/18$ при $x in(0,6)$ и $f(x)=0$ в остальных точках.

Используем для расчета формулу дисперсии непрерывной случайной величины:
$$
D(X)=int_{-infty}^{+infty} f(x) cdot x^2 dx — left( int_{-infty}^{+infty} f(x) cdot x dx right)^2.
$$
Вычислим сначала математическое ожидание:
$$
M(X)=int_{-infty}^{+infty} f(x) cdot x dx = int_{0}^{6} frac{x}{18} cdot x dx = int_{0}^{6} frac{x^2}{18} dx =
left.frac{x^3}{54} right|_0^6=frac{6^3}{54} = 4.
$$
Теперь вычислим
$$
M(X^2)=int_{-infty}^{+infty} f(x) cdot x^2 dx = int_{0}^{6} frac{x}{18} cdot x^2 dx = int_{0}^{6} frac{x^3}{18} dx = left.frac{x^4}{72} right|_0^6=frac{6^4}{72} = 18.
$$
Подставляем:
$$
D(X)=M(X^2)-(M(X))^2=18-4^2=2.
$$
Дисперсия равна 2.

Другие задачи с решениями по ТВ

Подробно решим ваши задачи на вычисление дисперсии

Вычисление дисперсии онлайн

Как найти дисперсию онлайн для дискретной случайной величины? Используйте калькулятор ниже.

  • Введите число значений случайной величины К.
  • Появится форма ввода для значений $x_i$ и соответствующих вероятностей $p_i$ (десятичные дроби вводятся с разделителем точкой, например: -10.3 или 0.5). Введите нужные значения (проверьте, что сумма вероятностей равна 1, то есть закон распределения корректный).
  • Нажмите на кнопку «Вычислить».
  • Калькулятор покажет вычисленное математическое ожидание $M(X)$ и затем искомое значение дисперсии $D(X)$.

Видео. Полезные ссылки

Видеоролики: что такое дисперсия и как найти дисперсию

Если вам нужно более подробное объяснение того, что такое дисперсия, как она вычисляется и какими свойствами обладает, рекомендую два видео (для дискретной и непрерывной случайной величины соответственно).

Полезная страница? Сохрани или расскажи друзьям

Полезные ссылки

Не забывайте сначала прочитать том, как найти математическое ожидание. А тут можно вычислить также СКО: Калькулятор математического ожидания, дисперсии и среднего квадратического отклонения.

Что еще может пригодиться? Например, для изучения основ теории вероятностей — онлайн учебник по ТВ. Для закрепления материала — еще примеры решений задач по теории вероятностей.

А если у вас есть задачи, которые надо срочно сделать, а времени нет? Можете поискать готовые решения в решебнике или заказать в МатБюро:

Дискретный вариационный ряд и его характеристики

  1. Классификация рядов распределения
  2. Дискретный вариационный ряд, полигон частот и кумулята
  3. Выборочная средняя, мода и медиана
  4. Степень асимметрии вариационного ряда
  5. Выборочная дисперсия и СКО
  6. Исправленная выборочная дисперсия, стандартное отклонение выборки и коэффициент вариации
  7. Алгоритм исследования дискретного вариационного ряда
  8. Примеры

п.1. Классификация рядов распределения

Статистический ряд распределения – это количественное распределение единиц совокупности на однородные группы по некоторому варьирующему признаку.

В зависимости от природы признака различают атрибутивные и вариационные ряды.
Атрибутивный ряд распределения построен на качественном признаке.
Вариационный ряд распределения построен на количественном признаке.

Например:
Качественными признаками, которые не поддаются измерению, являются: профессия, пол, национальность и т.п.
Количественными признаками, которые можно подсчитать или измерить, являются: количество людей в группе, число повторений в опыте, возраст, вес, рост, скорость, температура и т.п.

По упорядоченности вариационные ряды делятся на упорядоченные (ранжированные) и неупорядоченные. Упорядочить ряд можно по возрастанию или убыванию исследуемого признака.

По характеру непрерывности признака вариационные ряды делятся на дискретные и интервальные.

Например:
Дискретными признаками, которые принимают отдельные значения, являются: количество людей в группе, число детей в семье, количество домов, число опытов и т.п.
Непрерывными признаками, которые могут принимать любые значения в интервале, являются: возраст, вес, рост, скорость, температура и т.п.
Классификация рядов распределения

Варианты – это отдельные значения признака, которые он принимает в вариационном ряду.
Частоты – это численности отдельных вариант.

Например:

Распределение учеников по оценкам за контрольную работу

Оценка, (x_i) 2 3 4 5 Всего
К-во учеников, (f_i) 3 15 10 5 33

В данном ряду признак – это оценка, варианты признака (x_i) – это множество {2;3;4;5}, частоты (f_i) – это количество учеников, получивших каждую из оценок.

п.2. Дискретный вариационный ряд, полигон частот и кумулята

Дискретный вариационный ряд – это ряд распределения, в котором однородные группы составлены по признаку, меняющемуся прерывно и принимающему конечное множество значений.

Общий вид дискретного вариационного ряда

Варианты, (x_i) (x_1) (x_2) (x_k)
Частоты, (f_i) (f_1) (f_2) (f_k)

Здесь k — число вариант исследуемого признака.
Тогда общее количество исходов (число единиц в совокупности): (N=sum_{i=1}^k f_i)

Полигон частот – это ломаная, которая соединяет точки ((x_i,f_i)).

Например:

Для распределения учеников по оценкам из нашего примера получаем такой полигон: Полигон частот

Относительная частота варианты (x_i) — это отношение частоты (f_i) к общему количеству исходов: $$ w_i=frac{f_i}{N}, i=overline{1,k} $$ Относительная частота (w_i) является эмпирической оценкой вероятности варианты (x_i) в исследуемом ряду.

Полигон относительных частот – это ломаная, которая соединяет точки ((x_i,w_i)).
Полигон относительных частот является эмпирическим законом распределения исследуемого признака.

Накопленные относительные частоты – это суммы: $$ S_1=w_1, S_i=S_{i-1}+w_i, i=overline{2,k} $$ Кумулята – это ломаная, которая соединяет точки ((x_i,S_i)).
Ступенчатая кривая (F(x_i)), построенная по точкам ((x_i,S_i)), является эмпирической функцией распределения исследуемого признака.

Например:
Проведем необходимые расчеты и построим полигон относительных частот, кумуляту и эмпирическую функцию распределения учеников по оценкам.

Оценка, (x_i) 2 3 4 5 Всего
К-во учеников, (f_i) 3 15 10 5 33
(w_i) 0,0909 0,4545 0,3030 0,1515 1
(S_i) 0,0909 0,4545 0,8485 1

Полигон относительных частот (эмпирический закон распределения)
Полигон относительных частот
Кумулята (красная ломаная) и эмпирическая функция распределения (ступенчатая синяя кривая).
Кумулята и эмпирическая функция распределения
Эмпирическая функция распределения: $$ F(x)= begin{cases} 0, xleq 2\ 0,0909, 2lt xleq 3\ 0,5455, 3lt xleq 4\ 0,8485, 4lt xleq 5\ 1, xgt 5 end{cases} $$

п.3. Выборочная средняя, мода и медиана

Выборочная средняя дискретного вариационного ряда определяется как средняя взвешенная по частотам: $$ X_{cp}=frac{x_1f_1+x_2f_2+…+x_kf_k}{N}=frac1Nsum_{i=1}^k x_if_i $$ Или, через относительные частоты: $$ X_{cp}=sum_{i=1}^k x_iw_i $$

Мода дискретного вариационного ряда – это варианта с максимальной частотой: $$ M_o=x*, f(x*)=underset{i=overline{1,k}}{max}f_i $$ Мод может быть несколько. Тогда говорят, что ряд мультимодальный.

На полигоне частот мода – это абсцисса самой высокой точки.

Медиана дискретного вариационного ряда – это значение варианты посредине упорядоченного ряда.

Алгоритм:
1. Отсортировать ряд по возрастанию.
2а. Если общее количество измерений N нечётное, найти (m=lceilfrac N2rceil) и округлить в сторону увеличения. (M_e=x_m) — искомая медиана.
2б. Если общее количество измерений N чётное, найти (m=frac N2) и вычислить медиану как среднее (M_e=frac{x_m+x_{m+1}}{2}).

На графике кумуляты медиана – это абсцисса первой точки слева, ордината которой превысила 0,5.
Например:
1) Найдем выборочную среднюю для распределения учеников по оценкам:

Оценка, (x_i) 2 3 4 5 Всего
К-во учеников, (f_i) 3 15 10 5 33
(x_if_i) 6 45 40 25 116

$$ X_{cp}=frac{6+45+40+25}{33}=frac{116}{33}approx 3,5 $$ Средняя оценка за контрольную – 3,5.
2) Найдем моду. Максимальная частота – 15 человек – у троечников. Значит: (M_o=3).
3) Найдем медиану. Общее количество измерений N=33 — нечетное.
Находим: (m=lceilfrac N2rceil=17)
Смотрим на ряд слева направо. Сначала у нас идет 3 двоечника, затем 15 троечников.
Вместе их 18, и 17-й человек в ряду — троечник. Группа троечников является медианной: (M_e=3).
Также, медиану можно найти по графику кумуляты. (3;0,5455) – это первая слева точка, в которой ордината больше 0,5. Значит, медиана равна абсциссе этой точки, т.е. (M_e=3).

п.4. Степень асимметрии вариационного ряда

В рядах с асимметрией или выбросами выборочная средняя не отражает в полной мере особенности исследуемого признака. Типичный случай – значение среднего уровня доходов в странах с высоким индексом Джини, где 5% населения получает 95% доходов. Или анекдотичный случай со «средней температурой по больнице».
Поэтому, кроме средней, в статистическом исследовании всегда следует определять моду и медиану.

Мода, медиана и выборочная средняя совпадут, если вариационный ряд является симметричным: $$ X_{cp}=M_o=M_e $$ Если вершина распределения сдвинута влево и правая часть ветви длиннее левой (длинный правый хвост), такая асимметрия называется правосторонней. При правосторонней асимметрии: $$ M_olt M_elt X_{cp} $$ Если вершина распределения сдвинута вправо и левая часть ветви длиннее правой (длинный левый хвост), такая асимметрия называется левосторонней. При левосторонней асимметрии: $$ M_ogt M_egt X_{cp} $$ Для умеренно асимметричных рядов (по Пирсону) модуль разности между модой и средней не более 3 раз превышает модуль разности между медианой и средней: $$ frac{|M_o-X_{cp}|}{|M_e-X_{cp}|}geq 3 $$

Например:
Для распределения учеников по оценкам мы получили (X_{cp}=3,5; M_o=3; M_e=3).
Т.к. средняя оказалась больше моды и медианы, наше распределение имеет правостороннюю асимметрию (что видно на полигоне частот – правый хвост длиннее).
При этом (frac{|M_o-X_{cp}|}{|M_e-X_{cp}|}=frac{0,5}{0,5}=1lt 3), т.е. распределение умеренно асимметрично.

п.5. Выборочная дисперсия и СКО

Выборочная дисперсия дискретного вариационного ряда определяется как средняя взвешенная для квадрата отклонения от средней: begin{gather*} D=frac{(x_1-X_{cp})^2 f_1+(x_2-X_{cp})^2 f_2+…+(x_k-X_{cp})^2 f_k}{N}=\ =frac1Nsum_{i=1}^k(x_i-X_{cp})^2 f_i=frac1Nsum_{i=1}^k x_i^2 f_i-X_{cp}^2 end{gather*} Или, через относительные частоты: $$ D=sum_{i=1}^k(x_i-X_{cp})^2 w_i=sum_{i=1}^k x_i^2 w_i-X_{cp}^2 $$

Выборочное среднее квадратичное отклонение (СКО) определяется как корень квадратный из выборочной дисперсии: $$ sigma=sqrt{D} $$

Например:
1) Найдем выборочную дисперсию для распределения учеников по оценкам:

Оценка, (x_i) 2 3 4 5 Всего
К-во учеников, (f_i) 3 15 10 5 33
(x_i^2) 4 9 16 25
(x_i^2 f_i) 12 135 160 125 432

$$ D=frac{12+135+160+125}{33}-3,5^2=frac{432}{33}-3,5^2approx 0,73 $$ 2) Значение СКО: (sigma=sqrt{D}approx 0,86)

п.6. Исправленная выборочная дисперсия, стандартное отклонение выборки и коэффициент вариации

Исправленная выборочная дисперсия дискретного вариационного ряда определяется как: begin{gather*} S^2=frac{1}{N-1}sum_{i=1}^k(x_i-X_{cp})^2 f_i=frac{N}{N-1}D end{gather*}

В теоретической статистике доказывается, что выборочная дисперсия D является смещенной оценкой дисперсии при распространении на генеральную совокупность.
А именно, выборочная дисперсия D всегда меньше математического ожидания для дисперсии генеральной совокупности.
Исправленная выборочная дисперсия S2 является несмещенной оценкой.

Стандартное отклонение выборки определяется как корень квадратный из исправленной выборочной дисперсии: $$ s=sqrt{S^2} $$

Коэффициент вариации это отношение стандартного отклонения выборки к выборочной средней, выраженное в процентах: $$ V=frac{s}{X_{cp}}cdot 100text{%} $$

Если показатель вариации V<33%, то выборка считается однородной, т.е. большинство полученных в ней вариант находятся недалеко от средней, и выборочная средняя хорошо характеризует среднюю генеральной совокупности.
В противном случае, выборка неоднородна. Варианты в выборке находятся далеко от средней, есть выбросы. А значит, и в генеральной совокупности они возможны. Т.е., распространять результаты выборки на генеральную совокупность нельзя.

Внимание!

Если исследуется не выборка, а вся генеральная совокупность, дисперсию «исправлять» не нужно.

Например:
Для распределения учеников по оценкам получаем:
1) Исправленная выборочная дисперсия $$ S^2=frac{N}{N-1}D=frac{33}{32}cdot 0,73approx 0,76 $$ 2) Стандартное отклонение $$ x=sqrt{S^2}approx 0,87 $$ 3) Коэффициент вариации: $$ V=frac{0,87}{3,5}cdot 100text{%}approx 24,8text{%}lt 33text{%} $$ Выборка является однородной.
Это означает, что согласно коэффициенту вариации полученные результаты контрольной работы можно рассматривать в качестве «типичных» и распространить их на генеральную совокупность, т.е. на всех школьников, которые будут писать эту работу.

п.7. Алгоритм исследования дискретного вариационного ряда

На входе: таблица с вариантами (x_i) и частотами (f_i, i=overline{1,k})
Шаг 1. Составить расчетную таблицу. Найти (w_i,S_i,x_if_i,x_i^2,x_i^2f_i)
Шаг 2. Построить полигон относительных частот (эмпирический закон распределения) и график кумуляты с эмпирической функцией распределения. Записать эмпирическую функцию распределения.
Шаг 3. Найти выборочную среднюю, моду и медиану. Проанализировать симметрию распределения.
Шаг 4. Найти выборочную дисперсию и СКО.
Шаг 5. Найти исправленную выборочную дисперсию, стандартное отклонение и коэффициент вариации. Сделать вывод об однородности выборки.

п.8. Примеры

Пример 1. На площадке фриланса была проведена выборка из 100 фрилансеров и подсчитано количество постоянных заказчиков, с которыми они работают.
В результате было получено следующее распределение:

Число постоянных заказчиков 0 1 2 3 4 5
Число фрилансеров 22 35 27 11 3 1

Исследуйте полученный вариационный ряд.

1) Вариационный ряд является дискретным.
Исследуемый признак – «число постоянных заказчиков».
Варианты признака (x_iinleft{0;1;..;5right}). Количество вариант k=6.
Составим расчетную таблицу:

(x_i) 0 1 2 3 4 5
(f_i) 23 35 27 11 3 1 100
(w_i) 0,23 0,35 0,27 0,11 0,03 0,01
(S_i) 0,23 0,58 0,85 0,96 0,99 1
(x_if_i) 0 35 54 33 12 5 139
(x_i^2) 0 1 4 9 16 25
(x_i^2f_i) 0 35 108 99 48 25 315

2) Полигон относительных частот (эмпирический закон распределения):
Пример 1
Кумулята и эмпирическая функция распределения:
Пример 1
$$ F(x)= begin{cases} 0, xleq 0\ 0,23, 0lt xleq 1\ 0,58, 1lt xleq 2\ 0,85, 2lt xleq 3\ 0,96, 3lt xleq 4\ 0,99, 4lt xleq 5\ 1, xgt 5 end{cases} $$ 3) Выборочная средняя: $$ X_{cp}=frac1Nsum_{i=1}^k x_if_i= frac{1}{100}cdot 139=1,39 $$ Мода (абсцисса самой высокой точки на полигоне частот): (M_0=1).
Медиана (абсцисса первой слева точки на кумуляте, где значение превысило 0,5): точка (1;0,58), (M_e=1).

(X_{cp}gt M_e=M_0) – распределение асимметрично, с правосторонней асимметрией.
При этом (frac{|M_0-X_{cp}|}{|M_e-X_{cp}|}=frac{0,39}{0,39}=1lt 3), т.е. распределение умеренно асимметрично.

4) Выборочная дисперсия: $$ D=frac1Nsum_{i=1}^k x_i^2f_i-X_{cp}^2=frac{1}{100}cdot 315-1,39^2=1,2179approx 1,218 $$ CKO: $$ sigma=sqrt{D}approx 1,104 $$
5) Исправленная выборочная дисперсия: $$ S^2=frac{N}{N-1}D=frac{100}{99}cdot 1,218approx 1,230 $$ Стандартное отклонение выборки: $$ s=sqrt{S^2}approx 1,109 $$ Коэффициент вариации: $$ V=frac{s}{X_{cp}}cdot 100text{%}=frac{1,109}{1,39}cdot 100text{%}approx 79,8text{%}gt 33text{%} $$ Представленная выборка неоднородна. Полученное значение средней (X_{cp}=1,39) не может быть распространено на генеральную совокупность всех фрилансеров.

Дисперсия дискретной случайной величины

Онлайн калькулятор для вычисления дисперсии дискретного распределения случайных величин.
Дисперсия — мера отклонения данной случайной величины от математического ожидания в теории вероятности.

Как найти дисперсии, формула (на примере следующих величин):
xi= 1 ; 2 ; 5 ; 6 (случайные величины)
pi = 0.1 ; 0.3 ; 0.1 ; 0.5 (вероятность)

M[X] = x1p1 + x2p2 + x3p3 + x4p4 = 1×0.1 + 2×0.3 + 5×0.1 + 6×0.5 = 0.1 + 0.6 + 0.5 + 3 = 4.2 (математическое ожидание дискретного распределения)

M[X2] = x12p1 + x22p2 + x32p3 + x42p4 = 12×0.1 + 22×0.3 + 52×0.1 + 62×0.5 = 0.1 + 1.2 + 2.5 + 18 = 21.8

D[X] = M[X2] — (M[X])2 = 21.8 — (4.2)2 = 21.8 — 17.64 = 4.16 (дисперсия)

Калькулятор для нахождения выборочной дисперсии.

×

Пожалуйста напишите с чем связна такая низкая оценка:

×

Для установки калькулятора на iPhone — просто добавьте страницу
«На главный экран»

Для установки калькулятора на Android — просто добавьте страницу
«На главный экран»

Смотрите также

Дисперсия и ее свойства.
Среднее квадратическое отклонение

  • Краткая теория
  • Примеры решения задач
  • Задачи контрольных и самостоятельных работ

Краткая теория


Дисперсия и формула для ее вычисления

На практике часто требуется оценить рассеяние возможных значений случайной величины вокруг ее среднего значения. Например, в артиллерии важно знать, насколько кучно лягут снаряды вблизи цели, которая должна быть поражена.

На первый взгляд может показаться, что для оценки рассеяния проще всего вычислить все возможные значения отклонения случайной величины и затем найти их среднее значение. Однако такой путь ничего не даст, так как среднее значение отклонения, т. е. M[X-M(X)], для любой случайной величины равно нулю. Это свойство объясняется тем, что одни возможные отклонения положительны, а другие — отрицательны; в результате их взаимного погашения среднее значение отклонения равно нулю. Эти соображения говорят о целесообразности заменить возможные отклонения их абсолютными значениями или их квадратами. Так и поступают на деле. Правда, в случае, когда возможные отклонения заменяют их абсолютными значениями, приходится оперировать с абсолютными величинами, что приводит иногда к серьезным затруднениям. Поэтому чаще всего идут по другому пути, то есть вычисляют среднее значение квадрата отклонения, которое и называют дисперсией.

Дисперсией называется
математическое ожидание квадрата отклонения случайной величины

 от

:

Для того чтобы найти дисперсию, достаточно вычислить сумму произведений возможных значений квадрата отклонения на их вероятности.

Для вычисления дисперсии
на практике удобно пользоваться следующей формулой:

Свойства дисперсии

Свойство 1.

Дисперсия равна разности между
математическим ожиданием квадрата случайной величины

 и
квадратом ее математического ожидания.

Свойство 2.

Дисперсия константы
равна нулю:

Свойство 3.

Постоянный множитель
выносится из-под знака дисперсии в квадрате:

Свойство 4.

Дисперсия суммы
случайных величин:

где 

 –
ковариация  случайных величин

 и

На сайте можно заказать решение контрольной или самостоятельной работы, домашнего задания, отдельных задач. Для этого вам нужно только связаться со мной:

ВКонтакте
WhatsApp
Telegram

Мгновенная связь в любое время и на любом этапе заказа. Общение без посредников. Удобная и быстрая оплата переводом на карту СберБанка. Опыт работы более 25 лет.

Подробное решение в электронном виде (docx, pdf) получите точно в срок или раньше.

Следствия из свойств дисперсии.

В частности, если

 и

 независимы, то

Прибавление константы

 в
случайной величине не меняет ее дисперсии:

Дисперсия разности равна сумме дисперсий:

Среднеквадратическое отклонение

Для оценки рассеяния возможных значений случайной величины вокруг ее среднего значения кроме дисперсии служат и некоторые другие характеристики. К их числу относится среднее квадратическое отклонение.

Стандартное (среднее
квадратичное) отклонение
случайной величины

 определяется
как корень из дисперсии и обозначается

Легко показать, что дисперсия имеет размерность, равную квадрату размерности случайной величины. Так как среднее квадратическое отклонение равно квадратному корню из дисперсии, то ее размерность совпадает с размерностью X. Поэтому в тех случаях, когда желательно, чтобы оценка рассеяния имела размерность случайной величины, вычисляют среднее квадратическое отклонение, а не дисперсию. Например, если X выражается в линейных метрах, то среднее квадратичное отклонение X будет выражаться также в линейных метрах, a дисперсия X — в квадратных метрах.

Смежные темы решебника:

  • Математическое ожидание и его свойства
  • Дискретная случайная величина
  • Непрерывная случайная величина

Примеры решения задач


Пример 1

В коробке 20 конфет, из которых 4 с
вареньем. Х – число конфет с вареньем среди двух случайно выбранных. Найти
дисперсию случайной величины Х.

Решение

На сайте можно заказать решение контрольной или самостоятельной работы, домашнего задания, отдельных задач. Для этого вам нужно только связаться со мной:

ВКонтакте
WhatsApp
Telegram

Мгновенная связь в любое время и на любом этапе заказа. Общение без посредников. Удобная и быстрая оплата переводом на карту СберБанка. Опыт работы более 25 лет.

Подробное решение в электронном виде (docx, pdf) получите точно в срок или раньше.

Случайная
величина

 – число конфет с вареньем, может принимать
значения 0,1,2

Найдем
соответствующие вероятности:

Проверка:

Получаем
следующий закон распределения СВ

:

Математическое
ожидание:

Дисперсию
можно вычислить по формуле:

Искомая
дисперсия:


Пример 2

Даны
законы распределения независимых случайных величин X и Y:

и

Найти
закон распределения суммы (X+Y). Проверить равенство D(X+Y)=D(X)+D(Y).

Решение

На сайте можно заказать решение контрольной или самостоятельной работы, домашнего задания, отдельных задач. Для этого вам нужно только связаться со мной:

ВКонтакте
WhatsApp
Telegram

Мгновенная связь в любое время и на любом этапе заказа. Общение без посредников. Удобная и быстрая оплата переводом на карту СберБанка. Опыт работы более 25 лет.

Подробное решение в электронном виде (docx, pdf) получите точно в срок или раньше.

Распределение суммы

:

Окончательно получаем:

2 3 4 Итого

0.2 0.5 0.3 1

Вычислим математические ожидания:

Вычислим
дисперсии:

Проверим
равенство

:

Равенство
выполняется.


Пример 3

Вероятность
изготовления бракованной детали на первом станке составляет 3%, на втором
станке 5%. На первом станке было изготовлено 20 деталей, на втором 40 деталей.
Найти математическое ожидание и дисперсию числа бракованных деталей.

Решение

Математическое
ожидание биномиального распределения:

Дисперсия:

Математическое
ожидание величины

 – числа бракованных деталей на 1-м станке:

Дисперсия:

Математическое
ожидание величины

 – числа бракованных деталей на 2-м станке:

Дисперсия:

Математическое
ожидание числа бракованных деталей:

Дисперсия
числа бракованных деталей:

Ответ:

.


Пример 4

Случайные
величины X,Y распределены по закону
Пуассона. Найдите M{(X+Y)2}, если M(X)=40 и
M(Y)=70, а коэффициент корреляции X и Yравен 0,8.

Решение

На сайте можно заказать решение контрольной или самостоятельной работы, домашнего задания, отдельных задач. Для этого вам нужно только связаться со мной:

ВКонтакте
WhatsApp
Telegram

Мгновенная связь в любое время и на любом этапе заказа. Общение без посредников. Удобная и быстрая оплата переводом на карту СберБанка. Опыт работы более 25 лет.

Подробное решение в электронном виде (docx, pdf) получите точно в срок или раньше.

Поскольку
случайные величины

 и

 распределены по закону Пуассона и известны их
математические ожидания, соответствующие дисперсии равны:

Пользуясь
свойствами математического ожидания и дисперсии:

Подставляя
числовые значения, получаем:

Ответ:

.

Задачи контрольных и самостоятельных работ


Задача 1

Независимые случайные величины X и Y
заданы следующими законами:

x 2.3 2.5 2.7 2.9
p 0.4 0.3 0.2 0.1

Укажите
законы распределения случайной величины X+Y, X-Y и найдите их
математическое ожидание и дисперсию.


Задача 2

Найти
дисперсию, математическое ожидания, среднекваратическое отклонение ДСВ X,
заданной законом распределения.

x -5 2 3 4
p 0,4 0,3 0,1 0,2

Написать F(x) и построить ее график.


Задача 3

Случайная
величина X имеет плотность вероятности

Требуется
найти дисперсию Dx.


На сайте можно заказать решение контрольной или самостоятельной работы, домашнего задания, отдельных задач. Для этого вам нужно только связаться со мной:

ВКонтакте
WhatsApp
Telegram

Мгновенная связь в любое время и на любом этапе заказа. Общение без посредников. Удобная и быстрая оплата переводом на карту СберБанка. Опыт работы более 25 лет.

Подробное решение в электронном виде (docx, pdf) получите точно в срок или раньше.

Задача 4

Вероятность
того, что прибор исправен, равна 0,8. X – число исправных приборов
из двух выбранных. Найти дисперсию случайной величины X.


Задача 5

Случайные
величины X и Y независимы. Найти
дисперсию случайной величины Z=2X+3Y, если известно, что D(X)=4, D(Y)=5.


Задача 6

Найти
дисперсию дискретной случайной величины X – числа отказов элемента
некоторого устройства в десяти независимых опытах, если вероятность отказа
элемента в каждом опыте равна 0,9.


Задача 7

Дискретная
случайная величина X имеет только два возможных значения: x1 и x2, причем x2>x1. Вероятность того, что X
примет значение x1, равна 0,6. Найти закон распределения величины X, если
математическое ожидание и дисперсия известны: M(X)=1,4; D(X)=0,24.


Задача 8

Закон
распределения случайной величины ξ имеет вид:

ξ -1 2 3 5
P 1/4 1/2 1/8 1/8

Найти функцию распределения случайной величины ξ,
вычислить ее математическое ожидание, дисперсию и среднее квадратическое
отклонение. Вычислить вероятность P{5⁄2<ξ<5}.


Задача 9

Дискретная
случайная величины X принимает лишь два значения. Большее из значений 3
она принимает с вероятностью 0,4. Кроме того, известна дисперсия случайной
величины D(X)=6. Найти математическое
ожидание случайной величины.


Задача 10

Найти
дисперсию по заданному непрерывному закону распределения случайной величины X,
заданному плотностью вероятности

 при

 и

 в остальных точках.

  • Краткая теория
  • Примеры решения задач
  • Задачи контрольных и самостоятельных работ

Содержание:

  • Свойства дисперсии

Чтобы осуществить качественный анализ или выполнить хороший прогноз,
недостаточно знать оценку вероятности выполнения события, а также оценку его
чаще всего выпадающего результата. Для качественной полноценной проработки,
необходимо получить больше данных. Требуется при проведении экспериментальных
работ научиться рассчитывать степень отклонения получающихся результатов
(случайных величин) от их матожидания. В Теории вероятностей существует
отдельный параметр, который отвечает за подобный анализ. Он носит название
дисперсия. Другое его наименование — стандартное или
среднеквадратическое отклонение.

Дисперсия без особого труда может быть вычислена для дискретных случайных
величин задаваемы последовательностями значений самих величин $ X_1, X_2 …
X_n$ и рядом, в котором указаны вероятности $ P_1, P_2 … P_n$,
соответствующие каждому конкретному из этих значений.

Определение 1

Для величины, являющейся случайной, дисперсия может быть вычислена
согласно типовой формуле, при этом её обозначение D(X), где Х —
обозначение случайной величины. Типовая формула для определения значения
дисперсии выглядит следующим образом:

$D(X)=M[(X-M[x])^2]$

Здесь указано M, для случайной величины Х это матожидание. Сама дискретная
величина представлена в определённом вероятностном пространстве, что значит
— она задаётся рядом, в котором каждому конкретному значению, ею
принимаемому, соответствует определённая вероятность. Значение дисперсии при
этом имеет тот смысл, что она представляет собой математическое ожидание от
отклонения дискретной случайной величины, возведённого во вторую степень.
Когда говорится «отклонение», то имеется в виду ни что иное, как
отклонение случайной величины от её математического ожидания (оно же
среднеарифметическое значение и наиболее ожидаемый результат). 

Определение 2

Другой параметр, который наряду с дисперсией также важен для анализа
систем, рассматриваемых в Теории вероятностей, называется средним
квадратическим отклонением. Параметр также относится к случайной величине
и математически представляет собой квадратный корень из дисперсии:

$sigma(X)=sqrt{D(X)}$

Пример

Допустим имеется случайная величина Х, являющаяся дискретной. Закон
распределения такой величины выражается в следующем виде:

    • Вероятность результата Х=1 имеет значение Р=1/6;

    • Вероятность результата Х=2 имеет значение Р=1/2;

    • Вероятность результата Х=3 имеет значение Р=1/3.

С помощью полученных исходных данных можно произвести вычисления для
матожидания. Оно будет найдено так:

$M(X)=1 cdot frac{1}{6}+2 cdot frac{1}{2}+2 cdot frac{1}{3}=
frac{13}{6}$

Чтобы рассчитать дисперсию, сделаем отдельную запись. Вычислим
распределение отклонения, относящегося к  случайной величине и её
матожиданию. Дополнительно определим квадрат данного отклонения:

Х-М(Х)= $-frac{7}{6}$, Р= $frac{1}{6}$.

Х-М(Х)= $-frac{1}{6}$,  Р=$frac{1}{2}$.

Х-М(Х)= $frac{5}{6}$,  Р=$frac{1}{3}$.

$(X-M(X))^2$=$frac{49}{36}$,  P=$frac{1}{6}$.

$(X-M(X))^2$=$frac{1}{36}$,  P=$frac{1}{2}$.

$(X-M(X))^2$=$frac{25}{36}$,  P=$frac{1}{3}$.

Используя полученные в результате вычисления данные, без труда рассчитаем
значение дисперсии:

$D(X)= frac{49}{36} cdot frac{1}{6} + frac{1}{36} cdot frac{1}{2} +
frac{25}{36} cdot frac{1}{3} = frac{17}{36}$

Теорема 1

Для определения значения дисперсии, можно произвести вычитание следующих
параметров: матожидания в квадрате и матожидания от квадрата
рассматриваемой величины, являющейся случайной. Причём матожидание от
квадрата  — будет играть роль вычитаемого.

$D(X)=M(X^2)- M^2(X)$

Доказательство

Понимая, что M(X), $2M(X)$, $M^2(X)$ имеют постоянные значения, а также
используя свойства матожидания. Такие как, свойство о постоянном
множителе, который можно вынести за знак матожидания. А также свойство о
матожидании суммы, которое равняется сумме матожиданий. Можно
преобразовать полученное ранее выражение, взятое как определение
дисперсии.

$$D(X)=M(X-M(X))^2=M(X^2-2XM(X)+M^2(X))=$$
$$M(X^2)-2M(X)M(X)+M^2(X)=$$
$$M(X^2)-2M^2(X)+ M^2(X) = $$
$$M(X^2) — M^2(X) $$

В итоге у нас получится необходимое выражение:

$D(X)=M(X^2)-M^2(X)$

Свойства дисперсии

Свойство 1

Для постоянной величины её дисперсия будет равна нулю.

D(C)=0

Свойство 2

Имеющийся постоянный множитель под знаком дисперсии может быть вынесен,
если перед этим он возведён в квадрат.

$D(СX)=С^2D(X)$

Свойство 3

Когда дискретные случайные величины, являющиеся независимыми, суммируются,
а затем требуется вычислить их дисперсию, то для них допустимо вычислить
дисперсии по отдельности и суммировать полученные результаты, а именно:

$D(X+Y)=D(X)+D(Y)$

Из полученного свойства имеют два следствия, первое из которых определяет
возможность вычислить дисперсию от суммы любого количества случайных
величин, большего двух, как сумму дисперсий этих же самых величин.

$D(X_1+X_2+…+X_n)=D(X_1)+D(X_2)+…+D(X_n)$

Второе следствие определяется для дисперсии взятой от суммы случайной
велчиины и постоянной величины, в таком случае результатом данного
суммирования будет дисперсия от случайной велчиины, ведь согласно ранее
приведённому свойству дисперсия от константы равна нулю.

$D(C+X)=D(X)$

Свойство 4

Из первого и третьего свойства дисперсии нетрудно определить также и то,
что при вычитании одной дискретной случайной величины из другой Рассмотрим
разность двух случайных величин. Общая дисперсия будет равна сумме их
дисперсий. Это утверждение легко вывести из первого и третьего свойств.

$D(X-Y)=D(X)+D(Y)$

236

проверенных автора готовы помочь в написании работы любой сложности

Мы помогли уже 4 430 ученикам и студентам сдать работы от решения задач до дипломных на отлично! Узнай стоимость своей работы за 15 минут!

Понравилась статья? Поделить с друзьями:
  • Cpu fan error при загрузке что это как исправить
  • Как найти утечку конденсатора
  • Как найти лесбиянку форум
  • Как найти свой талант текст
  • Как найти генетический код ирнк