Как найти длину функции по уравнению

Как найти длину функции

Под длиной функции или областью ее определения понимают множество всех значений переменной, при которых функция имеет смысл. Определение длины функции подразумевает поиск именно таких величин.

Как найти длину функции

Вам понадобится

  • — математический справочник.

Инструкция

Рассмотрите функцию на предмет присутствия в ней специфических членов – дроби, корня, логарифма и т.д. Каждый из таких элементов наведет вас на мысль, где следует искать область определения функции, а в какой части ее можно исключить.

Если в выражении функции присутствует дробь, то ее знаменатель не должен быть равен нулю, ведь на нуль делить нельзя. В этом случае приравняйте знаменатель с переменной к этой величине, после чего исключите значения переменной, при которой функция не имеет смысла.

Если в выражении функции имеется корень четной степени, то исключите из области ее определения отрицательные числа.

Если в выражении функции присутствует логарифм, то область ее определения должна быть больше нуля. Чтобы исключить из значений переменной величины, при которых функция не имеет смысл, решите неравенство, в котором выражение под логарифмом будет меньше нуля.

Определите другие условия, при которых функция не имеет смысла. Исходя из этого, составьте равенство или неравенство, где в левой части будет присутствовать переменная, а в правой условие целесообразности функции. Решите его, и вы получите значения функции, которые следует исключить.

Составьте область определения функции с учетом исключенных значений.

Видео по теме

Обратите внимание

Имеет смысл составить некую систему, в которую войдут все равенства и неравенства для специфичных членов выражения. Решение подобной системы позволит в полной мере и наиболее точно найти область определения конкретной функции.

Полезный совет

В выражении функции могут присутствовать самые разные члены, скомпонованные друг с другом. Например, логарифм под корнем или в дроби. В таких случаях нужно исключать значения, при которых функция не имеет смысла поэтапно, т.е. рассматривать область определения каждого члена в отдельности, затем сгруппированного члена выражения, а потом уже всей функции.

Источники:

  • Как найти область определения функции в 2018

Войти на сайт

или

Забыли пароль?
Еще не зарегистрированы?

This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.

Первый номер в примерах отвечает номеру основного задания из сборника М. В. Заболоцький, Фединяк С.И., Филевич П.В. «Практикум из математического анализа» (рядом стоит номер из сборника Б. П. Демидовича). 

Для запоминания основных моментов схема интегрирования и вычисление дуги кривой из примера в пример будет повторяться. По возможности сами решения будут проиллюстрированы графиками кривых.

Найти длины дуг кривых в прямоугольной системе координат

Пример 2.117 (2431) Вычислить длину дуги кривой y=x3/2 (полукубическая парабола Нейля) xє[0;4] .
Вычисление: Найдем производную заданной функции по переменной x:

График полукубической параболы Нейля имеет вид

Выписываем пределы интегрирования:
a=0, b=4 (известны из начального условия).
По формуле находим длину дуги на заданном отрезке:

Во время интегрирования для приведения подынтегральной функции к табличному виду выполнили замену переменных.
При этом нужно перечислять пределы интегрирования.
В результате пришлось интегрировать корневую функцию, а длина дуги после вычислений приблизительно равна l=9,07.
Помните, что все длины измеряются в единицах (од.) !!!

Пример 2.118 (2432) Найти длину дуги кривой y2=2px (парабола) xє[0;x0].
Вычисление: Поскольку отрезок дуги параболы задан в пределах [0;x0], то заданная функция будет иметь вид положительной ветки корневой функции  
Вычислим производную функции по переменной x:

Запишем пределы интегрирования:
a=0, b=x0 . 

График параболы приведен ниже

Вычислим длину дуги через определенный интеграл:
для сведения к простым формулам интегрирования применяем замену переменных, при этом не забываем перечислить изменение пределов интегрирования:


В конце вычислений применено интегрирование частями.

Пример 2.119 (2434) Найти длину дуги кривой y=ex, [0;x0].
Вычисление: Для интегрирования находим производную (по переменной x) экспоненты :
y’=(ex)’=ex.
Поскольку показатель не содержит никаких коэффициентов при переменной, то производная равна самой экспоненте.
Из начального условия выписываем пределы интегрирования:
a=0, b=x0.
График экспоненты имеет вид

Чтобы вычислить длину дуги экспоненты переходим к новой переменной.
Это ведет к изменению и пределов интегрирования и самого дифференциала:

Напоследок расчетов приходим к формуле дуги, которая содержит корневую и логарифмическую зависимости от бегущей координаты.

Пример 2.120 ( 2435) Найти длину дуги кривой x=1/4y2-ln(y)/2, yє[1;e].
Вычисление: Вычислим производную (по переменной y ) заданной функции:

Приведенная формула работает и для обратных функций x=x(y), особенно если функция изменяется как показано на графике

Пределы интегрирования: a=1, b=e .
Находим длину дуги кривой на заданном отрезке:

При возведении к квадрату производной получим простую для интегрирования функцию, которая в результате дает l=(e2+1)/4.

Пример 2.121 (2436) Вычислить длину дуги кривой

Вычисление: Найдем производную по переменной x функции:

Пределы интегрирования для этой дуги равны [0;b].
График исследуемого логарифма имеет вид

Интегрированием находим длину дуги кривой:

Со всеми превращениями подинтегральной функции попробуйте разобраться самостоятельно.

Пример 2.122 (2437) Вычислить длину дуги кривой y=ln(cos(x)), 0<x<a<Pi/2.
Вычисление: Найдем производную (по переменной x) заданной функции :

Запишем пределы интегрирования: (известны за условием).

Вычислим длину дуги кривой на заданном отрезке:

Если воспользоваться тригонометрическими формулами то перейдем к тангенсу, а сама длина дуги равна
l=ln(tg (Pi/4+a/2)).

Пример 2.123 Найти длину дуги кривой y=ln(x),
Вычисление: Вычисляем производную от логарифма:
y’=1/x.
Пределы интегрирования переписываем из условия:
 
График логарифма имеет вид

Интегрирование по длине дуги достаточно непростое, требует добрых умений.
Расписав подынтегральную функцию, и применив замену переменных к одному из интегралов, приходим к логарифмам, которые при указанных пределах интегрирования несколько упрощаются.

Невзирая на трехэтажные выражения конечное значение длины дуги выраженно простой зависимостью.

Пример 2.124 Найти длину дуги кривой y=ln(1-x2), x[0;0,5].
Вычисление: Найдем производную (по переменной x) заданной функции :

Из начального условия имеем такие пределы интегрирования: [0;0,5].
График исследуемого логарифма имеет вид

Вычисляем длину дуги логарифма:

Если округлить конечное значение, то будем иметь l=0,5986.

Пример 2.125 (2439) Вычислить длину дуги кривой  
Вычисление: Поскольку график заданной функции симметричен относительно оси Ox, то вычислим длину дуги для положительной части функции

и результат умножим на 2.
Найдем производную функции и саму подинтегральную функцию:

Пределы интегрирования известны:

График веток в декартовой плоскости имеет вид.

При нахождении длины дуги дважды выполняем замену переменных.
Как и в предыдущих примерах ответ получаем через логарифмы

Кому в учебе придется вычислять подобное задание, просьба разобраться с превращениями.
А еще лучше — придумать и решить подобный пример.

Пример 2.126 (2438) Найти длину дуги кривой (трактриса).
Вычисление: Запишем производную по переменной y трактрисы (см. 2408):

Пределы интегрирования:

График трактрисы имеет вид

По формуле дуги кривой интегрируем и находим длину трактрисы:

Конечная формула достаточно простая для расчетов.
От края следует несколько отойти, в ином случае длина трактрисы направляется к безконечности.

Пример 2433 Найти длину дуги кривой (цепная линия) от точки A(0;a) к точке B(b;h) .
Вычисление: Цепная линия — это кривая, форму которой принимает цепь (нить) под действием силы притяжения, которая подвешена за оба конца.
Поскольку и , то

Найдем производную трактрисы:

Пределы интегрирования по аргументу следующие:

Рисунок цепной линии приведен ниже

Вычислим длину дуги кривой на заданном отрезке:

Пример 2440 Найти длину дуги астроиды
Вычисление: Для астроиды оси прямоугольной системы координат делят линию на 4 части (смотри 2429), поэтому длину будем искать для чверти и результат умножим на 4.
Выражаем функцию для чверти астроиды

Найдем производную от полученной зависимости и подинтегральную функцию:

Пределы интегрирования: [0;a] (для чверти астроиды).
Вычислить длину дуги астроиды на практике достаточно легко:

Дело в том, что единицы сокращаются и получаем простой табличный интеграл.
В результате длина астроиды равна l=6a.

bold{mathrm{Basic}} bold{alphabetagamma} bold{mathrm{ABGamma}} bold{sincos} bold{gedivrightarrow} bold{overline{x}spacemathbb{C}forall} bold{sumspaceintspaceproduct} bold{begin{pmatrix}square&square\square&squareend{pmatrix}} bold{H_{2}O}
square^{2} x^{square} sqrt{square} nthroot[msquare]{square} frac{msquare}{msquare} log_{msquare} pi theta infty int frac{d}{dx}
ge le cdot div x^{circ} (square) |square| (f:circ:g) f(x) ln e^{square}
left(squareright)^{‘} frac{partial}{partial x} int_{msquare}^{msquare} lim sum sin cos tan cot csc sec
alpha beta gamma delta zeta eta theta iota kappa lambda mu
nu xi pi rho sigma tau upsilon phi chi psi omega
A B Gamma Delta E Z H Theta K Lambda M
N Xi Pi P Sigma T Upsilon Phi X Psi Omega
sin cos tan cot sec csc sinh cosh tanh coth sech
arcsin arccos arctan arccot arcsec arccsc arcsinh arccosh arctanh arccoth arcsech
begin{cases}square\squareend{cases} begin{cases}square\square\squareend{cases} = ne div cdot times < > le ge
(square) [square] ▭:longdivision{▭} times twostack{▭}{▭} + twostack{▭}{▭} — twostack{▭}{▭} square! x^{circ} rightarrow lfloorsquarerfloor lceilsquarerceil
overline{square} vec{square} in forall notin exist mathbb{R} mathbb{C} mathbb{N} mathbb{Z} emptyset
vee wedge neg oplus cap cup square^{c} subset subsete superset supersete
int intint intintint int_{square}^{square} int_{square}^{square}int_{square}^{square} int_{square}^{square}int_{square}^{square}int_{square}^{square} sum prod
lim lim _{xto infty } lim _{xto 0+} lim _{xto 0-} frac{d}{dx} frac{d^2}{dx^2} left(squareright)^{‘} left(squareright)^{»} frac{partial}{partial x}
(2times2) (2times3) (3times3) (3times2) (4times2) (4times3) (4times4) (3times4) (2times4) (5times5)
(1times2) (1times3) (1times4) (1times5) (1times6) (2times1) (3times1) (4times1) (5times1) (6times1) (7times1)
mathrm{Радианы} mathrm{Степени} square! ( ) % mathrm{очистить}
arcsin sin sqrt{square} 7 8 9 div
arccos cos ln 4 5 6 times
arctan tan log 1 2 3
pi e x^{square} 0 . bold{=} +

Подпишитесь, чтобы подтвердить свой ответ

Подписаться

Войдите, чтобы сохранять заметки

Войти

Номер Строки

Примеры

  • длина:дуги:x,:0,:1

  • длина:дуги:sqrt{1-x^{2}}

  • длина:дуги:ln(sec(x)),:[0,:frac{pi}{4}]

  • длина:дуги:y=2x^{2}+3,:0le xle 1

  • Показать больше

Описание

Найдите длину дуги функций между интервалами шаг за шагом

arc-length-calculator

ru

Блог-сообщения, имеющие отношение к Symbolab

  • Practice, practice, practice

    Math can be an intimidating subject. Each new topic we learn has symbols and problems we have never seen. The unknowing…

    Read More

  • Введите Задачу

    Сохранить в блокнот!

    Войти

    При вычислении любой длины следует помнить, что это величина конечная, то есть просто число. Если имеется в виду длина дуги кривой, то такая задача решается с помощью определенного интеграла (в плоском случае) или криволинейного интеграла первого рода (по длине дуги). Дуга АВ будет обозначаться UАВ.

    Первый случай (плоский). Пусть UАВ задана плоской кривой y = f(x). Аргумент функции изменятся в пределах от а до b и она непрерывно дифференцируема этом отрезке. Найдем длину L дуги UАВ (см. рис. 1а). Для решения этой задачи разбейте рассматриваемый отрезок на элементарные отрезки ∆xi, i=1,2,…,n. В результате UАВ разобьется на элементарные дуги ∆Ui, участков графика функции y=f(x) на каждом из элементарных отрезков. Найдете длину ∆Li элементарной дуги приближенно, заменив ее соответствующей хордой. При этом можно приращения заменить дифференциалами и использовать теорему Пифагора. После вынесения из квадратного корня дифференциала dx получите результат, приведенный на рисунке 1b.
    1_5254fef39271a5254fef392758[1]

    Как вычислить длину кривой

    Второй случай (дуга UАВ задана параметрически). x=x(t), y=y(t), tє[α,β]. Функции x(t) и y(t) имеют непрерывные производные на отрезке этом отрезке. Найдите их дифференциалы. dx=f’(t)dt, dy=f’(t)dt. Подставьте эти дифференциалы в формулу для вычисления длины дуги в первом случае. Вынесите dt из квадратного корня под интегралом, положите х(α)=а, x(β)=b и придете к формуле для вычисления длины дуги в данном случае (см. рис. 2а).

    Третий случай. Дуга UАВ графика функции задана в полярных координатах ρ=ρ(φ) Полярный угол φ при прохождении дуги изменяется от α до β. Функция ρ(φ)) имеет непрерывную производную на отрезке ее рассмотрения. В такой ситуации проще всего использовать данные, полученные на предыдущем шаге. Выберите φ в качестве параметра и подставьте в уравнения связи полярных и декартовых координат x=ρcosφ y=ρsinφ. Продифференцируйте эти формулы и подставьте квадраты производных в выражение на рис. 2а. После небольших тождественных преобразований, основанных в основном, на применении тригонометрического тождества (cosφ)^2+(sinφ)^2=1, получите формулу для вычисления длины дуги в полярных координатах (см. рис.2b).

    Четвертый случай (пространственная кривая, заданная параметрически). x=x(t), y=y(t), z=z(t) tє[α,β]. Строго говоря, здесь следует применить криволинейный интеграл первого рода (по длине дуги). Криволинейные интегралы вычисляют переводом их в обычные определенные. В результате ответ останется практическим таким же как и случае два, с тем лишь отличием, что под корнем появится добавочное слагаемое – квадрат производной z’(t) (см рис. 2с).

    Примеры:

    Пример 1. Пусть в прямоугольных координатах дана плоская кривая АВ, уравнение которой у=ƒ(х), где а≤х≤ b.

    Под длиной дуги АВ понимается предел, к которому стремится длина ломаной линии, вписанной в эту дугу, когда число звеньев ломаной неограниченно возрастает, а длина наибольшего звена ее стремится к нулю. Покажем, что если функция у=ƒ(х) и ее производная у’ = ƒ'(х) непрерывны на отрезке [а; b], то кривая АВ имеет длину, равную

    Применим схему I (метод сумм).

    1. Точками х0 = а, х1…, хn = b (х0 < x1 < …< хn) разобьем отрезок [а; b] на n частей (см. рис. 183).  Пустьэтим точкам соответствуют точки М0 = А, M1,…,Mn =В на кривой АВ. Проведем хорды М0M1, M1M2,…, Мn-1Мn, длины которых обозначим соответственно через ΔL1, AL2,…, ΔLn. Получим ломаную M0M1M2 … Mn-ιMn, длина которой равна Ln=ΔL1 + ΔL2+…+ ΔLn =

    2. Длину хорды (или звена ломаной) ΔL1 можно найти по теореме Пифагора из треугольника с катетами Δxi и Δуi:

    По теореме Лагранжа о конечном приращении функции Δуi=ƒ'(сi)•Δхi, где ci є (xi-1;xi). Поэтому

    а длина всей ломаной M0M1… Мn равна

    3.Длина l кривой АВ, по определению, равна

    .

    Заметим, что при ΔLi0 также и Δxi 0 ΔLi =и, следовательно, |Δxi|<ΔLi).

    Функция непрерывна на отрезке [а; b], так как, по условию, непрерывна функция ƒ'(х). Следовательно, существует предел интегральной суммы (41.4), когда max Δxi 0:

    Таким образом,или в сокращенной записи l =

    Если уравнение кривой АВ задано в параметрической форме

    где x(t) и y(t) — непрерывныефункции с непрерывными производными и х(а) = а, х(β) = b, то длина l кривой АВ находится по формуле

    Формула (41.5) может быть получена из формулы (41.3) подстановкой x = x(t),dx = x'(t)dt,

    Пример 2. Определить длину окружности x2 + y2 = r2. Решение. Вычислим сначала длину четвертой части окружности, лежащей в первом квадранте. Тогда уравнение дуги AB будет, откуда,следовательно,

    Длина всей окружности L = 2πr.

    Пример 3. Найти длину дуги кривой y2 = x3 от x = 0 до x = 1 (y > 0). Решение. Дифференцируя уравнение кривой, найдем y’ = (3/2)x1/2, откуда

    Пример 4.     Пусть кривая лежит в плоскости x0y и описывается уравнением y = f(x).

         Для нахождения длины дуги этой кривой, заключенной между точками с абсциссами a и b, разобьем дугу на столь малые элементы, чтобы каждый из них можно было аппроксимируовать прямолинейным участком (см. рисунок 1).


    Рис. 1. Аппроксимация элемента дуги кривой прямолинейным участком.

          Длину dL бесконечно малого участка можно выразить через dx и dy с помощью теоремы Пифагора:

    (1)

    где y ‘  – производная функции y = f(x)  по переменной x.

          Длина дуги равна сумме длин составляющих ее элементов:

    .

    Пример 5.

    Формула для вычисления длины дуги кривой заданной уравнением у=f(x) в прямоугольной системе координат:

    формула длина дуги

    a — начала дуги по оси OX;

    b — конец дуги по оси OX a<b.


    Если плоская кривая задана уравнением x=g(y)  то формула имеет вид:

    формула длина дуги через интеграл

    c — начала дуги по оси OY;

    d — конец дуги по оси OY a<b


    Если кривая задана в полярных координатах r=r(φ),  α≤φ≤β, то длина дуги вычисляется по формуле:

    формула длина дуги в полярных координатах


    Если кривая задана параметрическим уравнением вида x=x(t) и y=y(t), то длина дуги определяется по формуле

    формула длина дуги для параметрического уравнения

    t2, t1 — значения параметров, которые соответствуют концам дуги  t1<t2


    Пример 1

    Найти длину дуги функции на промежутке от 0 до 1.

    $$y = frac{2}{3}{x^{frac{3}{2}}}$$

    Решение

    графики длина дуги

    Найдем производную функции:

    производная от функции

    Возведём в квадрат функцию:

    $$(sqrt x ) = x$$

    Подставляя в формулу, найдем длину дуги:

     длина дуги кривой решение


    Пример 2

    Найти длину дуги окружности от точки  ${M_1}left( {4;0} right)$ до точки  ${M_2}left( {2sqrt 2 ;2sqrt 2 } right)$. Уравнение окружности задано в параметрическом виде.

    решение первой системы уравнений

    Решение

    график длина дуги окружности

    Найдем параметр t в точках M1 и M2, решим системы уравнений.

    система уравнений

    Здесь t1=0

    решение второй системы уравнений

    Отсюда  ${t_2} = frac{pi }{4}$

    Подставляя в формулу, найдем длину дуги окружности.

    решение длина дуги окружности


    Пример 3

    Вычислить длину дуги одного лепестка циклоиды. Уравнение циклоиды задано параметрическим уравнением.

    $$x = t — sin t$$

    $$y = 1 — cos t$$

    Решение

    Циклоида график

    График циклоиды

    Продифференцируем по t параметрические уравнения циклоиды:

    пример с решением производная для параметрического уравнения

    отсюда

    находим производную

    Подставляя в формулу, получаем

    длина дуги циклоиды решение

    7385


    Понравилась статья? Поделить с друзьями:
  • Как найти угловой коэффициент прямой в треугольнике
  • Как найти ссылку сохраненную в буфер обмена
  • Как составить деловое описание 6 класс
  • Торчит крестец как исправить
  • Кривой карбюратор как исправить