Как найти длину апофемы правильной шестиугольной пирамиды

Апофема правильной пирамиды, формула

Апофема правильной пирамиды

Апофема правильной пирамиды находится по формуле

[ f = sqrt{ h^2 + Big( frac{a}{2tg(frac{180°}{n})} Big) ^2 } ]


f — апофема правильной пирамиды (SF)
n — число сторон правильного многоугольника — основания правильной пирамиды
a — сторона правильного многоугольника (AB или BC или CD или DE или EA) — основания правильной пирамиды

h — высота правильной пирамиды (OS)

Апофема правильной пирамиды выводится из следующих формул

Синим цветом на рисунке изображена вписанная в основание правильной пирамиды окружность. Треугольник SFO прямоугольный.
Его стороны: OS — высота правильной пирамиды (h), OF
радиус вписанной окружности в правильный многоугольник (основание правильной пирамиды (r)),
SF — апофема правильной пирамиды (f).
По теореме Пифагора

[ SF = f = sqrt{ h^2 + r^2 } ]

подставив сюда только радиус вписанной окружности получается формула (1).

Вычислить, найти апофему правильной пирамиды по формуле (1)

Апофема правильной пирамиды

стр. 276

План урока:

Понятие пирамиды

Правильная пирамида

Усеченная пирамида

Типичные задачи на пирамиды

Понятие пирамиды

Построим на некоторой плос-ти α произвольный многоугольник А1А2…Аn. Далее отметим в пространстве точку Р, не принадлежащую плос-ти α. Соединив точку Р с вершинами многоуг-ка получим многогранник, который именуется пирамидой (в различной литературе может использоваться сокращение пирам-а).

1 piramida

Та единственная точка Р, не находящаяся в одной плос-ти со всеми остальными вершинами, именуется вершиной пирам-ы. Многоугольник, образованный остальными вершинами – это основание пирамиды.

2 piramida

Основанием пирам-ы может быть многоугольник с любым количеством сторон. Если в основании лежит, например, пятиугольник, то и пирам-у называют пятиугольной. Если же в основании находится десятиугольник, то это будет уже десятиугольная пирам-а. В общем случае пирам-у, у которой в основании располагается n-угольник, именуется n-угольной. Ясно, что треугольная пирам-а и тетраэдр – это по сути одна и та же фигура.

Все грани пирам-ы, за исключением ее основания, именуются боковыми гранями. Понятно, что каждая боковая грань – это треугольник. Ребра пирамиды, выходящие из ее вершины, именуются боковыми ребрами пирамиды.

Посчитаем количество ребер, вершин и граней пирам-ы. Если она n-угольная, то у неё (n + 1) вершин (n точек в основании и ещё одна точка, не лежащая в основании). Также у нее (n + 1) граней, из них одна – это основание, а остальные n – боковые грани пирамиды (по одной на каждую сторону n-угольника). Наконец, у пирам-ы n ребер находятся в плос-ти основания, а ещё n ребер являются боковыми. Итого имеем 2n ребер. Теперь можно убедиться, что теорема Эйлера для пирам-ы выполняется:

3 piramida

Из вершины пирам-ы можно опустить перпендикуляр на плос-ть основания. Он будет именоваться высотой пирамиды.

4 piramida

Как и в случае с призмой, можно подсчитать площадь боковой поверхности призмы, которую обозначают как Sбок. Если же к ней ещё добавить и площадь основания (Sосн), то в сумме получится уже площадь полной поверхности призмы (Sполн). Эту связь между величинами можно представить в виде формулы:

5 piramida

Правильная пирамида

Особый интерес и в геометрии, и в реальной жизни представляют так называемые правильные пирамиды. Их отличают две особенности:

1) в их основании находится правильный многоугольник;

2) высота пирам-ы падает на основание в точке, являющейся центром этого правильного многоуг-ка.

Напомним, что центром правильного многоуг-ка считается центр описанной около него окружности, который одновременно является и центром вписанной окружности.

6 piramida

Действительно, опустим из вершины Р правильной пирам-ы высоту РО. Тогда О будет центром описанной окружности:

7 piramida

Примечание. На рисунках, показывающих объемные фигуры, окружности искажают свою форму и выглядят как эллипсы, то есть овалы.

Построим из О радиусы ОА1, ОА2, ОА3,… Они все будут одинаковы, ведь это радиусы одной и той же окружности. Также заметим, что высота правильной пирамиды РО будет перпендикулярна каждому из этих радиусов, ведь она перпендикулярна и всей плос-ти. Это значит, что ∆РОА1, ∆РОА2, ∆РОА3… – прямоугольные. При этом у них есть общий катет РО, а катеты ОА1, ОА2, ОА3… одинаковы. Значит, эти треугольники равны. Отсюда и вытекает, что их гипотенузы, то есть боковые ребра РА1, РА2, РА3…, также одинаковы, ч. т. д.

Заметим, что можно доказать и почти противоположное утверждение – если у пирам-ы боковые ребра одинаковы, а в основании находится правильный многоуг-к, то она является правильной. Для доказательства предположим, что ребра РА1, РА2, РА2… одинаковы. Опустим из Р высоту, которая упадет в некоторую точку О. Теперь соединим эту точку с вершинами А1, А2, А3… Получатся прямоугольные ∆РОА1, ∆РОА2, ∆РОА3… У них есть общий катет (высота РО) и одинаковые гипотенузы. Значит, эти треугольники равны, и потому одинаковы отрезки ОА1, ОА2, ОА3… Это значит, что точка О равноудалена от вершин многоуг-ка, и если из нее провести окружность радиусом ОА1, то она также пройдет через остальные вершины многоуг-ка. То есть эта окружность окажется описанной. Это и означает, что точка О – центр многоуг-ка, и тогда вся пирам-а оказывается по определению правильной.

8 piramida

Из равенства боковых ребер напрямую вытекает и тот факт, что все боковые грани правильной пирам-ы – одинаковые равнобедренные треугольники. Высоты, проведенные в этих равнобедренных треугольниках к основанию правильной пирамиды, именуются апофемами.

9 piramida

Ещё раз уточним, что понятие апофемы применимо только к правильной пирам-е. У других пирамид тоже можно на боковых гранях провести высоты к основанию, но они просто не будут называться апофемами пирамиды.

Ясно, что раз в правильной пирам-е все боковые грани – равные друг другу равнобедренные треуг-ки, то и их высоты, то есть апофемы, одинаковы. Также можно утверждать, что каждая апофема делит ребра, на которое она падает, пополам, ведь высоты в равнобедренном треуг-ке – это ещё и медианы.

Апофема используется для вычисления площади боковой поверхности пирам-ы, так как существует такая теорема:

10 piramida

Докажем ее. Пусть у правильной n-угольной пирам-ы в основании находится многоуг-к со стороной а. Тогда его периметр Р вычисляется так:

11 piramida

Каждая боковая грань пирам-ы – это треугольник. Проведем на них апофемы, которые одновременно окажутся и высотами для этих треугольников. Если мы обозначим длину апофемы как d, то площадь каждой грани можно рассчитать по простейшей формуле площади треугольника:

12 piramida

Усечённая пирамида

Возьмем произвольную пирам-у, а далее секущую плоскость, которая будет параллельна основанию, причем она будет пересекать ребра РА1, РА2, РА3… в точках В1, В2, В3… соответственно. В результате, отбросив «верхушку» пирам-ы, мы получим новую фигуру, которая именуется усеченной пирамидой.

13 piramida

У усеченной пирам-ы уже не одна, а две грани считаются основаниями, и они параллельны друг другу. Большее из них именуют нижним основанием, а меньшее – верхним основанием.

Докажем, что боковые грани любой усеченной пирам-ы – это трапеции. Действительно, обозначим плос-ть верхнего основания как α, нижнее основание как β, а произвольную грань как γ:

14 piramida

Нам надо доказать, что А1А2В2В1 – это трапеция. Действительно, прямые А1А2 и В1В2 не могут скрещиваться, ведь они располагаются в единой плос-ти γ. Не могут они и пересекаться, ведь тогда точка их пересечения была бы общей для плос-тей α и β, а эти плос-ти параллельны. Остается один вариант: А1А2||В1B2. Две другие стороны грани, А1В1 и А2В2, будут пересекаться в точке Р, вершине исходной пирам-ы. Тогда по определению две четырехугольник А1А2В2В1 будет трапецией, ведь у него две стороны параллельны, а две другие – нет.

Отдельно отметим, что усеченная пирам-а, полученная из правильной пирам-ы, также называется правильной, а высоты ее боковых граней также именуются апофемами. Докажем одну теорему:

15 piramida

Действительно, пусть из правильной пирам-ы с вершиной в Р получена правильная усеченная пирамида с основаниями А1А2А3…An и В1В2В3…Bn:

16 piramida

Так как исходная пирам-а – правильная, то ее грани – равные равнобедренные треугольники, у которых одинаковы углы при основаниях:

17 piramida

Мы уже знаем, что грани А1А2В2В1 и А2А3В3В2 – трапеции. Раз у них одинаковы углы при основании, то можно утверждать, что эти трапеции – равнобедренные. Это значит, что любые два боковых ребра, находящиеся на одной грани, одинаковы. Значит, одинаковы вообще все боковые ребра. Получается, что все боковые грани – это равнобедренные трапеции с одинаковыми основаниями, боковыми сторонами и углами при основании. Этого достаточно для того, чтобы считать эти трапеции равными, ч. т. д.

Из этой теоремы вытекает тот факт, что стороны многоуг-ка, образующего верхнее основание, одинаковы. Более того, углы этого многоуг-ка равны таким же углам в нижнем основании. Например, ∠А1А2А3 = ∠В1В2В3. Действительно, мы знаем, что А1А2||В1В2 и А2А3||B2B3, и потому стороны углов ∠А1А2А3 = ∠В1В2В3 оказываются сонаправленными лучами.

Так как в нижнем многоуг-ке А1А2А3…An все углы одинаковы (ведь он правильный), то и в верхнем многоуг-ке В1В2В3…Bn также будут одинаковы углы. В итоге можно утверждать, что верхнее основание усеченной пирамиды является правильным многоуг-ком, также как и нижнее.

18 piramida

Отметим ещё один факт. При построении секущей плос-ти пирам-а делится на две части. Нижняя из них – это усеченная пирам-а, а верхняя – это обычная пирам-а, меньшая исходной. Докажем, что если исходная пирам-а РА1А2А3…Рn была правильной, то оставшаяся после отсечения «верхушка» также будет правильной пирам-ой. Мы уже выяснили, что ее основание В1В2В3…Вn– правильный многоуг-к. Отрезки РА1, РА2, РА3… одинаковы как боковые ребра исходной правильной пирам-ы. В свою очередь отрезки А1В1, А2В2, А3В3 одинаковы как боковые ребра правильной усеченной пирам-ы. Но отсюда получается, что одинаковы также и отрезки РВ1, РВ2, РВ3… Значит, в пирам-е РВ1В2В3…Вn в основании лежит правильный многоуг-к, а ее боковые ребра одинаковы. Из этого вытекает, что эта пирам-а – правильная.

Ещё одна теорема позволяет вычислять площадь боковой поверхности правильной усеченной пирам-ы:

19 piramida

Действительно, каждая грань такой пирам-ы – это трапеция. Обозначим длину ее верхнего основания буквой а, а нижнего – буквой b.Тогда, если основания пирам-ы – это многоуг-ки с n сторонами, периметр этих оснований будет вычисляться так:

20 piramida

Теперь проведем на каждой боковой грани апофему, чья длина будет обозначаться как d. Тогда, используя формулы площади трапеции, сможем вычислить площадь грани:

21 piramida

Типичные задачи на пирамиды

Рассмотрим несколько задач, в которых фигурируют пирам-ы. Перед просмотром решения попытайтесь решить их самостоятельно.

Задание. Существует ли пирамида, у которой ровно 999 ребер?

Решение. Если в основании пирам-ы находится n-угольник, то у нее 2n ребер. Так как n– целое число, то 2n будет уже четным числом. То есть количество ребер у любой пирам-ы всегда четно. Поэтому не существует пирам-ы с 999 ребрами, ведь 999 – нечетное число.

Задание. Верно ли, что всякий правильный тетраэдр одновременно является и правильной пирам-ой? И наоборот, является ли каждая правильная треугольная пирам-а правильным тетраэдром?

Решение. Напомним, что правильный тетраэдр – это тетраэдр, у которого все ребра одинаковы. Если одну из вершин тетраэдра принять за вершину пирам-ы, то получится, что в ее основании равносторонний треугольник, который, как мы знаем, является правильным многоуг-ком. Также окажется, что все боковые ребра пирам-ы также одинаковы. Это значит, что она – правильная.

Теперь посмотрим на произвольную правильную треугольную пирам-у. Будет ли она обязательно правильным тетраэдром? Нет, ведь ее боковые ребра могут отличаться по длине от ребер, находящихся в основании. Например, в основании может находиться равносторонний треуг-к со стороной 5 см, а боковое ребро правильной пирамиды может иметь длину 10 см. Таким образом, можно считать правильный тетраэдр лишь частным случаем правильной пирам-ы.

22 piramida

Задание. В основании пирам-ы находится ромб со стороной 5 см.Одна из его диагоналей имеет длину 8 см. Высота пирам-ы имеет длину 7 см и проходит через точку, в которой пересекаются диагонали ромба. Вычислите длину боковых ребер.

Решение.

23 piramida

Обозначим ромб в основании как АВСD, а вершину пирам-ы буквой Р. Пусть диагонали пересекаются в точке О, тогда РО – высота. Также пусть диагональ АС равна 8 см. По свойству ромба О будет серединой диагоналей, поэтому

24 piramida

Отрезок OD будет иметь ту же длину 3 см, ведь О – середина BD.

Так как высота РО перпендикулярна всем прямым в плос-ти основания, то ∆АОР, ∆ВОР, ∆СОР, ∆DOP – прямоугольные, и боковые ребра пирам-ы будут гипотенузами этих треугольников. Вычислим АР по теореме Пифагора:

25 piramida

Задание. В основании пирам-ы лежит квадрат, а одно из ее боковых ребер перпендикулярно основанию. Одна из боковых граней образует с плос-тью основания угол в 45°. Длина длиннейшего ребра пирам-ы составляет 12 см. Определите высоту пирам-ы и площадь ее боковой поверхности.

Решение.

26 piramida

Обозначим квадрат, находящийся в основании, как АВСD, а вершину пирам-ы как Р. Пусть ребро PD перпендикулярно основанию. Тогда PD⊥AD и PD⊥CD. Ясно, что PD как раз и является искомой нами высотой пирам-ы.

Теперь надо понять, какие углы в пирам-е составляют 45° и какое ребро равно 12 см. Грани ADP и СDP проходят через перпендикуляр PDк основанию, а потому они перпендикулярны основанию. Значит, угол в 45° с основанием образует либо грань АВР, либо грань СВР.

Заметим, что АВ⊥AD (это смежные стороны квадрата), а AD – это проекция ребра АР на основание. Тогда по теореме о трех перпендикулярах АВ⊥АР. Аналогично из того факта, что ВС⊥СD, вытекает, что ВС⊥СР. Также заметим, что ∆ADP и ∆СDP прямоугольные, имеют общий катет PD и одинаковые катеты AD и CD (это стороны квадрата). Значит, это равные треугольники, и

∠PAD = ∠PCD

Грань АВР пересекается c основанием по прямой АВ, причем AD⊥АВ и АР⊥АВ. Значит, ∠РАD – это угол между гранью АВР и основанием. Аналогично и ∠РСD является углом между гранью СВР и основанием. Но эти углы одинаковы. Значит, каждый из этих углов будет равен 45°, иначе в пирам-е не останется угла между плос-тями, который мог бы составлять 45°.

Ясно, что ребро АР длиннее ребра РD, ведь в прямоугольном ∆ADP АР – это гипотенуза, а РD катет (гипотенуза всегда длиннее катета). Теперь заметим, что ∆РАВ и ∆РСВ – также прямоугольные, ведь АВ⊥АР и ВС⊥СР. Но в них гипотенузой является уже РВ, то есть РВ длиннее АВ, ВС, АР и РС. Так как отрезки AD и AC равны АВ как стороны квадрата, получаем, что именно ребро РВ – длиннейшее в пирам-е, то есть его длина составляет 12 см.

В прямоугольном ∆ADP∠PAD = 45°. Это значит, что ∆ADP является прямоугольным и равнобедренным, то есть AD = PD. Обозначим искомую нами длину РD как x. Теперь проведем диагональ BD:

27 piramida

Её длину можно вычислить из ∆ADB:

28 piramida

Итак, высоту нашли, теперь нужно рассчитать боковую площадь. Но для этого предварительно найдем АР из ∆АРD:

29 piramida

Такую же длину имеет и РС, ведь ∆АРD и ∆СРD равны.

Мы уже выяснили, что каждая боковая грань – прямоугольный треугольник. Зная длины катетов, легко найдем площадь каждой грани:

30 piramida

Задание. В правильной шестиугольной пирам-е ребро при основании равно 3 см. Высота этой пирам-ы составляет 4 см. Вычислите длину апофемы этой пирам-ы, а также угол, который ее боковые грани образуют с основанием.

Решение.

31 piramida

Основание пирам-ы обозначим как АВСDEF, а вершину как Р. Пусть РО – высота, тогда О – центр описанной окружности. Напомним, что у правильного шестиугольника радиус описанной окружности совпадает с длиной его стороны, то есть

32 piramida

Теперь надо найти угол между гранью АВР и основанием. Они пересекаются по прямой АВ. РН⊥АВ, ведь РН – апофема. ОН – это проекция РН на основание. Так как АВ⊥РН, то по обратной теореме о трех перпендикулярах и ОН⊥АВ. Значит, ∠ОНР и является искомым углом между гранью АВР и основанием. Для его вычисления применим тригонометрию к ∆ОНР:

33 piramida

Задание. В правильной шестиугольной пирам-е все ребра имеют длину, равную единице. Найдите угол между прямыми АР и BD:

34 piramida

Решение. Для нахождения угла между АР и BD, у которых нет общей точки, можно вычислить угол между прямыми, которые будут им параллельны. Легко заметить, что АЕ||BD. Докажем это, рассмотрев основание пирам-ы:

35 piramida

Каждый угол правильного шестиугольника составляет 120°. В частности, это относится к ∠F и ∠С. ∆АFЕ – равнобедренный, ведь его стороны FE и AF одинаковы. Тогда и углы при основании будут одинаковыми. Найдем их:

36 piramida

Аналогично можно определить, что все углы четырехугольника АВDE прямые, то он представляет собой прямоугольник. Его противоположные стороны параллельны, в частности, АЕ||BD. Это означает, что искомый нами угол – это ∠РАЕ:

37 piramida

Для его вычисления необходимо вычислить длины сторон ∆РАЕ. Ребра РА и РЕ по условию равны единице. Длину ЕА найдем из ∆FAE, применив теорему косинусов:

38 piramida

Задание. В правильной шестиугольной пирам-е боковые ребра имеют длину 2, а ребра в основании равны 1. Вычислите угол между плос-тями РFA и PDE:

39 piramida

Решение. Сначала надо найти прямую, по которой эти две грани пересекаются. Мы видим одну их общую точку – Р. Продолжим ребра FA и ED до тех пор, пока они не пересекутся в некоторой точке К. Эта точка K также будет общей для плос-тей, проходящих через грани PFA и РЕD. Значит, они пересекаются по прямой РК:

40 piramida

Найдем углы в ∆КЕF, помня при этом, что все в шестиугольнике АВСDEF составляют по 120°:

41 piramida

Получили, что все углы в ∆КЕF составляют по 60°, то есть он равносторонний, и поэтому стороны KE и KF одинаковы. Но также одинаковы и грани FA и DE. Отсюда получаем и равенство отрезков АК и DK:

42 piramida

Теперь сравним ∆АРК и ∆KPD. КР – их общая сторона, АР = РD как боковые ребра правильной пирам-ы, и АК = DK. Получается, что эти треугольники равны.

Далее в ∆АРК опустим высоту АН. Из равенства ∆АРК и ∆KPD вытекает, что и HD будет высотой в ∆PHD, ведь в равных треугольниках высоты должны делить равные стороны в одном и том же отношении. Тогда по определению двугранного угла ∠AHD и будет искомым углом между гранями, ведь KP – линия их пересечения, АН⊥KP и DH⊥KP.

43 piramida

∆AKP – равнобедренный, ведь отрезки АК и АР оказались одинаковыми. Значит, АН не только высота, но и медиана. Поэтому

44 piramida

Отрезок AD окажется диаметром окружности, описанной около шестиугольника. Мы знаем, что радиус такой окружности равен длине стороны шестиугольника, то есть единице. Тогда диаметр будет вдвое больше:

45 piramida

Сегодня мы познакомились с ещё одним видом многогранника –пирамидой. Они нередко встречаются в задачах ЕГЭ, посвященных стереометрии. Особо часто используются правильные пирамиды, поэтому важно помнить их основные свойства.

Светило науки — 3031 ответ — 839 раз оказано помощи

Ответ:

20см длина бокового ребра;

2√91см длина апофемы пирамиды;

1152√3 см³ объем пирамиды.

Объяснение:

1)

В основании правильный шестиугольник, шестиугольник делиться на 6 равных треугольников.

∆SOА- прямоугольный треугольник

АО=12см катет

SO=16см катет

По теореме Пифагора

SA=√(AO²+SO²)=√(12²+16²)=√(144+256)=

=√400=20см. длина бокового ребра

2)

∆СОD- равносторонний треугольник

Формула нахождения высоты равностороннего треугольника

h=a√3/2, где а-сторона треугольника; h-высота (h=OH; a=CD)

OH=CD√3/2=12√3/2=6√3 см.

∆SOH- прямоугольный треугольник

SO;OH- катеты;

SH- гипотенуза (апофема пирамиды)

По теореме Пифагора

SH=√(SO²+OH²)=√(16²+(6√3)²)=

=√(256+108)=√364=2√91см. апофема пирамиды

3)

Sосн=6*АВ²√3/4=1,5*12²√3=216√3 см² площадь шестиугольника.

V=Sосн*SO/3=216√3*16/3=1152√3 см³

обьем пирамиды.

A hexagonal pyramid is a three-dimensional shaped pyramid that has a hexagonal base along with the sides or faces in the shape of isosceles triangles that meet at the apex or the top of the pyramid. A hexagonal pyramid is one of the different types of pyramids, which are classified based on the shape of the base of a pyramid. It is also known as a heptahedron since a hexagonal pyramid consists of 7 faces, which includes a hexagonal base and 6 isosceles triangular lateral faces. It has a total of seven faces, twelve edges, and seven vertices. One of the seven vertices is the apex, which is at the top, and the other six are at the base of the pyramid. Out of the twelve edges, six edges connect the triangle edges that meet at the apex, and the other six are the edges of the base.

 Regular Hexagonal Pyramid

A regular hexagonal pyramid is a pyramid whose hexagonal base is regular and the pyramid is straight, whereas an irregular hexagonal pyramid is a pyramid whose hexagonal base is irregular and the pyramid is oblique. A right regular pyramid is a hexagonal pyramid with a regular hexagonal base and, the apex of the pyramid is right above the center of the base, such that the apex forms a right angle with the center of the base and any other vertex.

regular-hexagonal-pyramid

Regular Hexagonal Pyramid formula

There are two formulas for a regular hexagonal pyramid, i.e., the surface area of a regular hexagonal pyramid and the volume of a regular hexagonal pyramid. To calculate the surface area or the volume of a regular hexagonal pyramid, we need to know its four major aspects, i.e., the length of the side of the base; the apothem, which is the distance from the center of the base to any point on the side of the base; the height of the pyramid, which is the perpendicular distance from the apex to the center of the base; and finally the slant height of the pyramid, which is the height of the triangular faces or the perpendicular distance from the apex to any point on the boundary of the base of the pyramid.

regular-hexagonal-pyramid-formula

Lateral surface area (LSA)

The lateral surface area is the region occupied by the lateral surfaces or triangular faces of a regular hexagonal pyramid. The formula to determine the lateral surface area of the regular hexagonal pyramid (LSA) is given as follows,

The lateral surface area of the regular hexagonal pyramid = The sum of areas of the lateral surfaces (triangles) of the pyramid

= 6 × [½ × base × height] =3 (s × l)

Lateral surface area of the regular hexagonal pyramid = 3(s × l)

Where,

“s” is the side length of the base, and

“l” is the slant height of the pyramid. 

Total surface area (TSA)

The total surface area is the total region occupied by all the surfaces of a regular hexagonal pyramid, i.e., the area occupied by the lateral surfaces, or triangular faces, and also is hexagonal base. 

Total surface area of a pyramid (TSA) = Lateral surface area of the pyramid + Base area

The surface area of the hexagonal pyramid can be calculated when we have the slant height of the pyramid which is the height from the apex to any point on the boundary of the base of the pyramid. Hence, let us see both the formula of the hexagonal pyramid – base area and surface area.

Base area = 3as

Where,

“a” is the apothem length, and

“s” is the side length of the base.

TSA = LSA + Base area

TSA = 3sl + 3as

Hence,

Total surface area of the regular hexagonal pyramid (TSA) = 3sl + 3as

Where,

“s” is the side length of the base, 

“l” is the slant height, and 

“a” is the apothem length.

When the apothem of the regular hexagonal pyramid is not mentioned and the triangular faces are equilateral, there is another alternative formula to calculate its surface area, i.e.,

Total surface area of the hexagonal pyramid = 3(s × l) + 3√3/2 (s)2

Where, 

“s” is the side length of the base, and 

“l” is the slant height of the pyramid. 

Area of the hexagonal base = 3√3/2 (s)2

Volume of the regular hexagonal pyramid

The volume is the total space enclosed between all the faces of a regular hexagonal pyramid. The general formula for calculating the volume of a pyramid is equal to one-third of the product of the base area and the height of the pyramid.

Volume (V) = (1/3) × Base area × Height cubic units

Now, by substituting the values of the base area and the height, we get

Volume of the regular hexagonal pyramid = (a × s × h) cubic units

Where,

“a” is the apothem length,

“s” is the side length of the base, and

“h” is the height of the pyramid. 

When the apothem of the regular hexagonal pyramid is not mentioned and the triangular faces are equilateral, there is another alternative formula to calculate its volume, i.e.,

Volume of the regular hexagonal pyramid (V)= (√3/2) × s2 × h cubic units

Where,

“s” is the side length of the base, and

“h” is the height of the pyramid. 

Practice Problems based on Regular Hexagonal Pyramid

Problem 1: What is the volume of a regular hexagonal pyramid whose apothem length is 5 cm, length of the side of the base is 10 cm, and height is 13 cm?

Solution: 

Given data,

Apothem length (a) = 5 cm

The length of the side of the base  = 10 cm,

The height of the pyramid = 13 cm

We know that,

The volume of a regular hexagonal pyramid (V) = (a × s × h) cubic units

V = 5 × 10 × 13

Volume = 650 cm3

Therefore, the volume of the given hexagonal pyramid is 650 cu. cm.

Problem 2: What is the surface area of a regular hexagonal pyramid if its apothem length is 6 inches, the length of the side of the base is 8 inches, and the slant height is 15 inches?

Solution: 

Given data,

Apothem length (a) = 6 inches

The length of the side of the base (s)  = 8 inches

The slant height of the pyramid (l) = 15 inches

We know that,

The surface area of the hexagonal pyramid = 3as + 3sl square units

= 3 × 6 × 8 + 3 × 8 × 15

= 144 + 360 = 504 sq. in

Therefore, the surface area of the given pyramid is 504 sq. in.

Problem 3: Find the height of a regular hexagonal pyramid if its volume is 576 cu. cm, the length of the side of the base is 8 cm, and the apothem length is 8 cm.

Solution:

Given data,

Apothem length (a) = 8 cm

The length of the side of the base (s) = 8 cm

Volume = 576 cu. cm

We know that,

The volume of a regular hexagonal pyramid (V) = (a × s × h) cubic units

⇒ 8 × 8 × h = 576

⇒ 64h = 576

⇒ h = 576/64 = 9 cm

Hence, the height of a regular hexagonal pyramid is 9 cm.

Problem 4: What is the volume of a regular hexagonal pyramid if the sides of a base are 7 cm each and the height of the pyramid is 14 cm?

Solution:

Given data,

Height of the pyramid (h) = 14 cm

The length of the side of the base (s) = 7 cm

Area of the hexagonal base (A) = 3√3/2 b2 = 3√3/2 (7)2 = 147√3/2 sq. cm

The volume of a regular hexagonal pyramid (V) = 1/3 × A × h

V = 1/3 × (147√3/2) × 14 = 594.09 cm3

Hence, the volume of the given pyramid is 594.09 cm3.

 Problem 5: Determine the lateral surface area of a regular hexagonal pyramid if the side length of the base is 15 inches and the pyramid’s slant height is 21 inches.

Solution:

Given data,

The length of the side of the base (s) = 15 inches, and

Slant height (l) = 21 inches

The perimeter of the square base (P) = 6s = 6(15) = 90 inches

We know that,

The lateral surface area (LSA) = (½) Pl

= (½ ) × (90) × 21 = 945 sq. in

Therefore, the lateral surface area of the given pyramid is 945 sq. in.

FAQs based on Regular Hexagonal Pyramid

Question 1: What is a Hexagonal Pyramid?

Answer:

A hexagonal pyramid is a 3D shape with hexagonal base combined with 6 triangles faces against each sides of the hexagonal base erected  in such a way to form a pyramid at its apex. These triangles may be either isosceles triangles or equilateral triangles and these triangles are called as lateral faces. A hexagonal pyramid contains 7 vertices, 7 faces, and 12 edges.

Question 2: What is the formula for finding the volume of the Hexagonal Pyramid?

Answer:

The formula for calculating the volume of the hexagonal pyramid is given by,

Volume of Hexagonal Pyramid(V) = (abh) cubic units

where,

a is the apothem of the pyramid,

b is the base, and h is the height.

Question 3: What is the formula for finding the Surface Area of a Hexagonal Pyramid?

Answer:

Formula for finding the surface area of a hexagonal pyramid is given by,

Surface Area of Hexagonal Pyramid (TSA)= (3ab + 3bs) square units,

where,

a is the apothem of the pyramid,

b is the base, and

s is the slant height of the pyramid.

Пирамида — это пространственный полиэдр, или многогранник, который встречается в геометрических задачах. Основными свойствами этой фигуры являются ее объем и площадь поверхности, которые вычисляются из знания любых двух ее линейных характеристик. Одной из таких характеристик является апофема пирамиды. О ней пойдет речь в статье.

Фигура пирамида

Прежде чем приводить определение апофемы пирамиды, познакомимся с самой фигурой. Пирамида представляет собой многогранник, который образован одним n-угольным основанием и n треугольниками, составляющими боковую поверхность фигуры.

Всякая пирамида имеет вершину — точку соединения всех треугольников. Перпендикуляр, проведенный из этой вершины к основанию, называется высотой. Если высота пересекает в геометрическом центре основание, то фигура называется прямой. Пирамида прямая, имеющая равностороннее основание, называется правильной. На рисунке показана пирамида с шестиугольным основанием, на которую смотрят со стороны грани и ребра.

Шестиугольная пирамида

Апофема правильной пирамиды

Ее также называют апотемой. Под ней понимают перпендикуляр, проведенный из вершины пирамиды к стороне основания фигуры. По своему определению этот перпендикуляр соответствует высоте треугольника, который образует боковую грань пирамиды.

Поскольку мы рассматриваем пирамиду правильную с n-угольным основанием, то все n апофем для нее будут одинаковыми, поскольку таковыми являются равнобедренные треугольники боковой поверхности фигуры. Заметим, что одинаковые апофемы являются свойством правильной пирамиды. Для фигуры общего типа (наклонной с неправильным n-угольником) все n апофем будут разными.

Еще одним свойством апофемы пирамиды правильной является то, что она одновременно является высотой, медианой и биссектрисой соответствующего треугольника. Это означает, что она делит его на два одинаковых прямоугольных треугольника.

Апофема (верхняя правая стрелка)

Треугольная пирамида и формулы для определения ее апофемы

В любой правильной пирамиде важными линейными характеристиками являются длина стороны ее основания, ребро боковое b, высота h и апофема hb. Эти величины друг с другом связаны соответствующими формулами, которые можно получить, если начертить пирамиду и рассмотреть необходимые прямоугольные треугольники.

Правильная треугольная пирамида состоит из 4 треугольных граней, причем одна из них (основание) должна быть обязательно равносторонней. Остальные являются равнобедренными в общем случае. Апофему треугольной пирамиды можно определить через другие величины по следующим формулам:

hb = √(b2 — a2/4);

hb = √(a2/12 + h2)

Первое из этих выражений справедливо для пирамиды с любым правильным основанием. Второе выражение характерно исключительно для треугольной пирамиды. Оно показывает, что апофема всегда больше высоты фигуры.

Не следует путать апофему пирамиды с таковой для многогранника. В последнем случае апофемой называется перпендикулярный отрезок, проведенный к стороне многогранника из его центра. Например, апофема равностороннего треугольника равна √3/6*a.

Две треугольные пирамиды

Задача на вычисление апофемы

Пусть дана правильная пирамида с треугольником в основании. Необходимо вычислить ее апофему, если известно, что площадь этого треугольника равна 34 см2, а сама пирамида состоит из 4 одинаковых граней.

В соответствии с условием задачи мы имеем дело с тетраэдром, состоящим из равносторонних треугольников. Формула для площади одной грани имеет вид:

S = √3/4*a2

Откуда получаем длину стороны a:

a = 2*√(S/√3)

Для определения апофемы hb воспользуемся формулой, содержащей боковое ребро b. В рассматриваемом случае его длина равна длине основания, имеем:

hb = √(b2 — a2/4) = √3/2*a

Подставляя значение a через S, получим конечную формулу:

hb = √3/2*2*√(S/√3) = √(S*√3)

Мы получили простую формулу, в которой апофема пирамиды зависит только от площади ее основания. Если подставить значение S из условия задачи, то получим ответ: hb ≈ 7,674 см.

Понравилась статья? Поделить с друзьями:
  • Как исправить перегрев андроида
  • Как найти результаты умножения чисел
  • Как найти другой телефон apple
  • Как я нашел поставщика на сахар
  • Как найти проценты изменения