Зная стороны оснований треугольной призмы и боковые ребра, можно вычислить все необходимые параметры треугольной призмы. Равносторонний треугольник в основании позволяет найти высоту основания, равную ребру основания, деленному на корень из двух. Радиусы окружностей, которые могут быть вписаны и описаны около оснований треугольной призмы, также можно найти по формулам для равностороннего треугольника.
h=a/√2
r=a/(2√3)
R=a/√3
Чтобы найти диагональ боковой грани призмы, нужно знать не только сторону ее основания, но и боковое ребро, тогда диагональ станет гипотенузой в прямоугольном треугольнике из бокового ребра и ребра основания.
d=√(a^2+b^2 )
Периметр треугольной призмы складывается из шести сторон оснований, по три на каждое, и трех боковых ребер. Площадь основания треугольной призмы равна площади равностороннего треугольника, а площадь боковой поверхности – трем площадям прямоугольников со сторонами ребром основаниям и боковым ребром. Чтобы посчитать площадь полной поверхности треугольной призмы, нужно сложить две площади основания и площадь боковой поверхности.
P=3(2a+b)
S_(осн.)=(√3 a^2)/4
S_(б.п.)=3ab
S_(п.п.)=3ab+(√3 a^2)/2
Чтобы вычислить объем треугольной призмы, как и любого другого объемного тела с двумя основаниями, необходимо площадь основания умножить на высоту тела/боковое ребро призмы.
V=S_(осн.) b=(√3 a^2 b)/4
Вокруг любой треугольной призмы можно описать сферу, ее радиус будет равен квадратному корню из суммы квадрата радиуса описанной вокруг основания окружности и квадрата половины бокового ребра призмы, которые путем алгебраических преобразований приводят к квадратному корню из пяти шестых, умноженному на сторону основания.
R_1=√(5/6) a
В треугольную призму можно вписать сферу тогда и только тогда, когда половина ее высоты равна радиусу вписанной в основание окружности, в таком случае радиус вписанной в треугольную призму сферы будет равен радиусу вписанной в основание окружности (половине бокового ребра).
r_1=r
На чтение 4 мин Просмотров 66.1к. Опубликовано 13 февраля, 2019
Здесь вы найдёте: Объем правильной треугольной призмы понятие, Объем призмы треугольной формула нахождения, Площадь треугольной призмы
Треугольная призма — это трехмерное тело, образованное соединением прямоугольников и треугольников. В этом уроке вы узнаете, как найти размер внутри (объем) и снаружи (площадь поверхности) треугольной призмы.
Содержание
- Призма треугольная — определение
- Элементы треугольной призмы
- Виды треугольных призм
- Прямая треугольная призма
- Наклонная треугольная призма
- Основные формулы для расчета треугольной призмы
- Объем треугольной призмы
- Площадь боковой поверхности призмы
- Площадь полной поверхности призмы
- Правильная призма — прямая призма, основанием которой является правильный многоугольник.
- Пример призмы
- Задачи на расчет треугольной призмы
Призма треугольная — определение
Треугольная призма — это пятигранник, образованный двумя параллельными плоскостями, в которых расположены два треугольника, образующих две грани призмы, и оставшиеся три грани — параллелограммы, образованные со-сторонами треугольников.
Элементы треугольной призмы
Треугольники ABC и A1B1C1 являются основаниями призмы.
Четырехугольники A1B1BA, B1BCC1 и A1C1CA являются боковыми гранями призмы.
Стороны граней являются ребрами призмы (A1B1, A1C1, C1B1, AA1, CC1, BB1, AB, BC, AC), всего у треугольной призмы 9 граней.
Высотой призмы называется отрезок перпендикуляра, который соединяет две грани призмы (на рисунке это h).
Диагональю призмы называется отрезок, который имеет концы в двух вершинах призмы, не принадлежащих одной грани. У треугольной призмы такой диагонали провести нельзя.
Площадь основания — это площадь треугольной грани призмы.
Площадь боковой поверхности призмы — это сумма площадей четырехугольных граней призмы.
Виды треугольных призм
Треугольная призма бывает двух видов: прямая и наклонная.
У прямой призмы боковые грани прямоугольники, а у наклонной боковые грани — параллелограммы (см. рис.)
Прямая треугольная призма
Призма, боковые ребра которой перпендикулярны плоскостям оснований, называется прямой.
Наклонная треугольная призма
Призма, боковые ребра которой являются наклонными к плоскостям оснований, называется наклонной.
Основные формулы для расчета треугольной призмы
Объем треугольной призмы
Чтобы найти объем треугольной призмы, надо площадь ее основания умножить на высоту призмы.
Объем призмы = площадь основания х высота
или
V=Sосн . h
Площадь боковой поверхности призмы
Чтобы найти площадь боковой поверхности треугольной призмы, надо периметр ее основания умножить на высоту.
Площадь боковой поверхности треугольной призмы = периметр основания х высота
или
Sбок=Pосн.h
Площадь полной поверхности призмы
Чтобы найти площадь полной поверхности призмы, надо сложить ее площади оснований и площадь боковой поверхности.
так как Sбок=Pосн.h, то получим:
Sполн.пов.=Pосн.h+2Sосн
Правильная призма — прямая призма, основанием которой является правильный многоугольник.
Свойства призмы:
Верхнее и нижнее основания призмы – это равные многоугольники.
Боковые грани призмы имеют вид параллелограмма.
Боковые ребра призмы параллельные и равны.
Совет: при расчете треугольной призмы вы должны обратить внимание на используемые единицы. Например, если площадь основания указана в см2, то высота должна быть выражена в сантиметрах, а объем — в см3 . Если площадь основания в мм2, то высота должна быть выражена в мм, а объем в мм3 и т. д.
Пример призмы
В этом примере:
— ABC и DEF составляют треугольные основания призмы
— ABED, BCFE и ACFD являются прямоугольными боковыми гранями
— Боковые края DA, EB и FC соответствуют высоте призмы.
— Точки A, B, C, D, E, F являются вершинами призмы.
Задачи на расчет треугольной призмы
Задача 1. Основанием прямой треугольной призмы служит прямоугольный треугольник с катетами 6 и 8, боковое ребро равно 5. Найдите объем призмы.
Решение: Объем прямой призмы равен V = Sh, где S — площадь основания, а h — боковое ребро. Площадь основания в данном случае это площадь прямоугольного треугольника (его площадь равна половине площади прямоугольника со сторонами 6 и 8). Таким образом, объём равен:
V = 1/2 · 6 · 8 · 5 = 120.
Задача 2.
Через среднюю линию основания треугольной призмы проведена плоскость, параллельная боковому ребру. Объем отсеченной треугольной призмы равен 5. Найдите объем исходной призмы.
Решение:
Объём призмы равен произведению площади основания на высоту: V = Sосн ·h.
Треугольник, лежащий в основании исходной призмы подобен треугольнику, лежащему в основании отсечённой призмы. Коэффициент подобия равен 2, так как сечение проведено через среднюю линию (линейные размеры большего треугольника в два раза больше линейных размеров меньшего). Известно, что площади подобных фигур соотносятся как квадрат коэффициента подобия, то есть S2 = S1k2 = S122 = 4S1.
Площадь основания всей призмы больше площади основания отсечённой призмы в 4 раза. Высоты обеих призм одинаковы, поэтому объем всей призмы в 4 раза больше объема отсечённой призмы.
Таким образом, искомый объём равен 20.
20 марта 2023 08:04
246
найдите длину бокового ребра правильной треугольной призмы, если её сторона основания равна 2 ⁴√3, а объем 30 см³
Посмотреть ответы
В основании призмы — равносторонний треугольник, площадь находим по формуле через сторону такого треугольника.
Объем призмы= площадь основания * высоту.
Отсюда выражаем высоту
Для начала, найдем высоту правильной треугольной призмы. Обозначим ее через h.
Так как призма правильная, то высота боковой грани будет равна стороне основания, поделенной на 2.
h = (2 ⁴√3)/2 = 2 ³√3
Теперь можем найти площадь основания S.
S = (√3/4) * a², где a — сторона основания.
S = (√3/4) * (2 ⁴√3)² = 6√3
Объем призмы равен произведению площади основания на высоту.
V = S * h = 6√3 * 2 ³√3 = 12 * 3 = 36
Так как объем данной призмы равен 30 см³, то мы можем записать уравнение:
36a = 30
a = 5/6 ³√3
Таким образом, длина бокового ребра равна 5/6 ³√3.
Еще вопросы по категории Математика
НАЙДИТЕ СУММУ: 1). (9-0,9)+(8-0,8)+(7-0,7)+(6-0,6)+(5-0,5)+(4-0,4); 2) (5,12-4,21)+(6,23-4,32)+(7,34-4,43)+(6,45-2,54)-(5,56-0,65);…
Между домами, в которых живут Леонид и Виктор, лежит прямая дорога длиной 620 км. Друзья договорились встретиться в кафе, расположенном возле этой дор…
В трапеции ABCD известно, что AD=6, BC=5, а её площадь равна 22. Найдите площадь треугольника ABC….
Вопрос: Какое время будет, если сейчас 10 часов вечера?…
What is the antonym for ‘good’?…
Правильная треугольная призма — призма, в основаниях которой лежат два правильных треугольника, а все боковые грани строго перпендикулярны этим основаниям.
Обозначения
- $ABCA_1B_1C_1$ — правильная треугольная призма
- $a$ — длина стороны основания призмы
- $h$ — длина бокового ребра призмы
- $S_{text{осн.}}$ — площадь основания призмы
- $V_{text{призмы}}$ — объем призмы
Площадь оснований призмы
В основании правильной треугольной призмы лежит правильный треугольник со стороной $a$. По свойствам правильного треугольника $$ S_{text{осн.}}=frac{sqrt{3}}{4}cdot a^2 $$ Таким образом, получается, что $S_{ABC}=S_{A_1B_1C_1}=frac{sqrt{3}}{4}cdot a^2$.
Объем призмы
Объем призмы вычисляется как произведение площади ее основания на ее высоту. Высотой правильной призмы является любое из ее боковых ребер, например, ребро $AA_1$. В основании правильной треугольной призмы находится правильный треугольник, площадь которого нам известна. Получаем $$ V_{text{призмы}}=S_{text{осн.}}cdot AA_1=frac{sqrt{3}}{4}cdot a^2 cdot h $$
Находим BD
BD является высотой правильного треугольника со стороной $a$, лежащего в основании призмы. По свойствам правильного треугольника $$ BD=frac{sqrt{3}}{2}cdot a $$ Аналогичным образом, приходим к заключению, что длины всех остальных диагоналей оснований призмы равны $frac{sqrt{3}}{2}cdot a$.
Находим $BD_1$
В треугольнике $DBD_1$:
- $DB=frac{sqrt{3}}{2}cdot a$ — как мы только что выяснили
- $DD_1=h$
- $angle BDD_1=90^{circ}$ — потому что прямая $DD_1$ перпендикулярна плоскости $ABC$
Таким образом, получается, что треугольник $DBD_1$ прямоугольный. По свойствам прямоугольного треугольника $$ BD_1=sqrt{h^2+frac{3}{4}cdot a^2} $$ Если $h=a$, то тогда $$ BD_1=frac{sqrt{7}}{2}cdot a $$
Находим $BC_1$
В треугольнике $CBC_1$:
- $CB=a$
- $CC_1=h$
- $angle BCC_1=90^{circ}$ — потому что прямая $CC_1$ перпендикулярна плоскости $ABC$
Таким образом, получается, что треугольник $CBC_1$ прямоугольный. По свойствам прямоугольного треугольника $$ BC_1=sqrt{h^2+a^2} $$ Если $h=a$, то тогда $$ BC_1=sqrt{2}cdot a $$ Аналогичным образом, приходим к заключению, что длины всех остальных диагоналей боковых граней призмы равны $sqrt{h^2+a^2}$.
Содержание:
Ранее вы уже знакомились с призмой, т. е. многогранником, две грани которого — равные
Что такое призма
Равные грани-многоугольники призмы лежат в параллельных плоскостях и называются основаниями призмы, а остальные грани-параллелограммы — боковыми гранями. Ребра боковых граней, не принадлежащие основаниям, называют боковыми ребрами. Отрезок, соединяющий две вершины, не принадлежащие одной грани, называют диагональю призмы (рис. 1). Плоскость, проходящая через два боковых ребра призмы, не принадлежащих одной грани, называется диагональной плоскостью, а сечение призмы диагональной плоскостью — диагональным сечением. На рисунке 2 показаны два диагональных сечения призмы.
Призмы разделяют на треугольные, четырехугольные, пятиугольные и т. д. в зависимости от количества сторон их оснований. Призма, изображенная на рисунке 1, — шестиугольная, а на рисунке 2, — девятиугольная.
Отличают прямые и наклонные призмы в зависимости от того, перпендикулярны или не перпендикулярны боковые ребра призмы ее основаниям. Обычно при изображении прямой призмы ее боковые ребра проводят вертикально.
Прямая призма, основаниями которой являются правильные многоугольники, называется правильной призмой. В прямой призме все боковые грани — прямоугольники, а в правильной — равные прямоугольники.
Перпендикуляр, проведенный из какой-либо точки одного основания призмы к плоскости другого основания, называется высотой призмы. На рисунке 3 показаны две высоты и призмы . У прямой призмы ее высота равна боковому ребру.
Боковые грани составляют боковую поверхность призмы, а боковые грани вместе с основаниями — полную поверхность призмы.
Теорема 1.
Площадь боковой поверхности призмы равна произведению периметра ее перпендикулярного сечения и длины бокового ребра:
Доказательство:
Пусть имеется -угольная призма . Пересечем ее плоскостью , перпендикулярной боковому ребру. Получим перпендикулярное сечение , стороны которого перпендикулярны сторонам параллелограммов, составляющим боковую поверхность призмы. Поэтому для боковой поверхности получим:
При переходе (1) мы учли, что все боковые ребра призмы равны друг другу, при переходе (2) — то, что сумма выражает периметр перпендикулярного сечения призмы, а множитель — длину бокового ребра.
Следствие 1.
Площадь боковой поверхности прямой призмы равна произведению периметра ее основания и высоты.
Действительно, перпендикулярное сечение прямой призмы равно ее основанию, а боковое ребро является высотой.
Частным видом призмы является параллелепипед, т. е. призма, основанием которой является параллелограмм. Параллелепипед, как и призма, может быть прямым или наклонным. Прямой параллелепипед, основаниями которого являются прямоугольники, называется прямоугольным параллелепипедом. Прямоугольный параллелепипед, у которого три ребра, выходящие из одной вершины, равны друг другу, называется кубом.
У параллелепипеда все грани — параллелограммы, из которых у прямого параллелепипеда прямоугольниками являются боковые грани, а у прямоугольного параллелепипеда — все грани.
12 ребер параллелепипеда разделяются на три четверки равных ребер (рис. 5), его 6 граней — на три пары равных граней (рис. 6), а 4 диагонали пересекаются в одной точке, являющейся центром симметрии параллелепипеда (рис. 7).
Прямой параллелепипед еще имеет ось симметрии (рис. и плоскость симметрии (рис. 9). Прямоугольный параллелепипед имеет три оси симметрии (рис. 10) и три плоскости симметрии (рис. 11).
Ребра прямоугольного параллелепипеда, выходящие из одной вершины, называют измерениями прямоугольного параллелепипеда. Квадрат диагонали прямоугольного параллелепипеда равен сумме квадратов трех его измерений (рис. 12), и все его диагонали равны друг другу.
Важной характеристикой плоской фигуры является ее площадь. Подобной характеристикой тела является его объем. Будем считать, что изучаемые нами тела имеют объем.
За единицу объема принимают объем куба с ребром 1. На практике пользуются разными единицами объема: как метрическими — кубический миллиметр, кубический сантиметр, кубический дециметр, кубический метр, кубический километр, так и неметрическими — галлон, барель, бушель, кварта.
Для объема тела выполняются его основные свойства:
- равные тела имеют равные объемы;
- если тело разделено на части, то его объем равен сумме объемов этих частей.
При этом равными фигурами называют фигуры, которые преобразуются друг в друга определенным движением. Например, равными являются две шестиугольные правильные призмы, у которых соответственно равны стороны оснований и высоты (рис. 13), или два цилиндра с соответственно равными радиусами оснований и образующими (рис. 14). Тело, изображенное на рисунке 15, можно разделить на цилиндр и конус, и его объем равен сумме объемов этих цилиндра и конуса.
Два тела с равными объемами называют равновеликими телами. Равные тела являются равновеликими, но не наоборот.
Вы знаете, что объем прямоугольного параллелепипеда равен произведению трех его измерений , , (рис. 16): .
Учитывая, что в формуле произведение выражает площадь основания прямоугольного параллелепипеда, а число — его высоту , получим, что объем прямоугольного параллелепипеда равен произведению площади его основания и высоты: .
Теорема 2.
Объем произвольного параллелепипеда равен произведению площади его основания и высоты:
Доказательство:
Пусть имеется произвольный параллелепипед (рис. 17). Через ребро проведем плоскость, перпендикулярную ребру , она отсечет от параллелепипеда треугольную призму (рис. 18). После параллельного сдвига этой призмы в направлении отрезка получим призму . Параллелепипед равновелик с данным параллелепипедом . Выполненное преобразование параллелепипеда также сохраняет объем параллелепипеда, площадь его основания и высоту.
У параллелепипеда его боковые грани и перпендикулярны плоскости основания. К граням и , которые не перпендикулярны плоскости основания, применим такое же преобразование, в результате которого получим прямой параллелепипед (рис. 19), в котором сохраняются объем, площадь основания и высота.
Наконец, применив еще раз такое преобразование к граням и прямого параллелепипеда , получим прямоугольный параллелепипед (рис. 20), сохранив объем параллелепипеда, площадь его основания и высоту.
Значит,
Множитель есть площадь основания параллелепипеда , а множитель выражает его высоту, так как есть перпендикуляр, возведенный из точки основания к другому основанию . Значит, объем произвольного параллелепипеда равен произведению площади его основания и высоты.
Теорема 3.
Объем призмы равен произведению площади ее основания и высоты:
Доказательство:
Рассмотрим сначала треугольную призму (рис. 21). Дополним ее до параллелепипеда (рис. 22). Точка пересечения диагоналей диагонального сечения этого параллелепипеда является его центром симметрии. Это означает, что достроенная призма симметрична данной призме относительно центра , а потому эти призмы равны друг другу. Значит, объем параллелепипеда равен удвоенному объему данной призмы.
Объем параллелепипеда равен произведению площади его основания и высоты. Но площадь его основания равна удвоенной площади основания данной призмы, а высота параллелепипеда равна высоте призмы.
Отсюда следует, что объем призмы равен площади ее основания и высоты. Теперь рассмотрим произвольную призму (рис. 23).
Диагональными сечениями, проходящими через вершину , разобьем ее на треугольные призмы-части , , …, , , которые все имеют одну и ту же высоту, равную высоте данной призмы. Объем данной призмы равен сумме объемов призм-частей. По уже доказанному для объема данной призмы получим:
Учитывая, что сумма в скобках выражает площадь S основания данной призмы, получим:
Следствие 2.
Объем прямой призмы равен произведению площади ее основания и бокового ребра.
Призма и её сечения
С призмой вы уже знакомы. Несмотря на это, мы напомним определение призмы и её свойства.
Призма -это многогранник, две грани которого равные n-угольники (основания), лежащие в параллельных плоскостях, а остальные n граней — параллелограммы (рис. 22).
В зависимости от того перпендикулярны ли боковые грани призмы его основаниям или нет, призмы делят на прямые или наклонные. На рисунке 23.а изображена прямая призма, а на рисунке 23.b — наклонная. Очевидно, что боковые грани прямой призмы — прямоугольники.
Если основания прямой призмы являются правильными многоугольниками, то её называют правильной (рис. 24). Боковые грани правильной призмы это равные между собой прямоугольники.
Перпендикуляр, опущенный из некоторой точки одного основания к другому, называют его перпендикуляром (рис. 23.b).
Сечение призмы, проходящее через соответствующие диагонали его оснований, называют диагональным сечением (рис. 24.а) и их число равно числу диагоналей одного из оснований.
Перпендикулярным сечением призмы называют сечение перпендикулярное всем его боковым рёбрам (рис. 25). так как число диагоналси выпуклого n-угольника, то число диагональных сeчeний n-угольной призмы также равно .
В каждом диагональном сечении призмы можно провести две диагонали. Следовательно, n-угольная призма имеет диагоналей.
Пример:
В наклонной треугольной призме расстояния между боковыми ребрами соответственно равны 7 см, 15 см и 20 см. Найдите расстояние между большей боковой гранью и противолежащим боковым ребром.
Решение:
Известно, что расстояние между параллельными прямыми равно длине перпендикуляра, опущенного из произвольной точки одной прямой на другую. Тогда длины сторон перпендикулярного сечения ABC (рис. 26). Наибольшая грань призмы проходит через наибольшую сторону АС= 20 см этого сечения. Расстояние от рёбра призмы В2В1 до плоскости грани равно высоте BD треугольника ABC.
Тогда по формуле Герона получаем:
,
.
С другой стороны, .
Отсюда или см.
Ответ: 4,2 см.
Параллелепипед и куб
Призма, основаниями которой являются параллелограммы, называют параллелепипедом (рис. 27). Параллелепипеды также как и призмы могут быть прямыми (рис. 27.а) и наклонными (рис. 27.b).
Грани параллелепипеда, не имеющие общую вершину, называют противоположными гранями.
У параллелепипеда:
- —12 рёбер, каждые четыре из которых равны (рис. 28.а),
- —6 граней, которые попарно параллельны и равны (рис. 28.b),
- —4 диагонали, которые пересекаются и точкой пересечения делятся пополам (рис. 28.с),
- —точка пересечения диагоналей — центр его симметрии (рис. 28.с). Прямой параллелепипед имеет ось симметрии (рис. 28.d) и плоскость симметрии (рис. 28.e).
Прямой параллелепипед, основания которого являются прямоугольники, называют прямоугольным параллелепипедом (рис. 29). Очевидно, что все грани прямоугольного параллелепипеда являются прямоугольниками.
Прямоугольный параллелепипед имеет три оси симметрии (рис. 30) и три плоскости симметрии (рис. 31).
Длины трех рёбер, исходящих из одной вершины прямоугольного параллелепипеда называют его измерениями.
Свойство: В прямоугольном параллелепипеде квадрат любой диагонали d равен сумме квадратов его измерений: а, b и с (рис.32):
.
Прямоугольный параллелепипед, все измерения которого равны, называют кубом. Очевидно, что все грани куба являются равными квадратами. Куб имеет один центр симметрии, 9 осей симметрии и 9 плоскостей симметрии.
Выше были перечислены свойства призмы. Некоторые из них были показаны в 10 классе. Доказательства остальных свойств проще, поэтому их доказательства вы можете провести самостоятельно.
Площади боковой и полной поверхности призмы
На рисунке 33 проведены высоты НН1 DD1 призмы
АВСDЕ—А1В1С1D1Е1. Очевидно, что высоты правильной призмы будут равны её боковому рёбру.
Боковая поверхность призмы (точнее, площадь боковой поверхности)равна сумме боковых поверхностей ее граней, а полная поверхнасть равна сумме боковой поверхности и площадей двух ее оснований.
Теорема. Боковая поверхность прямой призмы равна произведению периметра ее основания на высоту:
Доказательство. Пусть высота данной прямой призмы равна , а периметр основания (рис. 34). Известно, что каждая грань прямой призмы является прямоугольником. Основания прямоугольников равны соответствующим сторонам основания призмы, а высоты равны высоте призмы.
Тогда
Теорема. Боковая поверхность произвольной призмы равна произведению периметра перпендикулярного сечения призмы на ее боковое ребро:
Доказательство. Пусть периметр перпендикулярного сечения призмы равен Р (рис. 35). Сечение делит призму на две части (рис. 36.а). Совершим параллельный перенос одной из этих частей так, чтобы основания нашей призмы совпали. В результате мы получим новую прямую призму (рис. 36.b). Очевидно, что, боковая поверхность этой призмы равна боковой поверхности данной. Её основанием является перпендикулярное сечение, а боковое ребро равно .
Тогда по доказанной выше теореме:
Объем призмы
Одним из свойств, характеризующих геометрические тела в пространстве, является понятие объема. Каждый предмет (тело) занимает некоторую часть пространства. Например, кирпич по сравнению со спичечным коробком занимает большую часть пространства. Для сравнения этих частей между собой вводится понятие объёма.
Объём — это величина, численное значение которой обладает следующими свойствами:
- Любое тело имеет определённый объём, выраженный положительным числом.
- Равные тела имеют равные объёмы.
- Если тело разбито на несколько частей, то его объём равен сумме объёмов этих частей.
- Объём куба, ребро которого равно единице, равен единице.
Объём — также как длина и площадь, является величиной. В зависимости от выбора единицы длины, объём единого куба измеряют в кубических единицах:
1 см3, 1 дм3, 1 м3 и т. д.
Объёмы тел измеряют различными способами или вычисляют. Например, объёмы маленьких предметов можно измерить с помощью сосудов (мензурки) с мелкими делениями (шкалами) (рис. 46). А объём ведра можно измерить с помощью сосуда, имеющего единичный объём, наполнив его водой (рис. 47). Но таким способом мы не можем измерить объёмы всех тел. В таких случаях объём вычисляют различными способами. Ниже рассмотрим их без доказательств.
Объём параллелепипеда
Теорема. Объём прямоугольного параллелепипеда равен произведению трех его измерeний (рис.48): .
Следствие. Объём прямоугольного параллелепипеда равен произведению площади его основания на высоту (рис. 49): .
Теорема. Объём произвольного параллелепипеда равен произведению площади его основания на высоту (рис. 50): .
Это свойство вытекает из вышеупомянутого следствия. На рисунке 50 показано как данный параллелепипед преобразовать в прямоугольный параллелепипед. Воспользовавшись этим самостоятельно обоснуйте свойство.
Нахождение объёма призмы
Теорема. Объём прямой призмы равен произведению площади его основания на высоту (рис. 51): .
Доказательство. 1 случай. Пусть основанием призмы будет прямоугольный треугольник (рис 51.а). Эту призму можно дополнить равной ей призмой до прямоугольного параллелепипеда (рис. 51 .b).
Если объём данной призмы, площадь её основания и высота V, S и h, то объём полученного прямоугольного параллелепипеда, площадь его основания и высота будут соответственно равны 2V, 2S и h.
Следовательно или
2 случай. Пусть S — площадь произвольной n — угольной прямой призмы и h — её высота. Основание призмы — n-угольник делится диагоналями на треугольники, каждый из которых можно разделить на прямоугольные треугольники (рис. 52). В результате данная призма разделится на конечное число прямых призм, основания которых являются прямоугольными треугольниками. Высоты этих призм равны h , а сумма площадей оснований этих призм равна площади основания данной призмы:
Объём данной призмы равен сумме объёмов составляющих её треугольных призм:
или
Теорема. Объём произвольной призмы равен произведению площади его основания на высоту:
По рисунку 5.3 докажите эту теорему самостоятельно, сначала для треугольной призмы (рис. 5.3.а), затем для любой призмы (рис. 5.3.b).
Пример:
Стороны основания прямого параллелепипеда равны а и b, а угол между ними 30°. Найдите его объём, если площадь его боковой поверхности равна S.
Решение:
Обозначим высоту параллелепипеда h(рис. 54).
Тогда по условию задачи:
- Цилиндр в геометрии
- Пирамида в геометрии
- Конус в геометрии
- Сфера в геометрии
- Возникновение геометрии
- Геометрические преобразования в геометрии
- Планиметрия — формулы, определение и вычисление
- Стереометрия — формулы, определение и вычисление