Как найти дисперсию света

Опыты Ньютона

В (1666) году Исаак Ньютон, занимаясь усовершенствованием телескопов, обратил внимание на то, что изображение, получаемое с помощью объектива телескопа, окрашено по краям. Чтобы проверить предположение о роли преломления света в появлении разноцветных световых полос, учёный использовал щель в ставне в качестве источника света. На пути полученного узкого пучка разместил стеклянную призму.

Белый свет является сложным: пройдя через призму, он разлагается на различные цвета.

Гипотеза Ньютона была настолько необычной для его современников: что вызвала сильное волнение и вопросы среди учёных Ньютон доказал справедливость своей теории: разложил одной призмой белый свет на спектр и поставил вторую перевёрнутую призму, собрав спектр обратно в белый луч.

3 Asset 2.svg

Преломлённый белый свет превратился в радугу из семи цветных полос, которую Ньютон назвал спектром. В спектре Ньютон выделил семь цветов: красный, оранжевый, жёлтый, зелёный, голубой, синий, фиолетовый.

Оптический спектр (от лат. spectrum — «видение», «изображение») — распределение оптического излучения по длинам волн.

Явление разложения света призмой на разноцветные полосы Ньютон назвал дисперсией.

Дисперсия (от лат. dispersio — «рассеяние») — разложение света на спектральные цвета при прохождении через оптически плотное вещество вследствие зависимости показателя преломления и скорости света в веществе от частоты (или длины) световой волны.

Различным цветам соответствуют различные показатели преломления: лучи красного цвета отклоняются на меньший угол, наибольший угол отклонения у лучей фиолетового цвета.

В трактате «Оптика» Ньютон написал:

Световые пучки, отличающиеся по цвету, отличаются по степени преломляемости.

Как известно, показатель преломления среды (n) зависит от скорости света (upsilon) в веществе:

n=cv

, где (c) — скорость света в вакууме.

Чем оптически плотнее среда, тем больше показатель преломления, тем меньше скорость света в веществе. Поэтому лучи фиолетовой части спектра преломляются сильнее (отклоняются на больший угол) по сравнению с лучами красного света, которые имеют большую длину волны (меньшую частоту). 

Дисперсия света — зависимость показателя преломления от длины волны света.

Дисперсией объясняется радуга. В каплях воды солнечные лучи преломляются и образуют спектр.

При прохождении белого света через две призмы (рис.) на выходе наблюдается только «одноцветный» свет, который называется монохроматическим (происхождение термина от др.-греч. «один цвет»).

4 Asset 1.svg

Свет каждого цвета располагается в достаточно узком интервале частот. Например, частота красного света соответствует интервалу 405-480 ТГц. Обычно для характеристики монохроматического цвета используют только одну определённую частоту.

Формирование у человека  цветового восприятия физических тел является сложным физиологическим процессом. С точки зрения электромагнитной природы света окрашенность тел определяется зависимостью «поглощательной» способности тела от длины волны падающего света.

Данная зависимость используется в светофильтрах, которые в зависимости от вещества светофильтра поглощают свет конкретных длин волн (например, пленка со свойством сильно поглощать сине-зеленые лучи видимого спектра при освещении светом с такой же длиной волны будет казаться черной).

Внимание! Администрация сайта rosuchebnik.ru не несет ответственности за содержание методических разработок, а также за соответствие разработки ФГОС.

  • Участник: Ворошнин Данил Александрович
  • Руководитель: Базыльникова Марина Александровна

Введение

Мы живем в мире разнообразных световых явлений – радуга, полярные сияния, голубое небо. Тем, кто не знаком с причинами их возникновения, эти световые явления кажутся необыкновенными и загадочными.

В повседневной жизни мы встречаемся со многими световыми явлениями, но обычно не задумываемся над ними – насколько они привычны для нас, а вот объяснить их часто затрудняемся. Например, чайная ложка, опущенная в стакан с водой, кажется нам надломленной или сломанной, в зависимости от того, с какой стороны мы смотрим на ложку. Мы видим окружающие нас предметы многоцветными при освещении Солнцем или яркой лампой, но с наступлением сумерек или при ослаблении света цветность предметов блекнет.

Все эти явления связаны с понятием «свет». В обыденной речи «свет» мы используем в самых разных значениях: ученье – свет, а неученье – тьма, свет мой, солнышко, скажи … В физике термин «свет» имеет гораздо более определенное значение. Опытным путем было установлено, что свет нагревает тела, на которое падает. Следовательно, он передает этим телам энергию. Мы также знаем, что одним из видов теплопередачи является излучение, следовательно, Свет – это электромагнитное излучение, воспринимаемое человеческим глазом и вызывающее зрительные ощущения. Свет обладает множественными свойствами, одним таким свойством света является – дисперсия. Мы всегда сталкиваемся с этим явлением в жизни, но не всегда замечаем этого. Но если быть внимательным, то явление дисперсии всегда нас окружает. Одно из таких явлений это обычная радуга. На первый взгляд радуга это что-то простое, на самом деле при возникновении радуги происходят сложные физические процессы. Поэтому мы выбрали тему дисперсия света для того, чтобы глубже понять физические процессы и явления, происходящие в природе. Это очень интересная тема и мы постараемся в своем проекте представить все моменты, происходящие в истории развития науки о свете и показать опыты по демонстрации дисперсии света, а так же свою экспериментальную установку, разработанную специально для наблюдения дисперсии света, которая впоследствии может быть использована на уроках физики при изучении данной темы.

Цель проекта – изучение понятия «Дисперсия света» и изготовление экспериментальной установки «Цветовой диск Ньютона».

Задачи:

  1. Изучить историю открытия И. Ньютоном явления Дисперсия света.
  2. Рассмотреть спектральный состав света.
  3. Дать понятие о дисперсии света.
  4. Подготовить эксперименты по наблюдению дисперсии света.
  5. Рассмотреть природное явление радуга.
  6. Изготовить экспериментальную установку «Цветовой диск Ньютона».

I. Теоритическая часть

1.1. Открытие Исаака Ньютона

В 1665–1667 годах Исаак Ньютон – английский физик и математик занимаясь усовершенствованием телескопов, обратил внимание на то, что изображение, даваемое объективом, по краям окрашено, данное наблюдение его очень заинтересовало, и он решил разгадать природу возникновения цветных полос. В это время в Англии свирепствовала эпидемия чумы, и молодой Исаак Ньютон решил укрыться от неё в своём родном Вулсторпе. Перед отъездом в деревню он приобрёл стеклянные призмы, чтобы «произвести опыты со знаменитыми явлениями цветов». Исследуя природу цветов, Ньютон придумал и выполнил целый комплекс различных оптических экспериментов. Некоторые из них без существенных изменений в методике, используются в физических лабораториях до сих пор. Главный опыт был традиционным. Проделав небольшое отверстие в ставне окна затемнённой комнаты, Ньютон поставил на пути пучка лучей, проходивших через это отверстие, стеклянную призму. На противоположной стене он получил изображение в виде полоски чередующихся цветов (рис. 1).

Рисунок 1. Эксперимент И. Ньютона

Рисунок 1. Эксперимент И. Ньютона

1.2. Спектральный состав света

Полученную таким образом цветную полоску солнечного света Ньютон разделил на семь цветов радуги – красный, оранжевый, жёлтый, зелёный, голубой, синий, фиолетовый (рис. 2).

Рисунок 2. Разложение белого пучка света на спектр

Рисунок 2. Разложение белого пучка света на спектр

Спектр – (от латинского «spectrum» – видение) непрерывный ряд цветных полос, получается путем разложения луча белого света на составные части (рис. 3).

Рисунок 3. Спектр

Рисунок 3. Спектр

Если же рассматривать спектр без подобного предубеждения, то полоса спектра распадается на три главные части – красную, желто-зелёную и сине-фиолетовую. Остальные цвета занимают сравнительно узкие области между этими основными.

Все цвета спектра содержатся в самом солнечном свете, а стеклянная призма лишь разделяет их, так как различные цвета по-разному преломляются стеклом. Наиболее сильно преломляются фиолетовые лучи, слабее всего – красные.

1.3. Дисперсия света

Проходя через призму, луч солнечного света не только преломляется, но и разлагается на различные цвета.

Дисперсией называется явление разложения света на цвета при прохождении света через вещество.

Прежде чем разобраться в сути этого явления, необходимо рассмотреть преломлении световых волн. Изменение направления распространения волны при прохождении из одной среды в другую называется преломлением.

Положим на дно пустого не прозрачного стакана монету или другой небольшой предмет. Подвинем стакан так, чтобы центр монеты, край стакана и глаз находились на одной прямой. Не меняя положения головы, будем наливать в стакан воду. По мере повышения уровня воды дно стакана с монетой как бы приподнимается. Монета, которая ранее была видна лишь частично, теперь будет видна полностью. Эти явления объясняются изменением направления лучей на границе двух сред — преломлением света (рис. 4).

Рисунок 4. Преломление светового луча

Рисунок 4. Преломление светового луча

Закон преломления света: падающий луч, луч преломленный и перпендикуляр, восставленный в точке падения, лежат в одной плоскости.

где n21 – относительный показатель преломления второй среды относительно первой.

При изменении угла падения α меняется и угол преломления β, но при любом угле падения отношения синусов этих углов остается постоянным для данных двух сред.

Если луч переходит в какую-либо среду из вакуума, то

где n – абсолютный показатель преломления второй среды.

Абсолютный показатель преломления – физическая величина, равная отношению синуса угла падения луча к синусу угла преломления при переходе луча из вакуума в эту среду.

Чем больше у вещества показатель преломления, тем более оптически плотным считается это вещество. Например, рубин – среда оптически более плотная, чем лёд.

Преломление света при переходе из одной среды в другую вызвано различием в скоростях распространения света в той и другой среде. Это было доказано французским математиком Пьером Ферма и голландским физиком Христианом Гюйгенсом. Они доказали, что

Отношение синуса угла падения к синусу угла преломления есть величина постоянная для данных двух сред, равная отношению скоростей света в этих средах:

Скорость света в любом веществе меньше скорости света в вакууме. Причиной уменьшения скорости света в среде является взаимодействие световой волны с атомами и молекулами вещества. Чем сильнее взаимодействие, тем больше оптическая плотность среды, и тем меньше скорость света. Среду с меньшим абсолютным показателем преломления принято называть оптически менее плотной средой.

Абсолютный показатель преломления определяется скоростью распространения света в данной среде, которая зависит от физического состояния среды, т. е. от температуры вещества его плотности. Показатель преломления зависит также и от характеристик самого света. Для красного света он меньше, чем для зеленого, а для зеленого – меньше, чем для фиолетового.

Таким образом,

Дисперсия света – зависимость показателя преломления и скорости света от частоты световой волны.

Абсолютный показатель преломления стекла n, из которого изготовлена призма, зависит не только от свойств стекла, но и от частоты (от цвета) проходящего через него света. В опыте Ньютона при разложении в спектр пучка белого света, лучи фиолетового цвета, имеющие большую частоту, чем красные, преломились сильнее красных, поэтому на экране можно наблюдать цветную полосу – спектр (рис. 5).

Рисунок 5. Преломление светового луча при прохождении через более оптически-плотную среду – стеклянную призму

Рисунок 5. Преломление светового луча при прохождении через более оптически-плотную среду – стеклянную призму

1.4. Радуга

Дисперсией света объясняются многие явления природы, например Радуга. В результате преломления солнечных лучей в каплях воды во время дождя на небе появляется разноцветная дуга – радуга (рис. 6).

Рисунок 6. Природное явление радуга

Рисунок 6. Природное явление радуга

Радуга — это оптическое явление, связанное с преломлением световых лучей на многочисленных капельках дождя.

Разноцветная дуга появляется оттого, что луч света преломляется в капельках воды, а затем, возвращаясь к наблюдателю под углом в 42 градуса, расщепляется на составные части от красного до фиолетового цвета (рис. 7).

Рисунок 7. Преломления света в капле дождя

Рисунок 7. Преломления света в капле дождя

Прежде всего, заметим, что радуга может наблюдаться только в стороне, противоположной Солнцу. Если встать лицом к радуге, то Солнце окажется сзади. Наблюдаемые в радуге цвета чередуются в такой же последовательности, как и в спектре, получаемом при пропускании пучка солнечных лучей через призму. При этом внутренняя (обращенная к поверхности Земли) крайняя область радуги окрашена в фиолетовый цвет, а внешняя крайняя область — в красный.

Яркость оттенков и ширина радуги зависят от размера капель дождя. Чем крупнее капли, тем уже и ярче радуга, тем в ней больше красного насыщенного цвета. Если идёт мелкий дождик, то радуга получается широкая, но с блёклыми оранжевыми и жёлтыми краями.

Чаще всего видим радугу в форме дуги, но дуга – это лишь часть радуги. Радуга имеет форму окружности, но мы наблюдаем лишь половину дуги, потому что её центр находится на одной прямой с нашими глазами и Солнцем (рис. 8).

Рисунок 8. Схема образования радуги относительно наблюдателя

Рисунок 8. Схема образования радуги относительно наблюдателя

Целиком радугу можно увидеть лишь на большой высоте, с борта самолёта или с высокой горы (рис. 9).

Рисунок 9. Радуга с борта самолета

Рисунок 9. Радуга с борта самолета

II. Практическая часть

2.1. Демонстрация экспериментов по наблюдению дисперсии света

Изучив историю открытия дисперсии света, и процесс образования спектра, мы решили опытным путем пронаблюдать дисперсию света. Для этого подготовили и провели видео эксперименты, которые можно использовать на уроках физики при изучении темы Дисперсия света.

Эксперимент №1. Получение радужного спектра на мыльных пленках

Для проведения эксперимента понадобится: ёмкость с мыльным раствором, проволочная рамка.

Ход эксперимента: наливаем мыльный раствор в ёмкость, опускаем рамку в раствор, образуется мыльная плёнка. На плёнке появляется радужные полосы.

Эксперимент № 1

Эксперимент №2. Дисперсия света – разложение в радужный спектр пучка белого света при прохождении сквозь стеклянную призму

Для проведения эксперимента понадобится: призма, источник света (фонарик телефона), экран (лист белой бумаги).

Эксперимент № 2

Ход эксперимента: устанавливаем призму на экспериментальном столике. С одной стороны столика устанавливаем экран. Свет направляем на призму и на экране наблюдаем радужные полосы.

Ход эксперимента № 2

Ход эксперимента № 2

Эксперимент № 3. Дисперсия света – разложение в радужный спектр пучка белого света при прохождении через воду

Для проведения эксперимента понадобится: зеркало, источник света (фонарик телефона), экран (лист белой бумаги), ёмкость с водой.

Эксперимент № 3

Эксперимент № 3

Ход эксперимента: в ёмкость наливаем воду и кладем на дно зеркало. Направляем на зеркало свет, чтобы отраженный свет попадал на экран.

Ход эксперимента № 3

Ход эксперимента № 3

1.2. Цветовой диск Ньютона

Ньютон провел обычный опыт со стеклянной призмой и заметил разложение света на спектр. Направив луч дневного света на призму, он увидел на экране различные цвета радуги. После увиденного он выделил из них семь основных цветов. Это были такие цвета как: красный, оранжевый, желтый, зеленый, голубой, синий и фиолетовый (каждый охотник желает знать где сидит фазан). Ньютон выбрал лишь семь цветов по той причине, что были наиболее яркие, он также говорил, что в музыке всего семь нот, но сочетание их, различные вариации позволяют получить совершенно различные мелодии. Проведя обратный опыт, т.е. полученный спектр он направил на грань другой призмы и в результате опыта Ньютон снова получил белый свет (рис.10).

Рисунок 10. Первая призма разлагает белый свет в спектр, вторая вновь собирает спектр в белый свет

Рисунок 10. Первая призма разлагает белый свет в спектр, вторая вновь собирает спектр в белый свет

На основе этих простых опытов Ньютону пришла в голову мысль о создании круга состоящего из семи секторов и закрашенных определенными цветами в результате вращения, которого произойдет их смешение и мы получим белую раскраску этого круга. В последствии этот круг стали называть Цветной диск Ньютона (рис. 11).

Рисунок 11. Цветной диск Ньютона

Рисунок 11. Цветной диск Ньютона

Попробуем повторить опыт Ньютона. Для этого создадим экспериментальную установку, которая состоит из компьютерного кулера и прикрепленного к нему цветового диска, также блока питания (рис. 12).

Рисунок 12. Экспериментальная установка по получению белого света из спектра

Рисунок 12. Экспериментальная установка по получению белого света из спектра

Кулер создает большой проток воздуха, и служит для того что бы привести во вращение цветной диск. Так как наша установка подключается в сеть с напряжением 220 В, а кулер рассчитан на 12 В, поэтому к кулеру подключили блок питания для понижения напряжения с 220 В на 12 В. Для безопасности установка изолирована в пластмассовом боксе.

В результате при включении установки в розетку сети питания цветной круг, закрепленный на кулере, начнет вращаться, и мы увидим желтовато-белую окраску круга (рис. 13).

Рисунок 13. Результат вращения цветового диск Ньютона

Рисунок 13. Результат вращения цветового диск Ньютона

Окраска круга при вращении желтовато-белая по двум причинам:

  1. Скорость вращения круга очень низкая по сравнению со скоростью света;
  2. Круг окрашен с резкими цветовыми переходами, если сравнивать со спектром разложения белого света.

Таким образом, нам удалось повторить эксперименты Ньютона по разделению белого света на спектр и наоборот получение белого света из спектра.

Заключение

Окружающий нас мир играет красками: нас радует и волнует голубизна неба, зелень травы и деревьев, красное зарево заката, семицветная дуга радуги. В своем проекте мы попытались ответить на вопрос — как можно объяснить удивительное многообразие красок в природе. В целом поставленная цель об изучении такого явления как дисперсия света в итоге достигнута. Для того чтобы глубже понять такое свойство света как дисперсия, была изучена дополнительная литература по световым явлениям, были проведены эксперименты по наблюдению явления, была изготовлена установка для вращения цветового круга Ньютона с некоторой скоростью.

В результате проведенных опытов и экспериментов нами были сделаны следующие выводы:

  1. Дисперсия – явление разложения белого света в спектр.
  2. Белый цвет имеет сложную структуру, состоящий из нескольких цветов.
  3. При падении света на границу раздела двух прозрачных сред световые лучи различной цветности преломляются по разному (наиболее сильно-фиолетовые лучи, менее других- красные).
  4. Призма не изменяет цвет, а лишь разлагает его на составные части.

Таким образом, посредством теоретического изучения данной темы и ее практического подтверждения и была достигнута основная цель проекта.

Дисперсия света (разложение света; светорассеяние) — это разложение света в спектр, обусловленное зависимостью показателя преломления среды от частоты световой волны.

Наверное, вы уже наблюдали явление образования разноцветной дуги в небе — радугу. Если нет, то, возможно, вы видели разноцветные капли росы солнечным утром. Если вам не нравится дождь и вы не любите вставать по утрам, поставьте перед собой стакан с газированной минеральной водой так, чтобы его освещали солнечные лучи. Затем вы увидите, что пузырьки газа в стекле меняют свой цвет и светятся. Все эти явления являются проявлениями разложения (дисперсии) света.

Разложение солнечного света с помощью призмы, проведенное Ньютоном в 1665-66 годах, было признано научным миром как один из десяти самых красивых экспериментов в истории физики. Таким образом, ученый продемонстрировал, что белый свет на самом деле представляет собой смесь цветов. При этом повторное соединение всех цветов в спектре дает белый свет.

Разложение белого света

Физиком, который впервые доказал, что белый свет представляет собой смесь различных цветов, был Исаак Ньютон, первооткрыватель закона всемирного тяготения. Именно Ньютон использовал призму в своем эксперименте.

Призма — это твердое тело из оптически прозрачного материала (обычно стекла), представляющее собой призму с треугольным основанием. Когда свет проходит через призму, он преломляется дважды: сначала на границе раздела воздух-стекло (при входе в призму), а затем на границе раздела стекло-воздух (при выходе из призмы). Ход светового луча в призме показан на рисунке 1 ниже.

Путь луча света в призме

Рис. 1. Путь луча света в призме

Опыт. Как и почему рассеивается свет?

Проверим гипотезу о том, что белый свет разлагается, потому что он представляет собой смесь основных, простых цветов.

Что вам понадобится?

  • источник белого света (светодиодный фонарик, проектор);
  • щель;
  • призма с подставкой;
  • экран.

Инструкция.

  1. Расположите щель вертикально непосредственно за источником света.
  2. Направьте источник света на одну стенку призмы.
  3. Расположите экран так, чтобы свет падал на него после прохождения через призму.

Вывод, который получим в результате опыта.

На экране мы наблюдаем так называемый спектр белого света, который представляет собой набор цветов от фиолетового до красного в результате дисперсии пучка белого света. Таким образом, белый свет представляет собой смесь цветов.

Каков механизм формирования спектра белого света? Луч света, представляющий собой смесь цветов, претерпевает двойное преломление при прохождении через призму (см. рисунок 2). Каждый компонент преломляется под разным углом, поскольку скорость его распространения меняется при переходе из одной среды в другую.

Механизм формирования спектра белого света при прохождении через призму

Рис. 2. Механизм формирования спектра белого света при прохождении через призму

Помните! При прохождении через призму фиолетовый свет отклоняется от своего первоначального направления в наибольшей степени, а красный — в наименьшей.

Дисперсия света уже происходит, когда белый свет попадает в призму. При выходе из призмы углы преломления, под которыми цветовые компоненты белого света покидают призму, увеличиваются, делая явление более заметным.

Дисперсия света может объяснить многие явления, наблюдаемые в природе, например, образование радуги.

Причина дисперсии света

Причина разложения белого света через призму заключается в следующем: свет разных цветов и, следовательно, разных длин волн имеет разную скорость распространения в материале, например, в стекле. В том же стекле, например, скорость распространения синего света ниже, чем красного.

Следовательно, согласно закону преломления света, синий свет преломляется сильнее, чем красный. В результате различного преломления разных частей белого света, свет разворачивается веером, образуя спектр. Это также называется спектром призмы. При использовании белого света создается непрерывный спектр.

Длины волн и частоты спектральных цветов

Видимый нами диапазон спектра охватывает диапазон длин волн от 390 нм до 780 нм. Это соответствует диапазону частот от 7,7⋅1014 Гц до 3,8⋅1014 Гц.

В направлении более длинных волн (более коротких частот) присоединяется инфракрасный свет, а в направлении более коротких волн (более высоких частот) присоединяется ультрафиолетовый свет.

На рисунке 3 приведены частоты и длины волн для шести спектральных цветов. Из данных видно, что каждый спектральный цвет охватывает определенный диапазон длин волн.

Поэтому необходимо проводить различие между светом спектрального цвета (всегда включает в себя диапазон длин волн) и светом определенной длины волны (всегда является частью света спектрального цвета).

Частоты и длины волн спектральных цветов
Рис. 3. Частоты и длины волн спектральных цветов

Проблемы, возникающие при дисперсии света

Дисперсия света — красивое и эффектное явление, но оно также может доставлять неприятности. Первые наблюдения за небом проводились с помощью телескопов, которые имели одинарные стеклянные линзы.

Преломление света в линзах астрономического телескопа

Рис. 4. Преломление света в линзах астрономического телескопа

Когда луч света проходит через линзу и преломляется, как в призме, особенно в «толстых» линзах, свет может «расщепляться» на основные цвета. Каждый цвет имеет свою фокусную точку (фокус) — поэтому нет единой точки, в которой сходятся все световые лучи. В результате вы можете заметить цветовую кайму (см. рисунок 4) вокруг наблюдаемых объектов и ощутить снижение остроты зрения.

Хроматическая аберрация

Рис. 5. Хроматическая аберрация (цветовая кайма)

Это явление называется хроматической аберрацией. Определение этого понятия следующее:

Хроматическая аберрация — это дефект линзы, вызванный разложением белого света на составляющие цвета, так что каждый цвет имеет свой собственный фокус, расположенный на разном расстоянии от линзы.

Хроматическая аберрация влияет на качество изображения как при астрономических наблюдениях, проводимых с помощью простых телескопов, так и в процессе обычной фотосъемки, поскольку фотоаппараты оснащены пластиковыми или стеклянными линзами. Этот эффект можно устранить, используя вместо отдельных линз систему соответствующим образом подобранных линз (ахроматическая система).

Примеры

Приведу следующие примеры явлений, где наблюдается дисперсии света:

  • Дисперсия белого света через призму. Как показано на рисунке 2, когда белый свет падает на призму, из нее выходит «коллекция» из семи цветов из-за дисперсии.
  • Дисперсия из-за масла на дороге. Небольшое количество масла обычно присутствует на поверхности дороги, например, смазочное масло из автомобилей, что приводит к появлению полос красивых цветов во время дождя.
  • Образование радуги. Радуга считается одним из самых удивительных световых проявлений, когда-либо наблюдавшихся на планете. Радуга — это многоцветная дуга, образованная светом, падающим на капли воды. Радуга образуется во время дождя в результате поглощения, преломления и рассеивания света в капельках воды. Все эти явления создают в небе световой спектр, который и называется радугой.
  • Дисперсия в алмазе. Это когда белый свет попадает в алмаз (или любой другой плотный объект), разделяется на все спектральные цвета радуги и отражается обратно в глаза наблюдателя в виде прекрасного проявления цветного света, также известного как «алмазный огонь».

Дисперсией
света
называется
зависимость показателя преломления
п
от частоты
v
(длины волны λ)
света
(или
зависимость фазовой скорости υ
световых
волн от его частоты v).

Следствием
дисперсии является разложение
в спектр

пучка белого света при прохождении его
через призму. Дисперсия
проявляется лишь при распространении
немонохроматических волн.

Рассмотрим
дисперсию света в призме. Пусть
монохроматический луч под углом α1,
падает на призму с показателем преломления
п
и
преломляющим углом А.
После
двукратного
преломления на левой и правой гранях
призмы луч отклоняется на угол
.

Если
углы А
и
α1,
(а значит и а2,
γ1
и γ2)
малы, то
.
Поскольку
γ1
+

γ
2
=
А,
то а2
=

γ
2п
= n
(А
γ1)
= =п(А
а1/n)
= пА
а1,
откуда а1
+ а2
= пА.
Поэтому
φ
= А(п

1) — угол отклонения лучей призмой тем
больше,
чем больше преломляющий угол призмы.

Величинаназываетсядисперсией
вещества.
Для
всех прозрачных
веществ показатель преломления
уменьшается с увеличением длины
волны:
(см. рисунок). Такая дисперсияназывается
нормальной
(или
отрицательной). Вблизи
линий и полос сильного поглощения ход
кривой
п(л)

кривой
дисперсии

обратный:

.
Такая дисперсия называется аномальной.
На
явлении нормальной
дисперсии основано действие
призменных
спектрографов.
Угол
отклонения
лучей призмой зави­сит
от показателя преломления, который
в свою очередь, зависит от
длины волны. Поэтому призма
разлагает белый свет в спектр,
отклоняя
красные лучи
(длина
волны больше) слабее,
чем
фиолетовые
(длина
волны меньше).

26. Электронная теория дисперсии.

Электронная
теория дисперсии Лоренца
рассматривает
дисперсию света
как результат взаимодействия
электромагнитных волн с заряженными
частицами,
входящими в состав вещества и совершающими
вынужденные колебания в переменном
электромагнитном поле волны.

Абсолютный
показатель преломления среды
,
где ε

диэлектрическая проницаемость среды,
μ

магнитная проницаемость. В оптической
области спектра для всех веществ μ≈1,
поэтому
.

Согласно
теории Лоренца, дисперсия
света

следствие
зависимости е
от
частоты (длины волны) световых волн.
По
определению

где



диэлектрическая восприимчивость среды,


— электрическая постоянная, Р
и
Е

мгновенные значение поляризованности
и напряженности
внешнего электрического поля.

В
оптической области спектра частота
колебаний электрического поля световой
волны высока (v=1013Гц),
поэтому ориентационная поляризация
диэлектриков
несущественна, и главную роль играет
электронная
(деформационная)
поляризация

вынужденные колебания электронов под
действием
электрической составляющей поля световой
волны.

Пусть
вынужденные колебания совершает только
один
внешний, слабо связанный
с ядром атома, электрон — оптический
электрон
.
Его наведенный дипольный момент: р
= ех,
где
е—заряд
электрона, х—смещение
электрона под
действием электрического поля световой
волны.

Мгновенное
значение поляризованности: P=n0p=n0ex,где
n0

концентрация
атомов в диэлектрике. Отсюда:

Пусть
внешнее поле Е
изменяется
по гармоническому
закону.
E
=
E0cosωt.
Тогда
уравнение вынужденных колебаний
электрона (без
учета

силы
сопротивления, обуславливающей поглощение
энергии падающей
волны):

где
Fo
= еЕ0
амплитудное значение силы, действующей
на электрон со стороны поля волны, ω0
собственная частота колебаний электрона,
т
масса
электрона.

Решение
этого уравнения: x
=
A
cosωt,
где

.
Поэтому

П


олученная зависимость выражаетявление
дисперсии:
n
=
n(ω).
График
этой зависимости приведен на рисунке.
Разрыв п
вблизи
ω0
обусловлен
тем, что не учтены силы сопротивления
среды (поглощение электромагнитных
волн средой).

Если
учесть поглощение, то в области ω0
зависимость n(ω)
задается пунктирной линией
АВ

это область
аномальной
дисперсии
(n
убывает с ростом ω).
Остальные
участки описывают нормальную

со
дисперсию
(n
растет
с ростом ω).

В
общем случае, если в веществе имеются
различные
заряды

еi,
с массами mi,
совершающие вынужденные колебания с
различными собственными
частотами ω0i
,
то

и
кривая п(ω)
имеет
особенности вблизи каждой собственной
частоты ω0i.

27.
Поглощение (абсорбция)
света.

Поглощением
(абсорбцией)
света
называется
явление
уменьшения
энергии
световой волны
при
ее распространении в веществе вследствие
преобразования
энергии волны в другие виды энергии
(внутреннюю энергию вещества, энергию
вторичного излучения в других направлениях
и другого спектрального
состава и др.).

В
результате поглощения интенсивность
света при прохождении через вещество
уменьшается:


закон
Бугера

Здесь
I0
и I
— интенсивности плоской монохроматической
волны на входе
и
выходе слоя поглощающего вещества
толщиной х,
а

коэффициент
поглощения,
зависящий
от длины волны света, химической природы
и состояния вещества и не зависящий от
интенсивности света. Численное
значение

этого коэффициента а
показывает
толщину слоя х,
равную
,
после прохождения которого интенсивность
плоской волны падаетв
е=2,72
раза.

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]

  • #
  • #
  • #
  • #
  • #
  • #
  • #
  • #
  • #
  • #
  • #

Дисперсия света.

Автор — профессиональный репетитор, автор учебных пособий для подготовки к ЕГЭ Игорь Вячеславович Яковлев

Темы кодификатора ЕГЭ:  дисперсия света.

Пусть солнечный луч переходит из воздуха в прозрачную среду (например, воду или стекло). Если угол падения alpha не равен нулю, то, как вы помните, угол преломления beta определяется из закона преломления:

sin beta =frac{displaystyle sinalpha }{displaystyle n}.

Величина n, называемая показателем преломления, характеризует среду и от угла падения не зависит.

Оказывается, однако, что среда по-разному реагирует на прохождение электромагнитных волн различных частот. Имеет место дисперсия — зависимость показателя преломления среды от частоты света.

Опыт Ньютона.

Классический опыт по наблюдению дисперсии был поставлен Ньютоном. Узкий луч солнечного света направлялся на треугольную стеклянную призму (рис. 1).

Рис. 1. Разложение белого света в спектр

На экране за призмой появлялся спектр — радужная полоса. Один край спектра оказался красным, другой — фиолетовым, а цвета внутри спектра непрерывно переходили друг в друга.

Выделяя луч какого-либо цвета (например, красного или синего) и запуская его в другую призму, мы уже не увидим изменения цвета преломлённого луча. Стало быть, компоненты радуги являются простейшими цветами, не разложимыми далее. Их можно собрать обратно с помощью второй призмы, и тогда снова получится белый свет. Следовательно, белый свет является смесью световых пучков различных цветов, непрерывно заполняющих диапазон видимого света от красного до фиолетового.

Мы видим, таким образом, что стеклянная призма является простейшим спектральным прибором — она позволяет исследовать спектральный состав белого света. С действием более сложного спектрального прибора — дифракционной решётки — мы познакомились в предыдущей теме.

Как показывает опыт Ньютона, слабее всего преломляется красный свет, а сильнее всего — фиолетовый. В видимом диапазоне красный свет имеет наименьшую частоту, а фиолетовый — наибольшую. Коль скоро показатель преломления становится всё больше по мере движения от красного конца спектра к фиолетовому, мы делаем вывод, что показатель преломления стекла увеличивается с возрастанием частоты света.

Но показатель преломления есть отношение скорости света в воздухе к скорости света в среде: n=c/v. Значит,чем больше частота света, тем с меньшей скоростью свет распространяется в стекле. Наибольшую скорость внутри стеклянной призмы имеет красный свет, наименьшую — фиолетовый.

Различие в скоростях света для разных частот проявляется только при наличии среды. В вакууме скорость распространения электромагнитных волн не зависит от частоты и равна c.

Открытая и исследованная Ньютоном, дисперсия света больше двухсот лет ждала своего объяснения — нужны были соответствующие сведения о строении вещества. Классическая теория дисперсии была предложена Лоренцем лишь в конце XIX века. Более точная квантовая теория дисперсии появилась в первой половине прошлого столетия.

Хроматическая аберрация.

]Предположим, что на собирающую линзу параллельно главной оптической оси падает пучок белого света. Преломляясь в линзе, он, казалось бы, должен собраться в её фокусе. Однако вследствие дисперсии возникает хроматическая аберрация — некоторая расфокусировка пучка, вызванная различной преломляемостью разных компонент белого света.

Явление хроматической аберрации показано на рис. 2.

Рис. 2. Хроматическая аберрация

Показатель преломления материала линзы принимает наименьшее значение для красного света, и потому красный свет преломляется слабее всего. Красные лучи собираются на главной оптической оси в наиболее удалённой от линзы точке. Жёлтые лучи собираются ближе к линзе, зелёные — ещё ближе, и, наконец, в ближайшей к линзе точке сойдутся фиолетовые лучи.

Хроматическая аберрация ухудшает качество изображений — снижает чёткость, даёт лишние цветные полосы. Но с хроматической аберрацией можно бороться. Для этого в оптической технике применяют так называемые ахроматические линзы, получаемые накладыванием на собирающую линзу дополнительной рассеивающей линзы. Догадайтесь — зачем нужна рассеивающая линза?

Спасибо за то, что пользуйтесь нашими статьями.
Информация на странице «Дисперсия света.» подготовлена нашими авторами специально, чтобы помочь вам в освоении предмета и подготовке к ЕГЭ и ОГЭ.
Чтобы успешно сдать необходимые и поступить в ВУЗ или техникум нужно использовать все инструменты: учеба, контрольные, олимпиады, онлайн-лекции, видеоуроки, сборники заданий.
Также вы можете воспользоваться другими статьями из данного раздела.

Публикация обновлена:
08.05.2023

Понравилась статья? Поделить с друзьями:
  • Как найти угловое увеличение лупы
  • Как найти застройщика мкд
  • Как корректно составить договор
  • Как найти лапчатку белую
  • Как найти облачное сохранение в стиме