Как найти длину геометрического вектора

Нахождение длины вектора, примеры и решения

Длина вектора — основные формулы

Длину вектора a → будем обозначать a → . Данное обозначение аналогично модулю числа, поэтому длину вектора также называют модулем вектора.

Для нахождения длины вектора на плоскости по его координатам, требуется рассмотреть прямоугольную декартову систему координат O x y . Пусть в ней задан некоторый вектор a → с координатами a x ; a y . Введем формулу для нахождения длины (модуля) вектора a → через координаты a x и a y .

От начала координат отложим вектор O A → = a → . Определим соответственные проекции точки A на координатные оси как A x и A y . Теперь рассмотрим прямоугольник O A x A A y с диагональю O A .

Из теоремы Пифагора следует равенство O A 2 = O A x 2 + O A y 2 , откуда O A = O A x 2 + O A y 2 . Из уже известного определения координат вектора в прямоугольной декартовой системе координат получаем, что O A x 2 = a x 2 и O A y 2 = a y 2 , а по построению длина O A равна длине вектора O A → , значит, O A → = O A x 2 + O A y 2 .

Отсюда получается, что формула для нахождения длины вектора a → = a x ; a y имеет соответствующий вид: a → = a x 2 + a y 2 .

Если вектор a → дан в виде разложения по координатным векторам a → = a x · i → + a y · j → , то вычислить его длину можно по той же формуле a → = a x 2 + a y 2 , в данном случае коэффициенты a x и a y выступают в роли координат вектора a → в заданной системе координат.

Вычислить длину вектора a → = 7 ; e , заданного в прямоугольной системе координат.

Чтобы найти длину вектора, будем использовать формулу нахождения длины вектора по координатам a → = a x 2 + a y 2 : a → = 7 2 + e 2 = 49 + e

Формула для нахождения длины вектора a → = a x ; a y ; a z по его координатам в декартовой системе координат Oxyz в пространстве, выводится аналогично формуле для случая на плоскости (см. рисунок ниже)

В данном случае O A 2 = O A x 2 + O A y 2 + O A z 2 (так как ОА – диагональ прямоугольного параллелепипеда), отсюда O A = O A x 2 + O A y 2 + O A z 2 . Из определения координат вектора можем записать следующие равенства O A x = a x ; O A y = a y ; O A z = a z ; , а длина ОА равна длине вектора, которую мы ищем, следовательно, O A → = O A x 2 + O A y 2 + O A z 2 .

Отсюда следует, что длина вектора a → = a x ; a y ; a z равна a → = a x 2 + a y 2 + a z 2 .

Вычислить длину вектора a → = 4 · i → — 3 · j → + 5 · k → , где i → , j → , k → — орты прямоугольной системы координат.

Дано разложение вектора a → = 4 · i → — 3 · j → + 5 · k → , его координаты равны a → = 4 , — 3 , 5 . Используя выше выведенную формулу получим a → = a x 2 + a y 2 + a z 2 = 4 2 + ( — 3 ) 2 + 5 2 = 5 2 .

Длина вектора через координаты точек его начала и конца

Выше были выведены формулы, позволяющие находить длины вектора по его координатам. Мы рассмотрели случаи на плоскости и в трехмерном пространстве. Воспользуемся ими для нахождения координат вектора по координатам точек его начала и конца.

Итак, даны точки с заданными координатами A ( a x ; a y ) и B ( b x ; b y ) , отсюда вектор A B → имеет координаты ( b x — a x ; b y — a y ) значит, его длина может быть определена по формуле: A B → = ( b x — a x ) 2 + ( b y — a y ) 2

А если даны точки с заданными координатами A ( a x ; a y ; a z ) и B ( b x ; b y ; b z ) в трехмерном пространстве, то длину вектора A B → можно вычислить по формуле

A B → = ( b x — a x ) 2 + ( b y — a y ) 2 + ( b z — a z ) 2

Найти длину вектора A B → , если в прямоугольной системе координат A 1 , 3 , B — 3 , 1 .

Используя формулу нахождения длины вектора по координатам точек начала и конца на плоскости, получим A B → = ( b x — a x ) 2 + ( b y — a y ) 2 : A B → = ( — 3 — 1 ) 2 + ( 1 — 3 ) 2 = 20 — 2 3 .

Второй вариант решения подразумевает под собой применение данных формул по очереди: A B → = ( — 3 — 1 ; 1 — 3 ) = ( — 4 ; 1 — 3 ) ; A B → = ( — 4 ) 2 + ( 1 — 3 ) 2 = 20 — 2 3 . —

Ответ: A B → = 20 — 2 3 .

Определить, при каких значениях длина вектора A B → равна 30 , если A ( 0 , 1 , 2 ) ; B ( 5 , 2 , λ 2 ) .

Для начала распишем длину вектора A B → по формуле: A B → = ( b x — a x ) 2 + ( b y — a y ) 2 + ( b z — a z ) 2 = ( 5 — 0 ) 2 + ( 2 — 1 ) 2 + ( λ 2 — 2 ) 2 = 26 + ( λ 2 — 2 ) 2

Затем полученное выражение приравняем к 30 , отсюда найдем искомые λ :

26 + ( λ 2 — 2 ) 2 = 30 26 + ( λ 2 — 2 ) 2 = 30 ( λ 2 — 2 ) 2 = 4 λ 2 — 2 = 2 и л и λ 2 — 2 = — 2 λ 1 = — 2 , λ 2 = 2 , λ 3 = 0 .

Ответ: λ 1 = — 2 , λ 2 = 2 , λ 3 = 0 .

Нахождение длины вектора по теореме косинусов

Увы, но в задачах не всегда бывают известны координаты вектора, поэтому рассмотрим другие способы нахождения длины вектора.

Пусть заданы длины двух векторов A B → , A C → и угол между ними (или косинус угла), а требуется найти длину вектора B C → или C B → . В таком случае, следует воспользоваться теоремой косинусов в треугольнике △ A B C , вычислить длину стороны B C , которая и равна искомой длине вектора.

Рассмотрим такой случай на следующем примере.

Длины векторов A B → и A C → равны 3 и 7 соответственно, а угол между ними равен π 3 . Вычислить длину вектора B C → .

Длина вектора B C → в данном случае равна длине стороны B C треугольника △ A B C . Длины сторон A B и A C треугольника известны из условия (они равны длинам соответствующих векторов), также известен угол между ними, поэтому мы можем воспользоваться теоремой косинусов: B C 2 = A B 2 + A C 2 — 2 · A B · A C · cos ∠ ( A B , → A C → ) = 3 2 + 7 2 — 2 · 3 · 7 · cos π 3 = 37 ⇒ B C = 37 Таким образом, B C → = 37 .

Итак, для нахождения длины вектора по координатам существуют следующие формулы a → = a x 2 + a y 2 или a → = a x 2 + a y 2 + a z 2 , по координатам точек начала и конца вектора A B → = ( b x — a x ) 2 + ( b y — a y ) 2 или A B → = ( b x — a x ) 2 + ( b y — a y ) 2 + ( b z — a z ) 2 , в некоторых случаях следует использовать теорему косинусов.

Модуль вектора. Длина вектора.

Определение длины вектора

Для обозначения длины вектора используются две вертикальные линии слева и справа | AB |.

Формулы длины вектора

Формула длины вектора для плоских задач

В случае плоской задачи модуль вектора a = < ax ; ay > можно найти воспользовавшись следующей формулой:

Формула длины вектора для пространственных задач

В случае пространственной задачи модуль вектора a = < ax ; ay ; az > можно найти воспользовавшись следующей формулой:

Формула длины n -мерного вектора

В случае n -мерного пространства модуль вектора a = < a 1 ; a 2; . ; an > можно найти воспользовавшись следующей формулой:

| a | = ( n ai 2 ) 1/2
Σ
i =1

Примеры задач на вычисление длины вектора

Примеры вычисления длины вектора для плоских задачи

Решение: | a | = √ 2 2 + 4 2 = √ 4 + 16 = √ 20 = 2√ 5 .

Решение: | a | = √ 3 2 + (-4) 2 = √ 9 + 16 = √ 25 = 5.

Примеры вычисления длины вектора для пространственных задачи

Решение: | a | = √ 2 2 + 4 2 + 4 2 = √ 4 + 16 + 16 = √ 36 = 6.

Решение: | a | = √ (-1) 2 + 0 2 + (-3) 2 = √ 1 + 0 + 9 = √ 10 .

Примеры вычисления длины вектора для пространств с размерностью большей 3

Решение: | a | = √ 1 2 + (-3) 2 + 3 2 + (-1) 2 = √ 1 + 9 + 9 + 1 = √ 20 = 2√ 5

Решение: | a | = √ 2 2 + 4 2 + 4 2 + 6 2 + 2 2 = √ 4 + 16 + 16 + 36 + 4 = √ 76 = 2√ 19 .

Любые нецензурные комментарии будут удалены, а их авторы занесены в черный список!

Добро пожаловать на OnlineMSchool.
Меня зовут Довжик Михаил Викторович. Я владелец и автор этого сайта, мною написан весь теоретический материал, а также разработаны онлайн упражнения и калькуляторы, которыми Вы можете воспользоваться для изучения математики.

Как найти длину вектора

Вы будете перенаправлены на Автор24

Понятие длины вектора

Для того, чтобы разобраться с понятием длины вектора, прежде всего надо разобрать само понятие вектора. Для того, чтобы ввести определение геометрического вектора вспомним, что такое отрезок. Введем следующее определение.

Отрезком будем называть часть прямой, которая имеет две границы в виде точек.

Отрезок может иметь 2 направления. Для обозначения направления будем называть одну из границ отрезка его началом, а другую границу — его концом. Направление указывается от его начала к концу отрезка.

Вектором или направленным отрезком будем называть такой отрезок, для которого известно, какая из границ отрезка считается началом, а какая его концом.

Обозначение: Двумя буквами: $overline$ – (где $A$ его начало, а $B$ – его конец).

Одной маленькой буквой: $overline$ (рис. 1).

Введем теперь, непосредственно, понятие длин вектора.

Понятие длины вектора связано, к примеру, с таким понятием, как равенство двух векторов.

Два вектора будем называть равными, если они удовлетворяют двух условиям: 1. Они сонаправлены; 1. Их длины равны (рис. 2).

Готовые работы на аналогичную тему

Для того, чтобы определять векторы вводят систему координат и определяют координаты для вектора во введенной системе. Как мы знаем, любой вектор можно разложить в виде $overline=moverline+noverline$, где $m$ и $n$ – действительные числа, а $overline$ и $overline$ — единичные векторы на оси $Ox$ и $Oy$, соответственно.

Коэффициенты разложения вектора $overline=moverline+noverline$ будем называть координатами этого вектора во введенной системе координат. Математически:

Как найти длину вектора?

Для того, чтобы вывести формулу для вычисления длины произвольного вектора по данным его координатам рассмотрим следующую задачу:

Дано: вектор $overline<α>$, имеющий координаты $$. Найти: длину этого вектора.

Введем на плоскости декартову систему координат $xOy$. От начал введенной системы координат отложим $overline=overline$. Построим проекции $OA_1$ и $OA_2$ построенного вектора на оси $Ox$ и $Oy$, соответственно (рис. 3).

Построенный нами вектор $overline$ будет радиус вектором для точки $A$, следовательно, она будет иметь координаты $$, значит

Теперь мы легко можем найти искомую длину с помощью теоремы Пифагора, получим

Вывод: Чтобы найти длину вектора, у которого задан его координаты, необходимо найти корень из квадрата суммы этих координат.

Пример задач

Найдите расстояние между точками $X$ и $Y$, которые имеют следующие координаты: $(-1,5)$ и $(7,3)$, соответственно.

Любые две точки можно легко связать с понятием вектора. Рассмотрим, к примеру, вектор $overline$. Как мы уже знаем, координаты такого вектора можно найти, вычтя из координат конечной точки ($Y$) соответствующие координаты начальной точки ($X$). Получим, что

Теперь, найдя длину этого вектора по формуле, выведенной выше, мы и получим искомую длину. Получим:

Из этой задачи можно вывести формулу для вычисления такого расстояния. Пусть две точки имеют координаты $<(x’,y’)>$ и $<(x»,y»)>$. Тогда длину между такими точками можно найти по следующей формуле:

Пусть нам дан треугольник своими координатами вершин $(5,-9)$, $(12,-2)$ и $(4,0)$. Найдем его периметр.

Найдем для начала длины всех его сторон по формуле из замечания к задаче 2.

Первая сторона равняется:

Вторая сторона равняется:

Третья сторона равняется:

Получи деньги за свои студенческие работы

Курсовые, рефераты или другие работы

Автор этой статьи Дата последнего обновления статьи: 13 07 2022

источники:

http://ru.onlinemschool.com/math/library/vector/length/

http://spravochnick.ru/geometriya/metod_koordinat/kak_nayti_dlinu_vektora/

Длина вектора

Как найти?

Длина вектора $ overline{a}$ обозначается как $ |overline{a}| $. Как найти длину вектора по его координатам? Для этого существует две формулы в зависимости от расположения вектора: на плоскости $ overline{a}=(a_x;a_y) $ или в пространстве $ overline{a} = (a_x; a_y; a_z) $.

Формула длины вектора на плоскости:

$$ |overline{a}| = sqrt{a_x ^2 + a_y ^2} $$

Формула длины вектора в пространстве:

$$ |overline{a}| = sqrt{a_x ^2 + a_y ^2 + a_z ^2 } $$

Если даны координаты точек начала и конца вектора $ A(a_x; a_y) $ и $ B(b_x; b_y) $, то найти длину можно по формулам:

$$ |overline{AB}| = sqrt{(a_x-b_x)^2 + (a_y-b_y) ^2} $$

$$ |overline{AB}| = sqrt{(a_x-b_x)^2 + (a_y-b_y)^2+ (a_z-b_z)^2} $$

Примеры решений

Пример 1
Найти длину вектора по его координатам $ overline{a} = (4;-3) $
Решение

Разберем вектор. Первая координата $ a_x = 4 $, а вторая координата $ a_y=-3 $. Так как даны две координаты, то делаем вывод, что задача плоская. Необходимо применить первую формулу. Подставляем в неё значения из условия задачи:

$$|overline{a}| = sqrt{4^2+(-3)^2} = sqrt{16+9} = sqrt{25} = 5 $$

Если не получается решить свою задачу, то присылайте её к нам. Мы предоставим подробное решение онлайн. Вы сможете ознакомиться с ходом вычисления и почерпнуть информацию. Это поможет своевременно получить зачёт у преподавателя!

Ответ
Длина вектора $|overline{a}| = 5 $
Пример 2
Найти длину вектора по координатам $ overline{a}=(4;2;4) $
Решение

Сразу замечаем, что дана пространственная задача. А именно $ a_x=4, a_y=2, a_z=4 $. Для нахождения длины вектора используем вторую формулу. Подставляем неизвестные в неё:

$|overline{a}|=sqrt{4^2+2^2+4^2}=sqrt{36}=6 $

Ответ
Длина вектора $|overline{a}|=6 $
Пример 3
Найти длину вектора, если известны координаты его начала и конца. $ A=(2;1), B=(-1;3) $
Решение

Задача дана плоская судя по наличию только двух координат у векторов. Но даны на этот раз начало и конец вектора. Поэтому сначала находим координаты вектора $ overline{AB} $, а только потом его длину по формуле координат:

$ overline{AB}=(b_x-a_x;b_y-a_y)=(-1-2;3-1)=(-3;2) $

Теперь когда координаты вектора $ overline{AB} $ стали известны можно использовать привычную формулу:

$|overline{AB}|=sqrt{(-3)^2+2^2}=sqrt{9+4}=sqrt{13} $

Ответ
$|overline{AB}|=sqrt{13} $

В статье мы ответили на вопрос:»Как найти длину вектора?» с помощью формул. А также рассмотрели практические примеры решения задач на плоскости и в пространстве. Следует заметить, что существуют аналогичные формулы для пространств больше, чем трёхмерные.

При решении различных задач в геометрии возникает необходимость определить длину заданного вектора. Для того чтобы ее найти, нужно знать координаты начальной и конечной точки направленного отрезка. Далее все расчеты производятся по формуле, которую достаточно легко вывести, если правильно применить теорему Пифагора.

Понятие длины вектора

Прежде чем перейти к определению длины вектора, необходимо разъяснить само понятие «вектор». В геометрии оно используется для обозначения такого объекта, который характеризуется направлением и величиной. Его можно представить в виде отрезка. Далее необходимо пояснить то, как он выглядит на плоскости.

Определения 1 — 5

Отрезком в геометрии называют какую-то часть прямой, ограниченную двумя точками. У него может быть всего два направления, для обозначения которых используются такие понятия как начало и конец отрезка, которые соответствуют его границам. Направление принято указывать от начала отрезка к его концу.


Называть отрезок вектором можно в том случае, если известно, какая из двух его границ является началом, а какая – концом.
В геометрии он может обозначаться двумя буквами, соответствующими его началу и концу.
Если обозначается как [vec{A B}], то A – это начало отрезка, а B – соответственно его конец.
Также допустимо обозначение в виде одной строчной буквы, например [vec{a}]. На рисунке показано как это выглядит на плоскости.

Отрезки А и Б

После того, как стало понятно, что такое вектор и как он обозначается, можно переходить к определению его длины.


Понятие длины вектора [vec{a}] используется для обозначения размера направленного отрезка. Она обозначается, как [|vec{a}|].
При решении задач в геометрии необходимо знать, в каких случаях применимо понятие равенство двух векторов.


Для того чтобы можно было назвать два вектора равными, должны соблюдаться два определенных условия:

  1. они являются сонаправленными;
  2. длина одного равна длине другого.

Отрезки

Определять векторы можно только в том случае, если введена система координат и ней у направленных отрезков имеются точные координаты.

Любой вектор независимо от его обозначения и длины можно разложить следующим образом:
[vec{c}=m vec{i}+n vec{j}], где m и n — это какие-то действительные числа, а [vec{i}] и [vec{j}] – это два единичных вектора, расположенных непосредственно на осях [O x] и [O y].


Координатами рассматриваемого вектора [vec{c}=vec{mi}+vec{nj}] в введенной нами прямоугольной системе координат будут являться коэффициенты его разложения. В математическом виде это записывается следующим образом:

[bar{c}=m, n]

Формула длины вектора

Для того чтобы определить длину произвольного вектора, необходимо вывести формулу на основании точных данных координат этого отрезка в квадратной системе координат.

Чтобы понять, как это сделать, рассмотрим соответствующую задачу.

Пример

Координаты заданного вектора [vec{a}-x, y]. Требуется определить его длину по указанным данным.

Решение:

Для того чтобы приступить к решения примера требуется ввести на плоскости систему координат [x O y]. Далее нужно будет отложить в введенной системе координат [vec{OA}=vec{a}]. После этого можно приступить к построению проекций [O A_{1}] и [O A_{2}], направленного отрезка, которой расположен на оси [O x] и [O y] так, как показано на рисунке ниже.

Определение длинны произвольного вектора

[vec{OA}] будет для точки A радиус вектором. Это означает, что она будет иметь следующие координаты — x, y.  Исходя из этого можно сделать вывод, что [left[O A_{1}right]=x,left[O A_{2}right]=y].

Для того чтобы определить длину, применяем теорему Пифагора. В результате получаем:

[begin{aligned}
&left| vec{a}right|^{2}=left[mathrm{OA}_{1}right]^{2}+left[mathrm{OA}_{2}right]^{2} \
&left.|vec{a}right|^{2}=x^{2}+y^{2} \
&left.|vec{ a}right|^{2}=sqrt{x^{2}+y^{2}}
end{aligned}]

Ответ: Искомая длина заданного вектора определяется по формуле [left.|vec{a}right|^{2}=sqrt{x^{2}+y^{2}}]

На основании рассмотренного примера можно сделать вывод, что для определения длины какого-либо вектора, у которого известны координаты, следует найти корень из суммы квадратов заданных координат.

Нет времени решать самому?

Наши эксперты помогут!

Примеры задач

Задачи 1 — 2

Требуется определить расстояние между двумя точками X и Y, координаты которых (−1,7) и (8,4), соответственно.

Решение.  Известно, что любые две точки на плоскости можно связать с понятием направленного отрезка. В данном случае мы будем рассматривать вектор [vec{X Y}]. Как было сказано ранее, координаты определяются путем вычитания координат конца отрезка [(Y)] из соответствующих координат его начальной точки [(X)].

Применяя это правило, получаем: [vec{X Y}=(8+1,4-7)=(9-3)]

Затем, чтобы найти искомую длину, применим формулу, выведенную нами ранее.

Получаем: [d=sqrt{9^{2}+(-3)^{2}}=sqrt{81+9}=sqrt{90}=3 sqrt{10}]

Ответ: Длина вектора равна [3 sqrt{10}]

Важно!  Эта задача позволяет вывести формулу для определения расстояния между начальной и конечной точками. Пусть они имеют следующие координаты [left(x^{prime}, y^{prime}right)] и [left(x^{prime prime}, y^{prime prime}right)].  Тогда определить длину между этими точками можно с помощью формулы:

[d=left(mathrm{x}^{prime}-mathrm{x}^{prime prime}right) 2+left(y^{prime}-y^{prime prime}right)]


Пусть нам дан один треугольник и известны координаты его вершин (6,-10),(13,-3),(5,0). Требуется найти периметр фигуры.

Решение. Сначала найдем длины сторон треугольника, используя выведенную формулу.

Длина первой стороны равна: [sqrt{(6-13)^{2}+(-10+3)^{2}}=sqrt{(-7)^{2}+(-7)^{2}}=sqrt{98}=7 sqrt{2} .]

Вторая сторона треугольника будет равна: [sqrt{(6-5)^{2}+(-10-0)^{2}}=sqrt{1^{2}+(-10)^{2}}=sqrt{101}].

Третья сторона треугольника равняется: [sqrt{(13-5)^{2}+(-3-0)^{2}}=sqrt{8^{2}+(-3)^{2}}=sqrt{73}].

Сложив все три стороны, получим длину периметра рассматриваемого треугольника.

Ответ: [7 sqrt{2}+sqrt{101}+sqrt{73}].

Заключение. В процессе решения задач мы вывели формулу длины вектора, и научились применять ее для определения периметра геометрических фигур.

Вектором является направленный отрезок. Длина этого отрезка является длиной вектора.

Длина вектора b⃗vec{b} обозначается ∣b⃗∣.left | vec{b} right |. Модуль числа имеет аналогичное обозначение и длина вектора часто называется модулем вектора.

Длина нулевого вектора равна нулю.

Нахождение длины вектора по его координатам

Длина вектора, который задан своими координатами, – это квадратный корень из суммы квадратов его координат.

Для того чтобы найти длину вектора, заданного своими координатами, нужно извлечь квадратный корень из суммы квадратов его координат.

  1. Для вектора b⃗=(bx;by),vec{b}=(b_{x};b_{y}), заданного на плоскости, длина вычисляется по формуле ∣b⃗∣left |vec{b} right|=bx2+by2sqrt {b_{x}^{2}+b_{y}^{2}}.
  2. Для вектора b⃗=(bx;by;bz),vec{b}=(b_{x};b_{y};b_{z}), заданного в пространстве, длина вычисляется по формуле ∣b⃗∣=bx2+by2+bz2left | vec{b} right |=sqrt {b_{x}^{2}+b_{y}^{2}+b_{z}^{2}}.

Пример 1

Найти длину вектора b⃗=(6;−4).vec{b}=(6;-4).

Вектор задан на плоскости, поэтому воспользуемся первой формулой: ∣b⃗∣=bx2+by2left | vec{b} right |=sqrt {b_{x}^{2}+b_{y}^{2}}.

Подставим координаты вектора b⃗vec{b} в формулу, получим: ∣b⃗∣=62+(−4)2=36+16=52=213left | vec{b} right |=sqrt {6^{2}+(-4)^{2}}=sqrt {36+16}=sqrt {52}=2sqrt {13}.

Ответ: 2132sqrt {13}.

Пример 2

Найти длину вектора d⃗=(1;3;5).vec{d}=(1;3;5).

Вектор задан в пространстве, поэтому воспользуемся второй формулой:

∣d⃗∣=dx2+dy2+dz2left | vec{d} right |=sqrt {d_{x}^{2}+d_{y}^{2}+d_{z}^{2}}.

Подставим координаты вектора d⃗vec{d} в формулу, получим:

∣d⃗∣=12+32+52=1+9+25=35left | vec{d} right |=sqrt {1^{2}+3^{2}+5^{2}}=sqrt {1+9+25}=sqrt {35}.

Нахождение длины вектора по координатам точек его начала и конца

Для нахождения длины вектора CD⃗vec{CD}, где C(cx;cy)C(c_{x};c_{y}) и D(dx;dy)D(d_{x};d_{y}) существует определенная последовательность действий:

  1. Найти координаты вектора CD⃗vec{CD} по формуле: ∣CD⃗∣=(dx−cx;dy−cy)left | vec{CD} right |=(d_{x}-c_{x};d_{y}-c_{y}).
  2. Найти длину вектора по его координатам по формуле: ∣CD⃗∣=(dx−cx)2+(dy−cy)2left | vec{CD} right |=sqrt {(d_{x}-c_{x})^{2}+(d_{y}-c_{y})^{2}}.

Аналогично находится длина вектора CD⃗,vec{CD}, заданного в пространстве, где C(cx;cy;cz)C(c_{x};c_{y};c_{z}) и D(dx;dy;dz)D(d_{x};d_{y};d_{z}):

  1. Найти координаты вектора CD⃗vec{CD} по формуле: CD⃗=(dx−cx;dy−cy;dz−cz).vec{CD}=(d_{x}-c_{x};d_{y}-c_{y};d_{z}-c_{z}).
  2. Найти длину вектора по его координатам по формуле: ∣CD⃗∣=(dx−cx)2+(dy−cy)2+(dz−cz)2left | vec{CD} right |=sqrt {(d_{x}-c_{x})^{2}+(d_{y}-c_{y})^{2}+(d_{z}-c_{z})^{2}}.

Пример 1

На плоскости заданы точки E(−1;3)иK(3;−4)E(-1;3) и K(3;-4). Найти длину вектора EK⃗.vec{EK}.

Найдем координаты вектора EK⃗.vec{EK}. Для этого из координат конца вычтем координаты начала, получим:

EK⃗=(3−(−1);−4−3)=(3+1;−4−3)=(4;−7).vec{EK}=(3-(-1);-4-3)=(3+1;-4-3)=(4;-7).

Воспользуемся формулой ∣b⃗∣=bx2+by2left | vec{b} right |=sqrt {b_{x}^{2}+b_{y}^{2}} для нахождения длины вектора, получим:

∣EK⃗∣=42+(−7)2left | vec{EK} right |=sqrt {4^{2}+(-7)^{2}}=16+49sqrt {16+49}=65sqrt {65}.

Пример 2

В пространстве заданы точки C(1;2;3)C(1;2;3) и D(3;4;5).D(3;4;5). Найти длину вектора CD⃗.vec{CD}.

Найдем координаты вектора CD⃗.vec{CD}. Для этого из координат конца вычтем координаты начала, получим: CD⃗=(3−1;4−2;5−3)=(2;2;2).vec{CD}=(3-1;4-2;5-3)=(2;2;2).

Воспользуемся формулой ∣b⃗∣=bx2+by2+bz2left | vec{b} right |=sqrt {b_{x}^{2}+b_{y}^{2}+b_{z}^{2}} для нахождения длины вектора, получим: ∣b⃗∣=22+22+22=4+4+4=12=23left | vec{b} right |=sqrt {2^{2}+2^{2}+2^{2}}=sqrt {4+4+4}=sqrt {12}=2sqrt 3.

Нахождение длины вектора по теореме косинусов

Теорема косинусов: квадрат стороны треугольника равен сумме квадратов двух других сторон минус удвоенное произведение этих сторон на косинус угла между ними.

Для треугольника со сторонами a,b,ca, b, c и углами α,βalpha, beta и γ,gamma, противолежащими этим сторонам соответственно, справедливы равенства:

b=a2+c2−2a⋅c⋅cos(β),b=a^{2}+c^{2}-2acdot ccdot cos (beta), a=b2+c2−2b⋅c⋅cos(α),a=b^{2}+c^{2}-2bcdot ccdot cos (alpha), c=a2+b2−2a⋅b⋅cos(γ).c=a^{2}+b^{2}-2acdot bcdot cos (gamma).

Аналогично поступают и с векторами. Рассмотрим пример.

Пример 1

Длины векторов KL⃗vec{KL} и KM⃗vec{KM} равны соответственно 2 и 4, а угол между ними равен π4.frac{pi }{4}. Вычислите длину вектора LM⃗.vec{LM}.

Длина вектора LM⃗vec{LM} равна длине стороны LMLM в треугольнике LMKLMK. Также нам известны стороны KLKL и KMKM треугольника LMKLMK. Они равны длинам соответствующих векторов. Нам известен угол между векторами. Найдем сторону LMLM треугольника △KLM.triangle KLM.

LM2=KL2+KM2−2KL⋅KM⋅cos⁡∠LKM.LM^2=KL^2+KM^2-2KLcdot KMcdot cos angle LKM.
LM2=22+42−2⋅2⋅4⋅cos⁡π4=4+16−82=20−82.LM^2=2^2+4^2-2cdot 2cdot4cdot cos frac{pi }{4}=4+16-8sqrt{2}=20-8sqrt{2}.
LM=20−82.LM=sqrt{20-8sqrt{2}}.
∣LM⃗∣=20−82.|vec{LM}|=sqrt{20-8sqrt{2}}.

Тест по теме «Как вычислить длину вектора»

Автор статьи

Марина Николаевна Ковальчук

Эксперт по предмету «Геометрия»

Задать вопрос автору статьи

Понятие длины вектора

Для того, чтобы разобраться с понятием длины вектора, прежде всего надо разобрать само понятие вектора. Для того, чтобы ввести определение геометрического вектора вспомним, что такое отрезок. Введем следующее определение.

Определение 1

Отрезком будем называть часть прямой, которая имеет две границы в виде точек.

Отрезок может иметь 2 направления. Для обозначения направления будем называть одну из границ отрезка его началом, а другую границу — его концом. Направление указывается от его начала к концу отрезка.

Определение 2

Вектором или направленным отрезком будем называть такой отрезок, для которого известно, какая из границ отрезка считается началом, а какая его концом.

Обозначение: Двумя буквами: $overline{AB}$ – (где $A$ его начало, а $B$ – его конец).

Одной маленькой буквой: $overline{a}$ (рис. 1).

а) вектор $overline{a}$. б) вектор $overline{AB}$

Введем теперь, непосредственно, понятие длин вектора.

Определение 3

Длиной вектора $overline{a}$ будем называть длину отрезка $a$.

Обозначение: $|overline{a}|$

Понятие длины вектора связано, к примеру, с таким понятием, как равенство двух векторов.

Определение 4

Два вектора будем называть равными, если они удовлетворяют двух условиям:
1. Они сонаправлены;
1. Их длины равны (рис. 2).

«Как найти длину вектора» 👇

Для того, чтобы определять векторы вводят систему координат и определяют координаты для вектора во введенной системе. Как мы знаем, любой вектор можно разложить в виде $overline{c}=moverline{i}+noverline{j}$, где $m$ и $n$ – действительные числа, а $overline{i}$ и $overline{j}$ — единичные векторы на оси $Ox$ и $Oy$, соответственно.

Определение 5

Коэффициенты разложения вектора $overline{c}=moverline{i}+noverline{j}$ будем называть координатами этого вектора во введенной системе координат. Математически:

$overline{c}={m,n}$

Как найти длину вектора?

Для того, чтобы вывести формулу для вычисления длины произвольного вектора по данным его координатам рассмотрим следующую задачу:

Пример 1

Дано: вектор $overline{α}$, имеющий координаты ${x,y}$. Найти: длину этого вектора.

Решение.

Введем на плоскости декартову систему координат $xOy$. От начал введенной системы координат отложим $overline{OA}=overline{a}$. Построим проекции $OA_1$ и $OA_2$ построенного вектора на оси $Ox$ и $Oy$, соответственно (рис. 3).

Построенный нами вектор $overline{OA}$ будет радиус вектором для точки $A$, следовательно, она будет иметь координаты ${x,y}$, значит

$[OA_1 ]=x$, $[ OA_2]=y$

Теперь мы легко можем найти искомую длину с помощью теоремы Пифагора, получим

$|overline{α}|^2=[OA_1]^2+[OA_2]^2$

$|overline{α}|^2=x^2+y^2$

$|overline{α}|=sqrt{x^2+y^2}$

Ответ: $sqrt{x^2+y^2}$.

Вывод: Чтобы найти длину вектора, у которого задан его координаты, необходимо найти корень из квадрата суммы этих координат.

Пример задач

Пример 2

Найдите расстояние между точками $X$ и $Y$, которые имеют следующие координаты: $(-1,5)$ и $(7,3)$, соответственно.

Решение.

Любые две точки можно легко связать с понятием вектора. Рассмотрим, к примеру, вектор $overline{XY}$. Как мы уже знаем, координаты такого вектора можно найти, вычтя из координат конечной точки ($Y$) соответствующие координаты начальной точки ($X$). Получим, что

$overline{XY}=(7+1,3-5)=(8,-2)$

Теперь, найдя длину этого вектора по формуле, выведенной выше, мы и получим искомую длину. Получим:

$d=sqrt{8^2+(-2)^2}=sqrt{64+4}=sqrt{68}=2sqrt{17}$

Ответ: $2sqrt{17}$.

Замечание 1

Из этой задачи можно вывести формулу для вычисления такого расстояния. Пусть две точки имеют координаты ${(x’,y’)}$ и ${(x»,y»)}$. Тогда длину между такими точками можно найти по следующей формуле:

$d=sqrt{(x’-x»)^2+(y’-y»)^2}$

Пример 3

Пусть нам дан треугольник своими координатами вершин $(5,-9)$, $(12,-2)$ и $(4,0)$. Найдем его периметр.

Решение.

Найдем для начала длины всех его сторон по формуле из замечания к задаче 2.

Первая сторона равняется:

$sqrt{(5-12)^2+(-9+2)^2}=sqrt{(-7)^2+(-7)^2}=sqrt{98}=7sqrt{2}$

Вторая сторона равняется:

$sqrt{(5-4)^2+(-9-0)^2}=sqrt{1^2+(-9)^2}=sqrt{82}$

Третья сторона равняется:

$sqrt{(12-4)^2+(-2-0)^2}=sqrt{8^2+(-2)^2 }=sqrt{68}=2sqrt{17}$

Складывая, получим

Ответ: $7sqrt{2}+sqrt{82}+2sqrt{17}$

Находи статьи и создавай свой список литературы по ГОСТу

Поиск по теме

Понравилась статья? Поделить с друзьями:
  • Как найти заряд ядра атома кальция
  • Как найти периметр трапеции если известны углы
  • Делимобиль с детским креслом как найти
  • Как найти приложение для рисования
  • Как правильно составить портрет своей целевой аудитории