Как найти длину биссектрисы в правильном треугольнике

Какими свойствами обладает биссектриса равностороннего треугольника? Как, зная сторону правильного треугольника, найти его биссектрису? Чему равна длина биссектрисы через радиус вписанной и описанной окружностей?

Теорема 1

(свойство биссектрисы равностороннего треугольника)

В равностороннем треугольнике биссектриса, проведённая к любой стороне, является также его медианой и высотой.

Доказательство:

bissektrisa-ravnostoronnego-treugolnikaПусть в треугольнике ABC AB=BC=AC.

Так как AB=BC, треугольник ABC — равнобедренный с основанием AC.

Проведем биссектрису BF.

По свойству равнобедренного треугольника, BF является также его медианой и высотой.

Аналогично, треугольник ABC — равнобедренный с основанием BC, треугольник ABC — равнобедренный с основанием AB, а его биссектрисы AK и CD  — еще и медианы и высоты.

Что и требовалось доказать.

Теорема 2

(свойство биссектрис равностороннего треугольника)

Все три биссектрисы равностороннего треугольника равны между собой.

Доказательство:

bissektrisy-ravnostoronnego-treugolnikaПусть в треугольнике ABC AB=BC=AC.

AK, BF CD — биссектрисы треугольника ABC.

В треугольниках ABF, BCD и CAK:

  • AB=BC=CA (по условию)
  • ∠BAF=∠CBD=∠ACK (как углы равностороннего треугольника)
  • ∠ABF=∠BCD=∠CAK (как как AK, BF CD — биссектрисы равных углов).

Значит, треугольники ABF, BCD и CAK равны (по стороне и двум прилежащим к ней углам).

Из равенства треугольников следует равенство соответствующих сторон: AK=BF=CD.

Что и требовалось доказать.

Из теорем 1 и 2 следует, что в равностороннем треугольнике все биссектрисы, медианы и высоты равны между собой.

1) Найдём биссектрису равностороннего треугольника через его сторону.

bissektrisy-ravnostoronnego-treugolnika-ravnaВ треугольнике ABC AB=BC=AC=a.

BF — биссектриса, BF=l.

По свойствам равностороннего треугольника,  BF — высота ∆ ABC, ∠A=60º.

Из прямоугольного треугольника ABF по определению синуса

    [sin angle A = frac{{BF}}{{AB}}, Rightarrow BF = AB cdot sin angle A,]

    [BF = AB cdot sin {60^o} = frac{{ABsqrt 3 }}{2}.]

Таким образом, формула биссектрисы равностороннего треугольника по его стороне:

    [l = frac{{asqrt 3 }}{2}.]

2) Найдём биссектрису равностороннего треугольника через радиусы вписанной и описанной окружностей.

bissektrisy-ravnostoronnego-treugolnika-cherez-radiusВ правильном треугольнике ABC центры вписанной и описанной окружностей совпадают.

Центр вписанной окружности — точка пересечения биссектрис треугольника. Биссектрисы равностороннего треугольника также являются его медианами. Медианы треугольника в точке пересечения делятся в отношении 2 к 1, считая от вершины.

Следовательно, точка O — центр вписанной и описанной окружностей, OF — радиус вписанной окружности, OF=r, BO — радиус описанной окружности, BO=R и BO:OF=2:1.

Отсюда,

    [OF = frac{1}{3}BF,BO = frac{2}{3}BF,]

    [ Rightarrow BF = 3 cdot OF;BF = frac{3}{2} cdot BO.]

Таким образом, длина биссектрисы через радиус вписанной окружности равна

    [l = 3r,]

через радиус описанной окружности —

    [l = frac{{3R}}{2}.]

В данной публикации мы рассмотрим основные свойства биссектрисы равностороннего треугольника, а также разберем пример решения задачи по данной теме.

Примечание: напомним, что равносторонним называется треугольник, в котором равны как все стороны, так и все углы.

  • Свойства биссектрисы равностороннего треугольника

    • Свойство 1

    • Свойство 2

    • Свойство 3

    • Свойство 4

    • Свойство 5

    • Свойство 6

    • Свойство 7

  • Пример задачи

Свойства биссектрисы равностороннего треугольника

Свойство 1

Любая биссектриса равностороннего треугольника одновременно является и медианой, и высотой, и серединным перпендикуляром.

Биссектриса в равностороннем треугольнике

BD – биссектриса угла ABC, которая также является:

  • высотой, опущенной на сторону AC;
  • медианой, делящей сторону AC на два равных отрезка (AD = DC);
  • серединным перпендикуляром, проведенным к AC.

Свойство 2

Все три биссектрисы равностороннего треугольника равны между собой.

Равенство биссектрис в равностороннем треугольнике

AF = BD = CE

Свойство 3

Биссектрисы равностороннего треугольника в точке пересечения делятся в отношении 2:1, считая от вершины.

Деление биссектрис равностороннего треугольника в точке пересечения

  • AG = 2GF
  • BG = 2GD
  • CG = 2GE

Свойство 4

Точка пересечения биссектрис равностороннего треугольника является центром описанной и вписанной окружностей.

Центры описанной и вписанной в равносторонний треугольник окружностей в точке пересечения биссектрис

  • r – радиус вписанной окружности;
  • R – радиус описанной окружности;
  • R = 2r.

Свойство 5

Биссектриса равностороннего треугольника делит его на два равновеликих (равных по площади) прямоугольных треугольника.

Деление равностороннего треугольника биссектрисой на два равновеликих прямоугольных треугольника

S1 = S2

Примечание: Три биссектрисы равностороннего треугольника делят его на 6 равновеликих прямоугольных треугольников.

Свойство 6

Любая из внешних биссектрис угла равностороннего треугольника параллельна стороне, лежащей напротив данного угла.

Параллельность внешних биссектрис углов равностороннего треугольника противолежащим сторонам

  • AD и AE – внешние биссектрисы, параллельные BC;
  • BK и BL – внешние биссектрисы, параллельные AC;
  • CM и CN – внешние биссектрисы, параллельные AB.

Свойство 7

Длину биссектрисы (la) равностороннего треугольника можно выразить через его сторону.

Формула для нахождения биссектрисы равностороннего треугольника через длину его стороны

где a – сторона треугольника.

Пример задачи

Радиус вписанной в равносторонний треугольник окружности равен 4 см. Найдите длину его стороны.

Решение

Согласно Свойствам 3 и 4, рассмотренным выше, радиус вписанной окружности составляет 1/3 часть от биссектрисы равностороннего треугольника. Следовательно, вся ее длина равняется 12 см (4 см ⋅ 3).

Теперь мы можем найти сторону треугольника с помощью формулы ниже (получена из Свойства 7):

Нахождение стороны равностороннего треугольника через длину биссектрисы (пример)

Найти медиану биссектрису высоту равностороннего треугольника


Формула для вычисления высоты = биссектрисы = медианы.

В равностороннем треугольнике: все высоты, биссектрисы и медианы, равны. Точка их пересечения, является центром вписанной окружности.

Найти медиану биссектрису высоту равностороннего треугольника

L — высота=биссектриса=медиана

a — сторона треугольника

Формула длины высоты, биссектрисы и медианы равностороннего треугольника, (L):

Формула длины высоты, биссектрисы и медианы равностороннего треугольника

Калькулятор — вычислить, найти медиану, биссектрису, высоту



Подробности

Автор: Administrator

Опубликовано: 07 октября 2011

Обновлено: 13 августа 2021

Биссектриса равностороннего треугольника

Какими свойствами обладает биссектриса равностороннего треугольника? Как, зная сторону правильного треугольника, найти его биссектрису? Чему равна длина биссектрисы через радиус вписанной и описанной окружностей?

(свойство биссектрисы равностороннего треугольника)

В равностороннем треугольнике биссектриса, проведённая к любой стороне, является также его медианой и высотой.

Пусть в треугольнике ABC AB=BC=AC.

Так как AB=BC, треугольник ABC — равнобедренный с основанием AC.

Проведем биссектрису BF.

По свойству равнобедренного треугольника, BF является также его медианой и высотой.

Аналогично, треугольник ABC — равнобедренный с основанием BC, треугольник ABC — равнобедренный с основанием AB, а его биссектрисы AK и CD — еще и медианы и высоты.

Что и требовалось доказать .

(свойство биссектрис равностороннего треугольника)

Все три биссектрисы равностороннего треугольника равны между собой.

Пусть в треугольнике ABC AB=BC=AC.

AK, BF CD — биссектрисы треугольника ABC.

В треугольниках ABF, BCD и CAK:

  • AB=BC=CA (по условию)
  • ∠BAF=∠CBD=∠ACK (как углы равностороннего треугольника)
  • ∠ABF=∠BCD=∠CAK (как как AK, BF CD — биссектрисы равных углов).

Значит, треугольники ABF, BCD и CAK равны (по стороне и двум прилежащим к ней углам).

Из равенства треугольников следует равенство соответствующих сторон: AK=BF=CD.

Что и требовалось доказать .

Из теорем 1 и 2 следует, что в равностороннем треугольнике все биссектрисы, медианы и высоты равны между собой.

1) Найдём биссектрису равностороннего треугольника через его сторону.

В треугольнике ABC AB=BC=AC=a.

BF — биссектриса, BF=l.

По свойствам равностороннего треугольника, BF — высота ∆ ABC, ∠A=60º.

Из прямоугольного треугольника ABF по определению синуса

Таким образом, формула биссектрисы равностороннего треугольника по его стороне:

2) Найдём биссектрису равностороннего треугольника через радиусы вписанной и описанной окружностей.

В правильном треугольнике ABC центры вписанной и описанной окружностей совпадают.

Центр вписанной окружности — точка пересечения биссектрис треугольника. Биссектрисы равностороннего треугольника также являются его медианами. Медианы треугольника в точке пересечения делятся в отношении 2 к 1, считая от вершины.

Следовательно, точка O — центр вписанной и описанной окружностей, OF — радиус вписанной окружности, OF=r, BO — радиус описанной окружности, BO=R и BO:OF=2:1.

Таким образом, длина биссектрисы через радиус вписанной окружности равна

Вычисление биссектрисы треугольника с известными свойствами

Математика, как известно, царица наук. Неслучайно это выражение так любят учителя, особенно старой формации. Математика открывается исключительно тем, кто умеет, во-первых, логически мыслить, а во-вторых, тем, кто любит всегда добиваться ответа, оперируя изначальными условиями, не жульничая, а основывая решения на анализе, построение опять-таки логических связей. Эти качества, вынесенные со школьной скамьи, способны модулироваться и к взрослой серьезной жизни как в рабочих, так и в иных сложных моментах.

  • Свойства
  • Свойства в равнобедренных треугольниках
  • Определение биссектрисы треугольника
  • Определение длины
  • Нахождение величины угла

Сегодня многие сталкиваются с проблемами при решении математических задач еще в начальной школе.

Однако даже те школьники, которые успешно осваивают первичную математическую программу, переходя на новый школьный и жизненный этап, где алгебра отделяется от геометрии, бывает, сталкиваются с серьезными затруднениями. Между тем, один раз выучив и, главное, поняв, как найти биссектрису треугольника, ученик навсегда запомнит эту формулу. Рассмотрим треугольник ABC с тремя проведенными биссектрисами. Как видно из рисунка, все они сходятся в одной точке.

Во-первых, определим, что биссектриса треугольника, и это одно из важнейших ее свойств, делит угол, из которого такой отрезок исходит, пополам. То есть в приведенном примере угол BAD равен углу DAC.

Это интересно: Как найти периметр треугольника.

Свойства

  1. Биссектриса треугольника разделяет сторону, к которой она проведена на два отрезка, обладающие свойствами пропорциональности к сторонам, которые прилегают к каждому отрезку, соответственно. Таким образом, BD/CD = AB/AC.
  2. Каждый треугольник способен обладать тремя данными отрезками. Другие значимые свойства касаются как частных, так и общих случаев конкретных рассматриваемых треугольников.

Свойства в равнобедренных треугольниках

  1. Первое свойство биссектрис равнобедренного треугольника формулируется в том, что равенство двух биссектрис свидетельствует о равнобедренности этого треугольника. Третья же его биссектриса медиана, а также высота его угла.
  2. Разумеется, что будет верным и обратное свойство. То есть в равнобедренном треугольнике неизменно наблюдается равенство двух его биссектрис.
  3. Из сказанного ранее вытекает вывод о том, что биссектриса, исходящая из противоположного основанию, служит также медианой и высотой.
  4. Все биссектрисы равностороннего треугольника обладают равенством.

Определение биссектрисы треугольника

Допустим, что в рассматриваемом треугольнике ABC сторона AB = 5 cm, AC = 4 cm. Отрезок CD = 3 cm.

Определение длины

Определить длину можно по следующей формуле. AD = квадратный корень из разности произведения сторон и произведения пропорциональный отрезков.

Найдем длину стороны BC.

  • Из свойств известно, что BD/CD = AB/AC.
  • Значит, BD/CD = 5/4 = 1,25.
  • BD/3 = 5/4.
  • Значит, BD = 3,75.
  • ABxAC = 54=20.
  • CDxBD = 33,75 = 11,25.

Так, для того чтобы рассчитать длину, требуется вычесть из 20 11,25 и извлечь квадратный корень из получившегося 8,75. Результат с учетом тысячных долей получится 2,958.

Данный пример призван также эксплицитно указать на ситуацию, когда значения длины биссектрисы, как и все другие значения в математике, будут выражены не в натуральных числах, однако бояться этого не стоит.

Это интересно: в чем выражается эволюционный характер развития общества?

Нахождение величины угла

Для нахождения углов, образующихся биссектрисой, важно, прежде всего, помнить о сумме углов, неизменно составляющей 180 градусов. Предположим, что угол ABC равен 70 градусам, а угол BCA 50 градусам. Значит, путем простейших вычислений получим, что CAB = 180 (70+50) = 60 градусов.

Если использовать главное свойство, в соответствии с которым угол, из которого она исходит, делится пополам, получим равные значения углов BAD и CAD, каждый из которых будет 60/2 = 30 градусов.

Если требуется дополнительный наглядный пример, рассмотрим ситуацию, когда известен лишь угол BAD равный 28 градусам, а также угол ABC равный 70 градусам. Используя свойство биссектрисы, сразу найдем угол CAB путем умножения значения угла BAD на два. CAB = 282 =56. Значит, BAC = 180 (70+56) или 180 (70+282)= 180 126 = 54 градуса.

Специально не рассматривалась ситуация, когда данный отрезок выступает в качестве медианы или высоты, оставив для этого другие специализированные статьи.

Таким образом, мы рассмотрели такое понятие, как биссектриса треугольника, формула для нахождения длины и углов которой заложена и реализована в приведенных примерах, имеющих целью наглядно показать, каким образом можно использовать для решения тех или иных задач в геометрии. Также к данной теме относятся такие понятия, как медиана и высота. Если данный вопрос прояснился, следует обращаться к дальнейшему изучению различных других свойств треугольника, без которых немыслимо дальнейшее изучение геометрии.

Биссектриса треугольника

Свойства биссектрисы равностороннего треугольника

В данной публикации мы рассмотрим основные свойства биссектрисы равностороннего треугольника, а также разберем пример решения задачи по данной теме.

Примечание: напомним, что равносторонним называется треугольник, в котором равны как все стороны, так и все углы.

Свойства биссектрисы равностороннего треугольника

Свойство 1

Любая биссектриса равностороннего треугольника одновременно является и медианой, и высотой, и серединным перпендикуляром.

BD – биссектриса угла ABC, которая также является:

  • высотой, опущенной на сторону AC;
  • медианой, делящей сторону AC на два равных отрезка (AD = DC);

Свойство 2

Все три биссектрисы равностороннего треугольника равны между собой.

Свойство 3

Биссектрисы равностороннего треугольника в точке пересечения делятся в отношении 2:1, считая от вершины.

Свойство 4

Точка пересечения биссектрис равностороннего треугольника является центром описанной и вписанной окружностей.

  • r – радиус вписанной окружности;
  • R – радиус описанной окружности;
  • R = 2r.

Свойство 5

Биссектриса равностороннего треугольника делит его на два равновеликих (равных по площади) прямоугольных треугольника.

Примечание: Три биссектрисы равностороннего треугольника делят его на 6 равновеликих прямоугольных треугольников.

Свойство 6

Любая из внешних биссектрис угла равностороннего треугольника параллельна стороне, лежащей напротив данного угла.

  • AD и AE – внешние биссектрисы, параллельные BC;
  • BK и BL – внешние биссектрисы, параллельные AC;
  • CM и CN – внешние биссектрисы, параллельные AB.

Свойство 7

Длину биссектрисы ( la ) равностороннего треугольника можно выразить через его сторону.

где a – сторона треугольника.

Пример задачи

Радиус вписанной в равносторонний треугольник окружности равен 4 см. Найдите длину его стороны.

Решение

Согласно Свойствам 3 и 4, рассмотренным выше, радиус вписанной окружности составляет 1/3 часть от биссектрисы равностороннего треугольника. Следовательно, вся ее длина равняется 12 см (4 см ⋅ 3).

Теперь мы можем найти сторону треугольника с помощью формулы ниже (получена из Свойства 7):

источники:

http://tvercult.ru/nauka/vyichislenie-bissektrisyi-treugolnika-s-izvestnyimi-svoystvami

Свойства биссектрисы равностороннего треугольника

Длина биссектрисы равностороннего треугольника Калькулятор

Search
Дом математика ↺
математика Геометрия ↺
Геометрия 2D геометрия ↺
2D геометрия Треугольник ↺
Треугольник Равносторонний треугольник ↺
Равносторонний треугольник Длина биссектрисы равностороннего треугольника ↺

Длина ребра равностороннего треугольника — это длина одной из сторон равностороннего треугольника. В равностороннем треугольнике все три стороны равны.Длина ребра равностороннего треугольника [le]

+10%

-10%

Длина биссектрисы угла равностороннего треугольника – это длина прямой линии, проведенной из вершины к противоположной стороне и делящей угол при вершине на две равные части.Длина биссектрисы равностороннего треугольника [lAngle Bisector]

⎘ копия

Длина биссектрисы равностороннего треугольника Решение

ШАГ 0: Сводка предварительного расчета

ШАГ 1. Преобразование входов в базовый блок

Длина ребра равностороннего треугольника: 8 метр —> 8 метр Конверсия не требуется

ШАГ 2: Оцените формулу

ШАГ 3: Преобразуйте результат в единицу вывода

6.92820323027551 метр —> Конверсия не требуется




9 Длина биссектрисы равностороннего треугольника Калькуляторы




9 Важные формулы равностороннего треугольника Калькуляторы

Длина биссектрисы равностороннего треугольника формула

Длина биссектрисы равностороннего треугольника = sqrt(3)/2*Длина ребра равностороннего треугольника

lAngle Bisector = sqrt(3)/2*le

Что такое равносторонний треугольник?

В геометрии равносторонним треугольником называется треугольник, у которого все три стороны имеют одинаковую длину. В знакомой евклидовой геометрии равносторонний треугольник также является равноугольным; то есть все три внутренних угла также конгруэнтны друг другу и равны 60 ° каждый.

Что такое биссектриса равностороннего треугольника и как ее вычислить?

Биссектриса угла равностороннего треугольника или биссектриса угла — это линия, которая делит угол на две равные части. У каждого угла есть биссектриса угла. Равносторонний треугольник — это треугольник, у которого длины всех трех сторон равны, а все углы равны 60 градусам. В равностороннем треугольнике он рассчитывается по формуле A = √3a/2, где A — биссектриса любого угла равностороннего треугольника, а — длина стороны равностороннего треугольника.

Понравилась статья? Поделить с друзьями:
  • Как составить план текста по литературе с примером
  • Как найти загадочную книгу
  • Как найти лики в своей игре
  • Как найти девушку маил ру
  • Как исправит обычное каре