Как найти длину интервала 7 класс

Числовые промежутки

  • Виды числовых промежутков
  • Открытый и замкнутый луч
  • Отрезок
  • Интервал и полуинтервал

Числовые промежутки или просто промежутки — это числовые множества, которые можно изобразить на координатной прямой. К числовым промежуткам относятся лучи, отрезки, интервалы и полуинтервалы.

Виды числовых промежутков

Название Изображение Неравенство Обозначение
Открытый луч открытый луч x > a (a; +∞)
интервал отрезок луч открытый луч x < a (-∞; a)
Замкнутый луч замкнутый луч xa [a; +∞)
промежутки числовой прямой xa (-∞; a]
Отрезок неравенства числовые промежутки axb [a; b]
Интервал виды числовых промежутков a < x < b (a; b)
Полуинтервал числовые промежутки примеры a < xb (a; b]
ax < b [a; b)

В таблице  a  и  b  — это граничные точки, а  x  — переменная, которая может принимать координату любой точки, принадлежащей числовому промежутку.

Граничная точка — это точка, определяющая границу числового промежутка. Граничная точка может как принадлежать числовому промежутку, так и не принадлежать ему. На чертежах граничные точки, не принадлежащие рассматриваемому числовому промежутку, обозначают незакрашенным кругом, а принадлежащие — закрашенным кругом.

Открытый и замкнутый луч

Открытый луч — это множество точек прямой, лежащих по одну сторону от граничной точки, которая не входит в данное множество. Открытым луч называется именно из-за граничной точки, которая ему не принадлежит.

Рассмотрим множество точек координатной прямой, имеющих координату, большую 2, а, значит, расположенных правее точки 2:

множества точек на координатной прямой 7 класс

Такое множество можно задать неравенством  x > 2.  Открытые лучи обозначаются с помощью круглых скобок —  (2; +∞),  данная запись читается так: открытый числовой луч от двух до плюс бесконечности.

Множество, которому соответствует неравенство  x < 2,  можно обозначить  (-∞; 2)  или изобразить в виде луча, все точки которого лежат с левой стороны от точки 2:

множество точек на числовой прямой

Замкнутый луч — это множество точек прямой, лежащих по одну сторону от граничной точки, принадлежащей данному множеству. На чертежах граничные точки, принадлежащие рассматриваемому множеству, обозначаются закрашенным кругом.

Замкнутые числовые лучи задаются нестрогими неравенствами. Например, неравенства   x ⩾ 2   и   x ⩽ 2   можно изобразить так:

замкнутый луч с началом в точке 2

Обозначаются данные замкнутые лучи так:  [2; +∞)  и  (-∞; 2],  читается это так: числовой луч от двух до плюс бесконечности и числовой луч от минус бесконечности до двух. Квадратная скобка в обозначении показывает, что точка 2 принадлежит числовому промежутку.

Отрезок

Отрезок — это множество точек прямой, лежащих между двумя граничными точками, принадлежащими данному множеству. Такие множества задаются двойными нестрогими неравенствами.

Рассмотрим отрезок координатной прямой с концами в точках -2 и 3:

Множество точек, из которых состоит данный отрезок, можно задать двойным неравенством   -2 ⩽ x ⩽ 3   или обозначить  [-2; 3],  такая запись читается так: отрезок от минус двух до трёх.

Интервал и полуинтервал

Интервал — это множество точек прямой, лежащих между двумя граничными точками, не принадлежащими данному множеству. Такие множества задаются двойными строгими неравенствами.

Рассмотрим отрезок координатной прямой с концами в точках -2 и 3:

числовые промежутки интервал

Множество точек, из которых состоит данный интервал, можно задать двойным неравенством   -2 < x < 3   или обозначить  (-2; 3).  Такая запись читается так: интервал от минус двух до трёх.

Полуинтервал — это множество точек прямой, лежащих между двумя граничными точками, одна из которых принадлежит множеству, а другая не принадлежит. Такие множества задаются двойными неравенствами:

Обозначаются данные полуинтервалы так:  (-2; 3]  и  [-2; 3).  Читается это так: полуинтервал от минус двух до трёх, включая 3, и полуинтервал от минус двух до трёх, включая минус два.

Варианты для выполнения работы

I. Установление закономерностей, которым подчинены массовые случайные явления, основано на изучении методами теории вероятностей статистических данных — результатов наблюдений.

Почти все встречающиеся в жизни величины (урожайность сельскохозяйственных растений, продуктивности скота, производительность труда и заработная плата рабочих, объем производства продукции и т.д.) принимают неодинаковые значения у различных членов совокупности. Поэтому возникает необходимость в изучении их изменяемости. Это изучение начинается с проведения соответствующих наблюдений, обследований.

В результате наблюдений получают сведения о численной величине изучаемого признака у каждого члена данной совокупности.

Пример. Имеются данные о размере прибыли 100 коммерческих банков. Прибыль, млн. рублей.

30,2 51,9 43,1 58,9 34,1 55,2 47,9 43,7 53,2 34,9
47,8 65,7 37,8 68,6 48,4 67,5 27,3 66,1 52,0 55,6
54,1 26,9 53,6 42,5 59,3 44,8 52,8 42,3 55,9 48,1
44,5 69,8 47,3 35,6 70,1 39,5 70,3 33,7 51,8 56,1
28,4  48,7 41,9 58,1 20,4 56,3 46,5 41,8 59,5 38,1
41,4 70,4 31,4 52,5 45,2 52,3 40,2 60,4 27,6 57,4
29,3 53,8 46,3 40,1 50,3 48,9 35,8 61,7 49,2 45,8
45,3 71,5 35,1 57,8 28,1 57,6 49,6 45,5 36,2 63,2
61,9 25,1 65,1 49,7 62,1 46,1 39,9 62,4 50,1 33,1
33,3 49,8 39,8 45,9 37,3 78,0 64,9 28,8 62,5 58,7

                 
Из данной таблицы видно, что интересующий нас признак (прибыль банков) меняется от одного члена совокупности к другому, варьирует. Варьирование есть изменяемость признака у отдельных членов совокупности.

Вариационным рядом называется последовательность вариант, записанных в возрастающем порядке и соответствующих им частот.

Число, показывающее, сколько раз повторяется в данной совокупности каждое значение признака, называется частотой.

Составим ранжированный вариационный ряд (выпишем варианты в порядке возрастания):

20,4 25,1 26,9 27,3 27,6 28,1 28,4 28,8 29,3 30,2
31,4 33,1 33,3 33,7 34,1 34,9 35,1 35,6 35,8 36,2
37,3 37,8 38,1 39,5 39,8 39,9 40,1 40,2 41,4 41,8
41,9 42,3 42,5 43,1 43,7 44,5 44,8 45,2 45,3 45,5
45,8 45,9 46,1 46,3 46,5 47,3 47,8 47,9 48,1 48,4
48,7 48,9 49,2 49,6 49,7 49,8 50,1 50,3 51,8 51,9
52,0 52,3 52,5 52,8 53,2 53,6 53,8 54,1 55,2 55,6
55,9 56,1 56,3 57,4 57,6 57,8 58,1 58,7 58,9 59,3
59,5 60,4 61,7 61,9 62,1 62,4 62,5 63,2 64,9 65,1
65,7 66,1 67,5 68,6 69,8 70,1 70,3 70,4 71,5 78,0

 В нашем случае каждое значение признака (варианта вариационного ряда) повторилось только один раз, т.е. значение частоты для всех вариант равно единице. Перейдем к интервальному вариационному ряду, так как интересующий нас признак принимает дробные, практически не повторяющиеся значения.

Для этого необходимо определить число интервалов (классов) и длину интервала (классного промежутка), после чего произвести разноску, т.е. подсчитать для каждого интервала число вариант, попавших в него.

Количество классов устанавливают в зависимости от степени точности, с которой ведется обработка, и количества объектов в выборке. Считается удобным при объеме выборки (n) в пределах от 30 до 60 вариант распределять их на 6-7 классов, при n от 60 до 100 вариант — на 7-8 классов, при n от 100 и более вариант — на 9-17 классов.

Нужное количество групп также может быть ориентировочно вычислено по формуле Стерджесса:

    [k=1+3,322lgn]

где k — число групп (классов, интервалов) ряда распределения; n — объем выборки.

Можно также использовать выражение:

    [k=sqrt{n}.]

При nle 70 они дают примерно одинаковые результаты.

В рассматриваемом примере о размере прибыли коммерческих банков, n=100. Применяя формулу Стерджесса, получим:

    [k=1+3,322lg100=1+3,322cdot 2=7,644approx 8.]

Однако sqrt{100}=10. Таким образом, число интервалов может быть равно 8, 9, 10 и т.д.

Нахождение нужного количества групп и их размеров часто бывает взаимообусловлено. Для того, чтобы как-то определиться с числом интервалов, найдем размах вариации — разность между наибольшей и наименьшей вариантой:

    [R=x_{max}-x_{min}]

где R — размах вариации,

x_{max} — наибольшее значение варьирующего признака,

x_{min} — наименьшее значение варьирующего признака.

Найдем размах вариации для рассматриваемой задачи:

    [R=78,0-20,4=57,6]

Для того, чтобы найти длину интервала (величину классового промежутка) необходимо разделить размах вариации на число классов и полученную величину округлить таким образом, чтобы было удобно производить сначала разноску, а затем и различные вычисления. Рекомендую округлять до единиц, до которых округлены варианты в исходной таблице, в нашем случае до десятых.

    [happrox frac{R}{k}]

Согласно формуле получаем

    [happrox frac{57,6}{8}=7,2]

Теперь необходимо определиться с началом первого интервала. Для этого можно использовать формулу:

    [x_1approx x_{min}-frac{h}{2}]

    [x_1approx 20,4-frac{7,2}{2}=16,8.]

Замечание. За начало первого интервала можно принять некоторое значение, несколько меньшее x_{min} или само значение x_{min}. Далее в табличном виде я покажу оба варианта.

Прибавив к началу первого интервала (нижней границе) шаг, получим верхнюю границу первого интервала и одновременно нижнюю границу второго интервала. Выполняя последовательно указанные действия, будем находить границы последующих интервалов до тех пор, пока не будет получено или перекрыто x_{max}.

Таким образом, верхняя граница одного интервала одновременно является нижней границей другого интервала. Чтобы не возникало сомнений, в какой интервал отнести варианту, попавшую на границу, условимся относить ее к верхнему интервалу.

Составим теперь рабочую таблицу для построения интервального вариационного ряда и произведем подсчет частот вариант, попавших в тот или иной интервал.

Как и обещал покажу две таблицы построения ряда:

1. Отсчет ведем от x_{min}, т.е. нижняя граница первого интервала совпадает с x_{min}.

Группы банков по размеру прибыли

(границы интервалов)

Количество банков, принадлежащих данной группе

(частоты, n_i)

Накопленные частоты,

S_i

20,4 — 27,6 4 4
27,6 — 34,8 11 15
34,8 — 42 16 31
42 — 49,2 21 52
49,2 — 56,4 21 73
56,4 — 63,6 15 88
63,6 — 70,8 10 98
70,8 — 78 2 100

2. Начало первого интервала определяем с помощью формулы: x_1approx x_{min}-frac{h}{2}.

Группы банков по размеру прибыли

(границы интервалов)

Количество банков, принадлежащих данной группе

(частоты, n_i)

Накопленные частоты,

S_i

16,8 — 24 1 1
24 — 31,2 9 10
31,2 — 38,4 13 23
38,4 — 45,6 17 40
45,6 — 52,8 23 63
52,8 — 60 18 81
60 — 67,2 11 92
67,2 — 74,4 7 99
74,4 — 81,6 1 100

Как мы видим в 1-м случае у нас получилось восемь интервалов, что полностью совпадает с результатом, который нам дала формула Стерджесса. Во втором случае у нас получилось девять интервалов, так как при поиске начала первого интервала пользовались специальной формулой.

Для дальнейшего исследования я буду пользоваться результатами второй таблицы, так как там ярко выражен модальный интервал (одна мода) и медиана практически точно попадает на середину вариационного ряда.

Мы получили интервальный вариационный ряд — упорядоченную совокупность интервалов варьирования значений случайной величины с соответствующими частотами попаданий в каждый из них значений величины.

II. Графическая интерпретация вариационных рядов.

№ п/п

Границы интервалов,

[x_{i}; x_{i+1})

Середины интервалов,

x_{i}^{*}=frac{x_i+x_{i+1}}{2}

Частоты интервалов,

n_i

Относительные частоты

W_i=frac{n_i}{n}

Плотность относит. частоты

frac{W_i}{h}

Плотность частоты

frac{n_i}{h}

1 16,8 — 24 20,4 1 0,01 0,001 0,139
2 24 — 31,2 27,6 9 0,09 0,013 1,250
3 31,2 — 38,4 34,8 13 0,13 0,018 1,806
4 38,4 — 45,6 42 17 0,17 0,024 2,361
5 45,6 — 52,8 49,2 23 0,23 0,032 3,194
6 52,8 — 60 56,4 18 0,18 0,025 2,500
7 60 — 67,2 63,6 11 0,11 0,015 1,528
8 67,2 — 74,4 70,8 7 0,07 0,010 0,972
9 74,4 — 81,6 78 1 0,01 0,001 0,139
      sum=100 sum=1    

Строим графики:

График гистограммы частот ischanow.com

График гистограммы плотности частот ischanow.com

График гистограммы относительных частот ischanow.com

График гистограммы плотности относительных частот ischanow.com

График полигона частот ischanow.com

Далее найдем моду вариационного ряда:

    [M_o(X)=x_{M_o}+hfrac{(n_2-n_1)}{(n_2-n_1)+(n_2-n_3)}]

где

x_{M_o} — начало модального интервала;

h — длина частичного интервала (шаг);

n_1 — частота предмодального интервала;

n_2 — частота модального интервала;

n_3 — частота послемодального интервала.

Определим модальный интервал — интервал, имеющий наибольшую частоту. Из таблицы видно, что модальным является интервал (45,6 — 52,8).

    [M_o(X)=45,6+7,2frac{(23-17)}{(23-17)+(23-18)}=]

    [=45,6+7,2cdot frac{6}{6+5}=45,6+3,93=49,5]

Медиана

Для интервального ряда медиана находится по формуле:

    [M_e(X)=x_{M_e}+hfrac{0,5n-S_{M_{e}-1}}{n_{M_e}}]

где

x_{M_e} — начало медианного интервала;

h — длина частичного интервала (шаг);

n — объем совокупности;

S_{M_{e}-1} — накопленная частота интервала, предшествующая медианному;

n_{M_e} — частота медианного интервала.

Определим медианный интервал — интервал, в котором впервые накопленная частота превышает половину объема выборки.Так как объем выборки n=100, то n/2=50. По таблице найдем интервал, где впервые накопленные частоты превысят это значение. Таким является интервал (45,6 — 52,8).

Получаем,

    [M_e(X)=45,6+7,2frac{0,5cdot 100-40}{23}approx 48,7.]

III. Расчет сводных характеристик выборки.

Для определения x_B, D_{B}, sigma_{B} составим расчетную таблицу. Для начала определимся с ложным нулем С. В качестве ложного нуля можно принять любую варианту. Максимальная простота вычислений достигается, если выбрать в качестве ложного нуля варианту, которая расположена примерно в середине вариационного ряда (часто такая варианта имеет наибольшую частоту).

Варианте, которая принята в качестве ложного нуля, соответствует условная варианта, равная нулю. В нашем случае С=49,2.

Равноотстоящими называют варианты, которые образуют арифметическую прогрессию с разностью h.

Условными называют варианты, определяемые равенством:

    [U_i=frac{(x_i-C)}{h}]

Произведем расчет условных вариант согласно формуле:

    [U_1=frac{20,4-49,2}{7,2}=-4]

    [U_2=frac{27,6-49,2}{7,2}=-3]

    [U_3=frac{34,8-49,2}{7,2}=-2]

    [U_4=frac{42-49,2}{7,2}=-1]

    [U_5=frac{49,2-49,2}{7,2}=0]

    [U_6=frac{56,4-49,2}{7,2}=1]

    [U_7=frac{63,6-49,2}{7,2}=2]

    [U_8=frac{70,8-49,2}{7,2}=3]

    [U_9=frac{78-49,2}{7,2}=4]

N п/п

Середины интервалов,

x_{i}^{*}

Частоты интервалов,

n_i

Условные варианты,

U_i

Произведения частот и условных вариант,

n_icdot U_i

Произведения частот и условных вариант,

n_icdot U_i^2

Произведения частот и условных вариант,

n_icdot U_i^3

Произведения частот и условных вариант,

n_icdot U_i^4

Произведения частот и условных вариант,  

n_icdot (U_i+1)^2

Произведения частот и условных вариант,

n_icdot(U_i+1)^4

1 20,4 1 -4 -4 16 -64 256 9 81
2 27,6 9 -3 -27 81 -243 729 36 144
3 34,8 13 -2 -26 52 -104 208 13 13
4 42 17 -1 -17 17 -17 17 0 0
5 49,2 23 0 0 0 0 0 23 23
6 56,4 18 1 18 18 18 18 72 288
7 63,6 11 2 22 44 88 176 99 891
8 70,8 7 3 21 63 189 567 112 1792
9 78 1 4 4 16 64 256 25 625
    sum=100   sum n_iU_i=-9 sum n_iU_i^2=307 sum n_icdot U_i^3=-69 sum n_icdot U_i^4=2227 sum n_icdot (U_i+1)^2=389 sum n_icdot(U_i+1)^4=3857

    
Контроль:

    [sum n_i U_i^2 + 2sum n_iU_i+n=sum n_i{(U_i+1)}^2]

    [sum n_i U_i^2 + 2sum n_iU_i+n=307+2cdot (-9)+100=389]

    [sum n_i{(U_i+1)}^2=389]

Контроль:

    [sum n_i U_i^4 + 4sum n_iU_i^3+6sum n_iU_i^2+4sum n_iU_i+n=sum n_i{(U_i+1)}^4]

    [sum n_i U_i^4 + 4sum n_iU_i^3+6sum n_iU_i^2+4sum n_iU_i+n=]

    [=2227+4cdot (-69)+6 cdot 307+4cdot (-9)+100=3857]

    [sum n_i{(U_i+1)}^4=3857]

Равенство выполнено, следовательно вычисления произведены верно.

Вычислим условные моменты 1-го, 2-го, 3-го и 4-го порядков:

    [M_1^{*}=frac{sum n_iU_i}{n}=frac{-9}{100}=-0,09;]

    [M_2^{*}=frac{sum n_iU_i^2}{n}=frac{307}{100}=3,07;]

    [M_3^{*}=frac{sum n_iU_i^3}{n}=frac{-69}{100}=-0,69;]

    [M_4^{*}=frac{sum n_iU_i^4}{n}=frac{2227}{100}=22,27.]

Найдем выборочные среднюю, дисперсию и среднее квадратическое отклонение :

    [x_{B}=M_1^{*}cdot h+C=-0,09cdot 7,2+49,2=48,552;]

    [D_{B}=(M_2^{*}-{(M_1^{*})}^2)h^2=(3,07-{(-0,09)}^2){7,2}^2approx 158,73.]

    [sigma_{B}=sqrt{D_B}=sqrt{158,73}=12,6.]

Также для оценки отклонения эмпирического распределения от нормального используют такие характеристики, как асимметрия и эксцесс.

Асимметрией теоретического распределения называют отношение центрального момента третьего порядка к кубу среднего квадратического отклонения:

    [a_s=frac{m_3}{sigma_B^3}]

Асимметрия положительна, если «длинная часть» кривой распределения расположена справа от математического ожидания; асимметрия отрицательна, если «длинная часть» кривой расположена слева от математического ожидания. Практически определяют знак асимметрии по расположению кривой распределения относительно моды (точки максимума дифференциальной функции): если «длинная часть» кривой расположена правее моды, то асимметрия положительна, если слева — отрицательна.

Эксцесс эмпирического распределения определяется равенством:

    [e_k=frac{m_4}{sigma_B^4}-3]

где m_4 — центральный эмпирический момент четвертого порядка.

Для нормального распределения эксцесс равен нулю. Поэтому если эксцесс некоторого распределения отличен от нуля, то кривая этого распределения отличается от нормальной кривой: если эксцесс положительный, то кривая имеет более высокую и «острую» вершину, чем нормальная кривая; если эксцесс отрицательный, то сравниваемая кривая имеет более низкую и «плоскую» вершину, чем нормальная кривая. При этом предполагается, что нормальное и теоретическое распределения имеют одинаковые математические ожидания и дисперсии.

Вычисляем центральные эмпирические моменты третьего и четвертого порядков:

    [m_3=(M_3^*-3M_1^*M_2^*+2{(M_1^*)}^3)cdot h^3=51,3;]

    [m_4=(M_4^*-4M_3^*M_1^*+6M_2^*{(M_1^*)}^2-3{(M_1^*)}^4)cdot h^4=59580,97;]

Найдем асимметрию и эксцесс:

    [a_s=frac{51,3}{{12,6}^3}=0,026]

    [e_k=frac{59580,97}{{12,6}^4}-3=-0,635]

IV. Проверка гипотезы о нормальном распределении генеральной совокупности. Критерий согласия Пирсона.

Проверим генеральную совокупность значений размера прибыли банков по критерию Пирсона chi^2

Правило. Для того, чтобы при заданном уровне значимости проверить нулевую гипотезу H_o: генеральная совокупность распределена нормально, надо сначала вычислить теоретические частоты, а затем наблюдаемое значение критерия:

    [chi^2_{nabl}=sum frac{ {(n_i-n_i^{'})}^2}{n_i^{'}}]

и по таблице критических точек распределения chi^2, по заданному уровню значимости alpha и числу степеней свободы k=s-3 найти критическую точку chi^2_{kp}(alpha;k), где s — количество интервалов.

Если chi^2_{nabl}<chi^2_{kp} — нет оснований отвергнуть нулевую гипотезу.

Если chi^2_{nabl}>chi^2_{kp} — нулевую гипотезу отвергают.

Найдем теоретические частоты n_i^', для этого составим следующую таблицу.

Середины интервалов,

x_{i}^{*}

Частоты интервалов,

n_i

Произведем расчет,

x_{i}^{*}-x_B

Произведем расчет,

V_i=frac{(x_{i}^{*}-x_B)}{sigma_B}

Значения функции Гаусса,

varphi(V_i)

Произведем расчет,

frac{nh}{sigma_B}

Теоретические частоты,

n_i^{'}=57 cdotvarphi(V_i)

20,4 1 -28,152 -2,23 0,0332 57 2
27,6 9 -20,952 -1,66 0,1006 57 6
34,8 13 -13,752 -1,09 0,2203 57 13
42 17 -6,552 -0,52 0,3485 57 20
49,2 23 0,648 0,05 0,3984 57 23
56,4 18 7,848 0,62 0,3292 57 19
63,6 11 15,048 1,19 0,1965 57 11
70,8 7 22,248 1,77 0,0833 57 5
78 1 29,448 2,34 0,0258 57 1
  n=100         sum n_i^{'}=100

   
Вычислим chi^2_{nabl}, для чего составим расчетную таблицу.

N^0 n_i n_i^{'} n_i-n_i^{'} {(n_i-n_i^{'})}^2 frac{{(n_i-n_i^{'})}^2}{n_i^'} n_i^2 frac{n_i^2}{n_i^{'}}
1 1 2 -1 0,5 1 0,5
2 9 6 3 9 1,5 81 13,5
3 13 13 0 0 0 169 13
4 17 20 -3 9 0,45 289 14,45
5 23 23 0 0 0 529 23
6 18 19 -1 1 0,05 324 17,05
7 11 11 0 0 0 121 11
8 7 5 2 4 0,8 49 9,8
9 1 1 0 0 0 1 1
sum 100 100    

Наблюдаемое значение критерия,

chi^2_{nabl}=3,30

  103,30

Контроль:

    [sumfrac{n_i^2}{n_i^{'}}-n=sum frac{{(n_i-n_i^{'})}^2}{n_i^'}]

    [sumfrac{n_i^2}{n_i'}-n=103,3-100=3,3]

    [sum frac{{(n_i-n_i')}^2}{n_i'}=3,3]

Вычисления произведены правильно.

Найдем число степеней свободы, учитывая, что число групп выборки (число различных вариант) s=9;

    [k=s-3=9-3=6.]

По таблице критических точек распределения chi^2 по уровню значимости alpha = 0,025 и числу степеней свободы k=6 находим chi^2_{kp}(0,025;6)=14,4.

Так как chi^2_{nabl}<chi^2_{kp} — нет оснований отвергнуть нулевую гипотезу. Другими словами, расхождение эмпирических и теоретических частот незначительное. Следовательно, данные наблюдений согласуются с гипотезой о нормальном распределении генеральной совокупности.

На рисунке построены нормальная (теоретическая) кривая по теоретическим частотам (зеленый график) и полигон наблюдаемых частот (коричневый график). Сравнение графиков наглядно показывает, что построенная теоретическая кривая удовлетворительно отражает данные наблюдений.

График нормальной кривой и полигон наблюдаемых частот

V. Интервальные оценки.

Интервальной называют оценку, которая определяется двумя числами — концами интервала, покрывающего оцениваемый параметр.

Доверительным называют интервал, который с заданной надежностью gamma покрывает заданный параметр.

Интервальной оценкой (с надежностью gamma) математического ожидания (а) нормально распределенного количественного признака Х по выборочной средней x_B при известном среднем квадратическом отклонении sigma генеральной совокупности служит доверительный интервал

    [x_B-frac{tsigma}{sqrt{n}}<a<x_B+frac{tsigma}{sqrt{n}},]

где frac{tsigma}{sqrt{n}}=delta — точность оценки, n — объем выборки, t — значение аргумента функции Лапласа phi (t) (см. приложение 2), при котором phi(t)=frac{gamma}{2};

при неизвестном среднем квадратическом отклонении sigma (и объеме выборки n<30)

    [x_B-frac{t_{gamma}cdot S}{sqrt{n}}<a<x_B+frac{t_{gamma}cdot S}{sqrt{n}},]

    [S=sqrt{frac{n}{n-1}D_B}]

где S — исправленное выборочное среднее квадратическое отклонение, t_{gamma} находят по таблице приложения по заданным n и gamma.

В нашем примере среднее квадратическое отклонение известно, sigma_B=12,6. А также x_B=48,55, n=100, gamma=0,95. Поэтому для поиска доверительного интервала используем первую формулу:

    [x_B-frac{tsigma}{sqrt{n}}<a<x_B+frac{tsigma}{sqrt{n}}]

Все величины, кроме t, известны. Найдем t из соотношения phi(t)=frac{0,95}{2}=0,475. По таблице приложения находим t=1,96. Подставив t=1,96, sigma_B=12,6, x_B=48,55, n=100 в формулу, окончательно получим искомый доверительный интервал:

    [48,55-frac{1,96cdot 12,6}{10}<a<48,55+frac{1,96cdot 12,6}{10}]

    [48,55-2,47<a<48,55+2,47]

    [46,08<a<51,02]

Интервальной оценкой (с надежностью gamma) среднего квадратического отклонения sigma нормально распределенного количественного признака Х по «исправленному» выборочному среднему квадратическому отклонению S служит доверительный интервал

S(1-q)<sigma<S(1+q),    (при q<1), (*)

0<sigma<S(1+q),      (при q>1),

где q — находят по таблице приложения по заданным n и gamma.

По данным gamma=0,95 и n=100 по таблице приложения 4 найдем q=0,143. Так как q<1, то, подставив S=sqrt{frac{n}{n-1}D_B}=sqrt{frac{100}{99}cdot 158,73}approx 12,66, quad quad q=0,143 в соотношение (*), получим доверительный интервал:

    [12,66(1-0,143)<sigma<12,66(1+0,143)]

    [10,85<sigma<14,47]

    1. Длина интервала на числовой прямой

Пусть
точки
иимеют координатына числовой оси. Тогда длина интервала
(отрезка) с концамиивычисляется по формуле

Пример. Расстояние от точкидо точкиравно.

  1. Расширенная область действительных чисел

Присоединим
к

два элемента —и,
полагая, что для всех

Для
всех положительных
будем считать, что

а
для отрицательных

Полагаем
также

Таким
образом, неопределенными остаются
операции:

Вещественные
числа вместе с
образуютрасширенную числовую прямую.
Можно убедиться, что основные
арифметические правила (ассоциативность,
коммутативность, дистрибутивность)
остаются верными и для расширенной
системы чисел, при условии определенности
всех входящих операций.

19

Соседние файлы в папке LEKTsII

  • #
  • #
  • #
  • #
  • #
  • #
  • #
  • #
  • #
  • #
  • #

Скачать материал

Наибольшее и наименьшее значение, размах числового набора. 7 класс...

Скачать материал

  • Сейчас обучается 22 человека из 17 регионов

  • Сейчас обучается 623 человека из 78 регионов

Описание презентации по отдельным слайдам:

  • Наибольшее и наименьшее значение, размах числового набора. 7 класс...

    1 слайд

    Наибольшее и наименьшее значение, размах числового набора.
    7 класс Урок 13
    07.01.2023
    Описательная статистика

  • 07.01.20232Повторение1.  Среднее арифметическое числового массива равно 5,1....

    2 слайд

    07.01.2023
    2
    Повторение
    1. Среднее арифметическое числового массива равно 5,1. Найдите новое среднее арифметическое, если все числа массива:
    а) увеличить в 10 раз;
    б) уменьшить в 3 раза;
    в) увеличить на 1,9.
    2. В числовом массиве 10 чисел, а их среднее равно 99. Найдите новое среднее арифметическое, если:
    а) какое-то одно число массива увеличить на 1;
    б) какое-то одно число массива увеличить на 5;
    в) два каких-то числа уменьшить на 20;
    г) первое число увеличить на 3, а второе число уменьшить на 5. д) к массиву добавить число 121;
    е) из массива удалить число 27.
    Ответы: 1. а) 51; б) 1,7; в) 7.
    2. а) 99,1; б) 99,5; в) 95; г) 98,8; д) 101; е) 107.

  • 3Наименьшее и наибольшее значения. Отрезок (интервал) значений, размах число...

    3 слайд

    3
    Наименьшее и наибольшее значения.
    Отрезок (интервал) значений, размах числового набора
    В любом конечном наборе чисел всегда есть наименьшее и наибольшее значения. Иногда их называют минимальным и максимальным значениями или даже короче – минимум и максимум. Иногда для удобства пользуются обозначениями min и max .
    Разность между наибольшим и наименьшим значением называется размахом числового набора.
    Размах равен длине отрезка, на котором располагаются все значения. Такой отрезок называют интервалом значений.

  • Пример 1. Дан набор чисел. Найти наибольшее и наименьшее значения и размах....

    4 слайд

    Пример 1. Дан набор чисел. Найти наибольшее и наименьшее значения и размах.
    1 3 2 1 45 3 2 7 5 4 3 2 2.

    4
    Даже не упорядочивая числа, мы видим, что min =1, а max = 7 . Значит, размах равен 7 -1 = 6 .
    Пример 2. В наборе данных наименьшее значение равно 6, а наибольшее равно 13. Найдите длину интервала значений.
    Решение: 13 — 6 = 7 .

  • Пример 3 Рассмотрите пример из учебника.  Ответьте на вопросы 5

    5 слайд

    Пример 3 Рассмотрите пример из учебника. Ответьте на вопросы
    5

  • Пример 4. Дан набор из 5 чисел, которые все равны между собой:
4 4 4 4 4.
Наи...

    6 слайд

    Пример 4. Дан набор из 5 чисел, которые все равны между собой:
    4 4 4 4 4.
    Наименьшее значение равно 4, наибольшее значение тоже равно 4. Более того, все средние (арифметическое, геометрическое, гармоническое3, меди ана и т.п.) равны между собой и равны числу 4. Размах равен 0.

    6

  • 7Пример 5. 
При определении фарватера судоходной реки производится промер глу...

    7 слайд

    7
    Пример 5.
    При определении фарватера судоходной реки производится промер глубин. Затем на основе промеров находят показатель, который называется гарантированная глубина судового хода. Если судно имеет осадку меньше гарантированной глубины, то оно может пройти по фарватеру.
    В таблице 1 дан массив результатов промеров глубин на некотором участке фарватера реки.

    Табл. 1. Глубины на фарватере реки
    .
    а) Какую меру следует использовать для определения гарантированной глубины?
    б) Предложите способ, как определить гарантированную глубину на основе этих данных

  • 8Пример 6. При проектировании зданий нужно учитывать ветровую нагрузку, котор...

    8 слайд

    8
    Пример 6. При проектировании зданий нужно учитывать ветровую нагрузку, которая характерна для данной местности. Ветровая нагрузка – это давление воздуха на вертикальную стену сооружения при ветре. Чем скорость ветра выше, тем больше ветровая нагрузка. Приблизительное соответствие между скоростью ветра в м/с и давлением ветра в паскалях6 (Па) показано в табл. 2.
    Табл. 2. Давление ветра в зависимости от скорости ветра
    В таблице 3 показаны результаты измерения максимальных скоростей ветра в Великом Новгороде за период с 1949 по 1963 годы по месяцам. Рассмотрите таблицы 2 и 3 и ответьте на вопросы.
    а) Какую меру ветрового давления следует использовать для определения прочности сооружения при проектировании?
    б) Определите, на какое ветровое давление нужно рассчитывать сооружения в Великом Новгороде, опираясь на данные наблюдений 1949 – 1963 г.

  • 9в) Можно ли использовать данные таблицы 3 в наше время или Т требуется регул...

    9 слайд

    9
    в) Можно ли использовать данные таблицы 3 в наше время или Т требуется регулярное обновление наблюдений над скоростью ветра?

  • Пример 7. В фигурном катании применяется специальная система оценивания элеме...

    10 слайд

    Пример 7. В фигурном катании применяется специальная система оценивания элементов (прыжков, вращений). Каждый элемент имеет базовую стоимость в баллах. Чем труднее элемент, тем выше его базовая стоимость. После выступления фигуриста 9 судей ставят ему оценки за каждый элемент. Оценки ставятся по 11-балльной шкале (от –5 до +5 баллов). Затем итоговая оценка фигуриста за элементы вычисляется по следующему алгоритму:
    из массива, в котором девять оценок, удаляется одна наименьшая и одна наибольшая оценка за каждый элемент, остается семь оценок за элемент;
    семь оставшихся оценок усредняются: вычисляется их среднее арифметическое;
    получившееся среднее прибавляется к базовой стоимости. Получается оценка за элемент.
    оценки за все отдельные элементы складываются. Результат является итоговой оценкой выступления фигуриста за элементы катания.
    На соревнованиях выступал фигурист Петров и в ходе своего выступления выполнил несколько элементов. В таблице показаны базовые стоимости этих элементов и оценки судей.
    10
    Нетипичность (ненадежность) наибольших и наименьших значений

  • Табл.4. Базовые стоимости элементов и оценки судей

11а) Пользуясь описанным...

    11 слайд

    Табл.4. Базовые стоимости элементов и оценки судей

    11
    а) Пользуясь описанным алгоритмом, вычислите оценку за четверной тулуп.
    б) Как вы думаете, почему было введено правило об удалении наибольшей и наименьшей оценок?
    6,7 + -1-1-1-1-1-1-1 = 6,7 -1 = 5,7 .
    7

  • Выводы и итоги урока. Существуют важные виды данных, где нужно знать наибольш...

    12 слайд

    Выводы и итоги урока.
    Существуют важные виды данных, где нужно знать наибольшее и наименьшее значение.
    Такие показатели важны не только в спорте. Мы видели примеры с глубинами реки и с ветровым давлением на стены сооружений.
    Размах – простейшая мера рассеивания данных – равен разности между наибольшим и наименьшим значением.
    Он показывает длину интервала значений.
    Наименьшее и наибольшее значение в числовом массиве часто являются наименее надежными, нетипичными или даже ошибочными значениями.
    Поэтому нужно с осторожностью включать их в расчеты, а иногда вовсе удалять, как это делают судьи в фигурном катании.

    12

  • Домашнее заданиеИзучить §15 с.64-67, 
ответить на вопросы1-3,  
Выполнить № 1...

    13 слайд

    Домашнее задание
    Изучить §15 с.64-67,
    ответить на вопросы1-3,
    Выполнить № 106, 107, 108.
    07.01.2023
    13

  • Спасибо за урок!До встречи на следующем!07.01.202314

    14 слайд

    Спасибо за урок!
    До встречи на следующем!
    07.01.2023
    14

Краткое описание документа:

ТЕОРИЯ ВЕРОЯТНОСТЕЙ И СТАТИСТИКА. 7 КЛАССУрок 13. Наибольшее и наименьшее значение, размах числового набора Цель урока. Сформировать представление об отрезке, на котором сосредоточены числа данного массива; о случаях, когда наименьшее или наибольшее значение являются естественной мерой. Учащиеся должны понять, что во многих случаях минимум и максимум являются наименее надежными показателями, подверженными сильной случайной изменчивости.

Найдите материал к любому уроку, указав свой предмет (категорию), класс, учебник и тему:

6 266 187 материалов в базе

  • Выберите категорию:

  • Выберите учебник и тему

  • Выберите класс:

  • Тип материала:

    • Все материалы

    • Статьи

    • Научные работы

    • Видеоуроки

    • Презентации

    • Конспекты

    • Тесты

    • Рабочие программы

    • Другие методич. материалы

Найти материалы

Другие материалы

  • 07.01.2023
  • 419
  • 8
  • 07.01.2023
  • 571
  • 4

«Математика (в 2 частях)», Виленкин Н.Я., Жохов В.И., Чесноков А.С., Шварцбурд С.И.

  • 07.01.2023
  • 61
  • 1
  • 06.01.2023
  • 33
  • 0

«Математика», Мерзляк А.Г., Полонский В.Б., Якир М.С./ Под ред. Подольского В.Е.

  • 06.01.2023
  • 76
  • 1
  • 06.01.2023
  • 102
  • 2

«Математика», Мерзляк А.Г., Полонский В.Б., Якир М.С./ Под ред. Подольского В.Е.

Вам будут интересны эти курсы:

  • Курс повышения квалификации «Педагогическое проектирование как средство оптимизации труда учителя математики в условиях ФГОС второго поколения»

  • Курс повышения квалификации «Изучение вероятностно-стохастической линии в школьном курсе математики в условиях перехода к новым образовательным стандартам»

  • Курс профессиональной переподготовки «Экономика: теория и методика преподавания в образовательной организации»

  • Курс повышения квалификации «Специфика преподавания основ финансовой грамотности в общеобразовательной школе»

  • Курс повышения квалификации «Специфика преподавания информатики в начальных классах с учетом ФГОС НОО»

  • Курс повышения квалификации «Особенности подготовки к сдаче ОГЭ по математике в условиях реализации ФГОС ООО»

  • Курс профессиональной переподготовки «Теория и методика обучения информатике в начальной школе»

  • Курс профессиональной переподготовки «Математика и информатика: теория и методика преподавания в образовательной организации»

  • Курс профессиональной переподготовки «Инженерная графика: теория и методика преподавания в образовательной организации»

  • Курс повышения квалификации «Развитие элементарных математических представлений у детей дошкольного возраста»

  • Курс повышения квалификации «Методика преподавания курса «Шахматы» в общеобразовательных организациях в рамках ФГОС НОО»

  • Курс повышения квалификации «Методика обучения математике в основной и средней школе в условиях реализации ФГОС ОО»

  • Курс профессиональной переподготовки «Черчение: теория и методика преподавания в образовательной организации»

Формулировка определения координатной прямой и ее отличий от обычной прямой

Из курса геометрии мы знаем, что такое прямая, но что нужно сделать с обычной прямой, чтобы она стала координатной?

  1. Выбрать точку начала отсчета;
  2. Выбрать направление;
  3. Выбрать масштаб;

На рисунке 1 изображена обычная прямая, а на рисунке 2 – координатная.

Координатной прямой называется такая прямая l , на которой выбрана начальная точка О – начало отсчета, масштаб – единичный отрезок, то есть такой отрезок, длина которого считается равной единице, и положительное направление.

Описание основного свойства координатной прямой и двух основных задач, с ним связанных

Координатную прямую также называют координатной осью или осью Х.

Выясним, зачем нужна координатная прямая, для этого определим ее основное свойство. Координатная прямая устанавливает взаимооднозначное соответствие между множеством всех чисел и множеством всех точек на этой прямой. Приведем примеры:

Заданы два числа:  (знак «+», модуль равен трем) и  (знак «-», модуль равен трем).Изобразим эти числа на координатной прямой:

Здесь число  называется координатой А, число  – координатой В.

Говорят также, что образом числа  есть точка С с координатой , а образом числа  есть точка D с координатой :

Итак, поскольку основное свойство координатной прямой – это установление взаимооднозначного соответствия между точками и числами, то возникает две основные задачи: указать точку по заданному числу, мы это уже сделали выше, и указать число по заданной точке. Рассмотрим пример второй задачи:

Решение примеров

Пример 1:

Пусть дана точка М:

Чтобы определить по данной точке число нужно в первую очередь определить расстояние от начал отсчета до точки. В данном случае расстояние равно двум. Теперь нужно определить знак числа, то есть в каком луче прямой лежит точка М. В данном случае точка лежит справа от начала отсчета, в положительном луче, значит число  будет иметь знак «+».

Пример 2:

Возьмем еще одну точку и по ней определим число:

Расстояние от начала отсчета до точки аналогично предыдущему примеру равно двум, но в данном случае точка лежит слева от начала отсчета, на отрицательном луче, значит точка N характеризует число 

Формулировка основных типовых задач и решение примеров

Все типовые задачи, связанные с координатной прямой, так или иначе связаны с ее основным свойством и двумя основными задачами, которые мы сформулировали и решили.

К типовым задачам относятся:

  • уметь расставлять точки и их координаты;
  • понимать сравнение чисел:

Пример 3:

выражение  означает, что точка С с координатой 4 лежит правее точки М с координатой 2:

И наоборот, если нам задано расположение точек на координатной прямой, мы должны понимать, что их координаты связаны определенным соотношением:

Пример 5:

Пусть заданы точки М(хМ) и N(xN):

Мы видим, что точка М лежит правее точки n, значит, их координаты соотносятся как 

Определение расстояния между точками.

Пример 6:

Мы знаем, что расстояние между точками Х и А равно модулю числа . пусть даны две точки:

Тогда расстояние между ними будет равно:

-Еще одно очень важная задача – это геометрическое описание числовых множеств.

Пример 7:

Рассмотрим луч, который лежит на координатной оси, не включает свое начало, но включает все остальные точки:

Итак, у нас задано множество точек, расположенных на координатной оси. Опишем множество чисел, которое характеризуется данным множеством точек. Таких чисел и точек бесчисленное множество, поэтому данная запись выглядит так:

или

Сделаем пояснение: при втором варианте записи если ставят круглую скобку «(» значит крайнее число – в данном случае число 3, не включается в множество, если же поставить квадратную скобку «[», то крайнее число включается в множество.

Итак, мы записали аналитически числовое множество, которое характеризует заданное множество точек. аналитическая запись, как мы сказали, выполняется или в виде неравенства, или в виде промежутка.

Пример 8:

Задано множество точек:

В данном случае точка а=3 входит в множество. Опишем аналитически множество чисел:

Обратим внимание, что после или перед знаком бесконечности всегда ставят круглую скобку, так как бесконечности мы никогда не достигнем, а около числа может стоять как круглая скобка, так и квадратная, в зависимости от условий поставленной задачи.

Рассмотрим пример обратной задачи.

Пример 9:

Дана координатная прямая. Изобразить на ней множество точек, соответствующих числовому множеству  и :

Координатная прямая устанавливает взаимооднозначное соответствие между любой точкой и числом, а значит и между числовыми множествами и множествами точек. Мы рассмотрели лучи, направленные как в положительном, так и в отрицательном направлении, включающие свою вершину и не включающие ее. Теперь рассмотрим отрезки.

Пример 10:

Задано множество чисел . Изобразить соответствующее множество точек

Пример 11:

Задано множество чисел . Изобразить множество точек:

Иногда чтобы показать, что концы отрезка не включаются в множество, рисуют стрелки:

Решение задач на выполнение нескольких типовых действий

Пример 12:

Дано числовое множество . Построить его геометрическую модель:

Найти наименьшее число из промежутка :

Найти наибольшее число из промежутка , если оно существует:

Мы может отнять от восьми сколь угодно малое число и сказать, что результат и будет наибольшим числом, но тут же найдем число еще меньше, и результат вычитания увеличится, так что найти наибольшее число в данном промежутке невозможно.

Обратим внимание на тот факт, что ни к одному числу на координатной прямой нельзя подобрать ближайшее число, потому что всегда найдется число еще ближе.

Сколько натуральных чисел содержится в заданном промежутке?

Из промежутка  выделим следующие натуральные числа: 4, 5, 6, 7 – четыре натуральных числа.

Напомним, что натуральные числа – это числа, применяемые для счета.

Возьмем другое множество.

Пример 13:

Задано множество чисел 

Построить его геометрическую модель:

Найти наименьшее число:

Очевидно, что наименьшим числом является 

Найти наибольшее число:

Наибольшего числа мы найти не можем, так как единица не входит в множество.

Сколько натуральных чисел в данном множестве?

Натуральные числа – это числа используемые для счета и начинается ряд натуральных чисел с единицы, а она в множество не входит, значит натуральных чисел нет

Сколько целых чисел в данном множестве?

Напомним, что в множество целых чисел Z входят число 0 и все натуральные числа, взятые со знаками плюс и минус: 

В наше множество входят такие целые числа: -3, -2, -1, 0 – четыре целых числа.

Выводы по уроку

Вывод: в данном уроке мы познакомились с понятием координатной прямой, узнали ее отличие от прямой обычной, сформулировали основное свойство и на его основании составили ряд типовых задач. Решили несколько примеров к каждой задаче и примеры, в которых решается несколько задач сразу.

Понравилась статья? Поделить с друзьями:
  • Как найти точку окружности по заданному числу
  • Как найти свой техосмотр на авто
  • Что делать если не встал как исправить
  • Как найти один кубический метр
  • Как найти своего мужчину чтобы выйти замуж