Как найти длину диагонали по градус

Расчет диагонали для угла 90 градусов

Google Play

Расчет диагоналей для разметки фундамента

Укажите необходимые размеры в миллиметрах

X — длина фундамента
Y — ширина фундамента

Возможности программы.

Расчет диагонали для разметки фундамента или стен.
Используется для установления точного угла в 90 градусов.

Google Play

Место приема благодарностей…

Укажите размеры:

Диагональ =

Решение:

Скопировать

Ссылка на страницу с результатом:

# Теория

Прямоугольник — это четырёхугольник у которого все углы прямые (по 90 градусов).

Диагональ прямоугольника — это прямая линия соединяющая противоположные углы. Диагонали прямоугольника обладают следующими свойствами:

  • Диагонали прямоугольника равны.
  • Диагональ делит прямоугольник на два равных прямоугольных треугольника и является их гипотенузой.

Формула диагонали прямоугольника

  Так как диагональ делит прямоугольник на два одинаковых труегольника и является их гипотенузой, то длина и ширина прямоугольника будут катетами образованного треугольника. Поэтому для расчёта диагонали мы применяем теорему Пифагора:

Квадрат гипотенузы равен сумме квадратов катетов: c² = a² + b²

Отсюда, формула для расчётадиагонали прямоугольника выглядит следующим образом:

a
b
d

d = sqrt{a^2 + b^2}

  • d — диагональ прямоугольника
  • a — длина прямоугольника
  • b — ширина прямоугольника

Похожие калькуляторы:

Войдите чтобы писать комментарии


Свойства параллелограмма:

1. Противоположные стороны равны и параллельны

2. Противоположные углы равны

3. Точка пересечения диагоналей, делит их пополам

1. Длина диагонали параллелограмма через стороны, известную диагональ и угол.

Формулы параллелограмма

a, b — стороны параллелограмма

D большая диагональ

d меньшая диагональ

αβ — углы параллелограмма

Формулы диагонали через стороны и углы параллелограмма (по теореме косинусов), (D, d):

Формулы параллелограмма

Формулы параллелограмма

Формулы параллелограмма

Формулы параллелограмма

Формулы диагонали через стороны и известную диагональ (по формуле- сумма квадратов диагоналей), (Dd):

Формулы параллелограмма

Формулы параллелограмма

2. Длина диагонали параллелограмма через площадь, известную диагональ и угол.

Формулы параллелограмма

D большая диагональ

d меньшая диагональ

α β — углы между диагоналями

S — площадь параллелограмма

Формулы диагонали через площадь, известную диагональ и угол между диагоналями, (Dd):

Формулы параллелограмма

Формулы параллелограмма



Формулы площади параллелограмма

Формула периметра параллелограмма

Все формулы по геометрии

Подробности

Опубликовано: 03 ноября 2011

Обновлено: 13 августа 2021


Диагонали прямоугольника равны между собой. Диагональ делит прямоугольник на два равных прямоугольных треугольника ABC и ACD. Диагональ равна диаметру описанной окружности.

1. Формулы длины диагонали в прямоугольнике.

Длина диагонали прямоугольника

dдиагональ прямоугольника

a, b — стороны

α, β — углы полученные от деления, диагональю, прямого угла

Формула диагонали через стороны, (d):

Формула диагонали через стороны

Формулы диагонали через сторону и угол, (d):

Формулы диагонали через сторону и угол

Формулы диагонали через сторону и угол

Формулы величины углов через диагональ и стороны, (α, β):

Формулы величины углов через диагональ и стороны

Формулы величины углов через диагональ и стороны

2. Формулы углов между диагоналями в прямоугольнике.

d — диагонали прямоугольника

a, b — стороны

α, β — углы между диагоналями

Формулы углов между диагоналями через стороны и диагональ, (α, β ):

Формулы углов между диагоналями через стороны и диагональ

Формулы углов между диагоналями через стороны и диагональ



Подробности

Опубликовано: 27 октября 2011

Обновлено: 13 августа 2021

Параллелограмм — это четырехугольник, у которого по определению противоположные стороны параллельны и равны. Как следствие, противоположные углы параллелограмма также будут между собой равны, а так как сумма всех углов в четырехугольнике равна 360 градусам, то можно сделать вывод, что сумма двух последовательных углов будет равна 180 градусам. Данное свойство будет играть существенную роль для нахождения диагоналей параллелограмма, с учетом того, что они разной длины.

Так как каждая диагональ параллелограмма делит его на два равновеликих треугольника, именно их свойства и будут использованы для выведения формулы диагонали параллелограмма.

В любом треугольнике угол и сторона, лежащие напротив, пропорциональны друг другу. Для параллелограмма это будет значить, что более длинная диагональ будет лежать напротив тупого угла, а более короткая диагональ — напротив острого.С учетом того, что стороны треугольников, полученных в результате проведения диагоналей, одинаковы — это стороны параллелограмма, значение градусной меры угла между данными сторонами определяет чему будет равна длина диагонали,вычисленной по формуле. Другими словами, если в формулудиагонали подставить значение острого угла параллелограмма, то калькулятор вычислит длину короткой диагонали, а если подставить значение тупого угла — то длинной.

Для того чтобы перейти от одного угла к другому, используется разность 180 градусов и заданного угла, таким образом калькулятор одновременно может вычислить обе диагонали.

α=180°-β

Чтобы вывести формулу диагонали параллелограмма, используется теорема косинусов в треугольнике, который диагональ образует со сторонами. В любом из подобных треугольников, диагональ является стороной, противолежащей углу параллелограмма и, соответственно, ее квадрат равен сумме квадратов двух других сторон треугольника (сторон параллелограмма, в данном случае) за вычетом удвоенного произведения тех же сторон на косинус приведенного угла. Чтобы найти длину диагонали параллелограмма, калькулятор вычисляет квадратный корень из данного выражения.

Понравилась статья? Поделить с друзьями:
  • Как найти номер чека по коду
  • Как найти отношение площадей подобных квадратов
  • Как найти отношение импульсов двух тел
  • Как рассчитать срок окупаемости инвестиции составит
  • Как найти текстуру для фотошопа