Как найти длину образующей пирамиды

Пирамида. Формулы и свойства пирамиды

Определение.

Пирамида — это многогранная объемная фигура, ограниченная плоским многоугольником (основой) и треугольниками, имеющих общую вершину, не лежащую в плоскости основания.

Изображение пирамиды с обозначениями
Рис.1

Определение. Боковая грань — это треугольник, у которого один угол лежит в вершине пирамиды, а противоположная ему сторона совпадает со стороной основания (многоугольника).

Определение. Боковые ребра — это общие стороны боковых граней. У пирамиды столько ребер сколько углов у многоугольника.

Определение. Высота пирамиды — это перпендикуляр, опущенный из вершины на основание пирамиды.

Определение. Апофема — это перпендикуляр боковой грани пирамиды, опущенный из вершины пирамиды к стороне основания.

Определение. Диагональное сечение — это сечение пирамиды плоскостью, проходящей через вершину пирамиды и диагональ основания.

Определение. Правильная пирамида — это пирамида, в которой основой является правильный многоугольник, а высота опускается в центр основания.

Объём и площадь поверхности пирамиды

Формула. Объём пирамиды через площадь основы и высоту:

Определение. Боковая поверхность пирамиды — это совокупная площадь всех боковых граней пирамиды.

Определение. Полная поверхность пирамиды — это совокупность площадей боковой поверхности и площади основания пирамиды.

Формула. Площадь боковой поверхности правильной пирамиды через периметр основания и апофему:

Свойства пирамиды

Если все боковые ребра равны, то вокруг основания пирамиды можно описать окружность, а центр основания совпадает с центром окружности. Также перпендикуляр, опущенный из вершины, проходит через центр основания (круга).

Если все боковые ребра равны, то они наклонены к плоскости основания под одинаковыми углами.

Боковые ребра равны тогда, когда они образуют с плоскостью основания равные углы или если вокруг основания пирамиды можно описать окружность.

Если боковые грани наклонены к плоскости основания под одним углом, то в основание пирамиды можно вписать окружность, а вершина пирамиды проектируется в ее центр.

Если боковые грани наклонены к плоскости основания под одним углом, то апофемы боковых граней равны.

Свойства правильной пирамиды

1. Вершина пирамиды равноудалена от всех углов основания.

2. Все боковые ребра равны.

3. Все боковые ребра наклонены под одинаковыми углами к основанию.

4. Апофемы всех боковых граней равны.

5. Площади всех боковых граней равны.

6. Все грани имеют одинаковые двугранные (плоские) углы.

7. Вокруг пирамиды можно описать сферу. Центром описанной сферы будет точка пересечения перпендикуляров, которые проходят через середину ребер.

8. В пирамиду можно вписать сферу. Центром вписанной сферы будет точка пересечения биссектрис, исходящие из угла между ребром и основанием.

9. Если центр вписанной сферы совпадает с центром описанной сферы, то сумма плоских углов при вершине равна π или наоборот, один угол равен π/n, где n — это количество углов в основании пирамиды.

Связь пирамиды со сферой

Пример вписанной пирамиды в сферу

Вокруг пирамиды можно описать сферу тогда, когда в основании пирамиды лежит многогранник вокруг которого можно описать окружность (необходимое и достаточное условие). Центром сферы будет точка пересечения плоскостей, проходящих перпендикулярно через середины боковых ребер пирамиды.

Вокруг любой треугольной или правильной пирамиды всегда можно описать сферу.

Пример описаной пирамиды вокруг сфери

В пирамиду можно вписать сферу, если биссекторные плоскости внутренних двугранных углов пирамиды пересекаются в одной точке (необходимое и достаточное условие). Эта точка будет центром сферы.

Связь пирамиды с конусом

Конус называется вписанным в пирамиду, если их вершины совпадают, а основание конуса вписано в основание пирамиды.

Конус можно вписать в пирамиду, если апофемы пирамиды равны между собой.

Конус называется описанным вокруг пирамиды, если их вершины совпадают, а основание конуса описана вокруг основания пирамиды.

Конус можно описать вокруг пирамиды если, все боковые ребра пирамиды равны между собой.

Связь пирамиды с цилиндром

Пирамида называется вписанной в цилиндр, если вершина пирамиды лежит на одной основе цилиндра, а основание пирамиды вписано в другую основу цилиндра.

Цилиндр можно описать вокруг пирамиды если вокруг основания пирамиды можно описать окружность.

Приклад зрізаної пирамиды

Определение. Усеченная пирамида (пирамидальная призма) — это многогранник, который находится между основанием пирамиды и плоскостью сечения, параллельной основанию. Таким образом пирамида имеет большую основу и меньшую основу, которая подобна большей. Боковые грани представляют собой трапеции.

Пример треугольной пирамиди

Определение. Треугольная пирамида (четырехгранник) — это пирамида в которой три грани и основание являются произвольными треугольниками.

В четырехгранник четыре грани и четыре вершины и шесть ребер, где любые два ребра не имеют общих вершин но не соприкасаются.

Каждая вершина состоит из трех граней и ребер, которые образуют трехгранный угол.

Отрезок, соединяющий вершину четырехгранника с центром противоположной грани называется медианой четырехгранника (GM).

Бимедианой называется отрезок, соединяющий середины противоположных ребер, которые не соприкасаются (KL).

Все бимедианы и медианы четырехгранника пересекаются в одной точке (S). При этом бимедианы делятся пополам, а медианы в отношении 3:1 начиная с вершины.

Пример наклонной пирамиди

Определение. Наклонная пирамида — это пирамида в которой одно из ребер образует тупой угол (β) с основанием.

Пример прямоугольной пирамиды

Определение. Прямоугольная пирамида — это пирамида в которой одна из боковых граней перпендикулярна к основанию.

Определение. Остроугольная пирамида — это пирамида в которой апофема больше половины длины стороны основания.

Определение. Тупоугольная пирамида — это пирамида в которой апофема меньше половины длины стороны основания.

Определение. Правильный тетраэдр — четырехгранник у которого все четыре грани — равносторонние треугольники. Он является одним из пяти правильных многоугольников. В правильного тетраэдра все двугранные углы (между гранями) и трехгранные углы (при вершине) равны.

Определение. Прямоугольный тетраэдр называется четырехгранник у которого прямой угол между тремя ребрами при вершине (ребра перпендикулярны). Три грани образуют прямоугольный трехгранный угол и грани являются прямоугольными треугольниками, а основа произвольным треугольником. Апофема любой грани равна половине стороны основы, на которую падает апофема.

Определение. Равногранный тетраэдр называется четырехгранник у которого боковые грани равны между собой, а основание — правильный треугольник. У такого тетраэдра грани это равнобедренные треугольники.

Определение. Ортоцентричный тетраэдр называется четырехгранник у которого все высоты (перпендикуляры), что опущены с вершины до противоположной грани, пересекаются в одной точке.

Определение. Звездная пирамида называется многогранник у которого основой является звезда.

Пример бипирамиды

Определение. Бипирамида — многогранник, состоящий из двух различных пирамид (также могут быть срезаны пирамиды), имеющих общую основу, а вершины лежат по разные стороны от плоскости основания.

Когда человек слышит слово «пирамида», то сразу вспоминает величественные египетские сооружения. Тем не менее древние каменные гиганты являются лишь одним из представителей класса пирамид. В данной статье рассмотрим с геометрической точки зрения свойства правильной четырехугольной пирамиды .

Что такое пирамида в общем случае?

В геометрии под ней понимают объемную фигуру, получить которую можно, если соединить все вершины плоского многоугольника с одной единственной точкой, лежащей в другой плоскости, чем этот многоугольник. Рисунок ниже показывает 4 фигуры, которые удовлетворяют данному определению.

Литовские статуты: даты и история изданий, регламент, хронология принятия статутовВам будет интересно:Литовские статуты: даты и история изданий, регламент, хронология принятия статутов

Набор правильных пирамид

Мы видим что первая фигура имеет треугольное основание, вторая — четырехугольное. Две последние представлены пяти- и шестиугольным основанием. Однако боковая поверхность всех пирамид образована треугольниками. Их число точно равно количеству сторон или вершин многоугольника в основании.

Особым типом пирамид, которые от остальных представительниц класса отличаются идеальной симметрией, являются правильные пирамиды. Чтобы фигура была правильной, должны выполняться следующие два обязательных условия:

  • в основании должен находиться правильный многоугольник;
  • боковая поверхность фигуры должна состоять из равных равнобедренных треугольников.

Отметим, что второе обязательное условие можно заменить иным: перпендикуляр, проведенный к основанию из вершины пирамиды (точка пересечения боковых треугольников), должен пересекать это основание в его геометрическом центре.

Правильная четырехугольная пирамида

Теперь перейдем к теме статьи и рассмотрим, какие свойства правильной четырехугольной пирамиды характеризуют ее. Сначала покажем на рисунке, как выглядит эта фигура.

Правильная четырехугольная пирамида

Ее основание является квадратом. Боковые стороны представляют 4 одинаковых равнобедренных треугольника (они также могут быть равносторонними при определенном соотношении длины стороны квадрата и высоты фигуры). Опущенная из вершины пирамиды высота пересечет квадрат в его центре (точка пересечения диагоналей).

Эта пирамида имеет 5 граней (квадрат и четыре треугольника), 5 вершин (четыре из них принадлежат основанию) и 8 ребер. Ось симметрии четвертого порядка, проходящая через высоту пирамиды, переводит ее в саму себя путем поворота на 90o.

Египетские пирамиды в Гизе являются правильными четырехугольными.

Далее приведем формулы, позволяющие определить все характеристики этой фигуры.

Четыре основных линейных параметра

Начнем рассмотрение математических свойств правильной четырехугольной пирамиды с формул высоты, длины стороны основания, бокового ребра и апофемы. Сразу скажем, что все эти величины связаны друг с другом, поэтому достаточно знать только две из них, чтобы однозначно вычислить оставшиеся две.

Предположим, что известна высота h пирамиды и длина a стороны квадратного основания, тогда боковое ребро b будет равно:

b = √(a2 / 2 + h2)

Теперь приведем формулу для длины ab апофемы (высота треугольника, опущенная на сторону основания):

ab = √(a2 / 4 + h2)

Очевидно, что боковое ребро b всегда больше апофемы ab.

Оба выражения можно применять для определения всех четырех линейных характеристик, если известны другие два параметра, например ab и h.

Площадь и объем фигуры

Это еще два важных свойства правильной четырехугольной пирамиды . Основание фигуры имеет следующую площадь:

So = a2

Эту формулу знает каждый школьник. Площадь боковой поверхности, которая образована четырьмя одинаковыми треугольниками, можно определить через апофему ab пирамиды так:

Sb = 2 × a × ab

Если ab является неизвестной, то можно ее определить по формулам из предыдущего пункта через высоту h или ребро b.

Общая площадь поверхности рассматриваемой фигуры складывается из площадей So и Sb:

S = So + Sb = a2 + 2 × a × ab = a (a + 2 × ab)

Рассчитанная площадь всех граней пирамиды показана на рисунке ниже в виде ее развертки.

Развертка правильной пирамиды

Описание свойств правильной четырехугольной пирамиды не будет полным, если не рассмотреть формулу для определения ее объема. Эта величина для рассматриваемой пирамиды вычисляется следующим образом:

V = 1/3 × h × a2

То есть V равен третьей части произведения высоты фигуры на площадь ее основания.

Свойства правильной усеченной четырехугольной пирамиды

Получить эту фигуру можно из исходной пирамиды. Для этого необходимо срезать верхнюю часть пирамиды плоскостью. Оставшаяся под плоскостью среза фигура будет называться пирамидой усеченной.

Усеченная четырехугольная пирамида

Удобнее всего изучать характеристики усеченной пирамиды, если ее основания параллельны друг другу. В этом случае нижнее и верхнее основания будут подобными многоугольниками. Поскольку в четырехугольной правильной пирамиде основание — это квадрат, то образованное при срезе сечение тоже будет представлять квадрат, но уже меньшего размера.

Боковая поверхность усеченной фигуры образована не треугольниками, а равнобедренными трапециями.

Одним из важных свойств этой пирамиды является ее объем, который рассчитывается по формуле:

V = 1/3 × h × (So1 + So2 + √(So1 × So2))

Здесь h — расстояние между основаниями фигуры, So1, So2 — площади нижнего и верхнего оснований.

Высота правильной треугольной пирамиды.

Основание правильной пирамиды представляет собой правильный многоугольник. Так как мы имеем дело с треугольной пирамидой, то её основанием будет равносторонний треугольник.

Чтобы найти высоту пирамиды SO, достаточно вспомнить, что:

1) AO = BO = CO = R = a√3 / 3. (св-во равностороннего треугольника).

2) SB = AB. (боковое ребро равно длине стороны основания).

По теореме Пифагора высота SO равна:

SO = √(SB² — OB²) = √(a² — a²/3) = √(a²(1 — 1/3)) = √(a² * (2/3) = a√(2/3).

Итак, высота правильной треугольной пирамиды (H) равна произведению длины ребра (a) на корень из 2/3:

как найти высоту пирамиды


Высоту пирамиды также можно найти из формулы объёма:

V = 1 / 3 Sосн * H.

Так как основание пирамиды — это равносторонний треугольник, то Sосн = a² * √3 / 4.

Отсюда V = a² * √3 * H / 12 = a² * H / 4√3.

Остаётся выразить высоту:

V * 4√3 = a² * H.

H = V * (4√3 / a²).

Высота правильной треугольной пирамиды (H) равна дроби — в числителе произведение объёма пирамиды (V) на 4√3, в знаменателе — квадрат ребра (a).

Если же в условии задачи уже известна площадь основания, то высоту найти ещё проще:

H = 3 * V / Sосн.


Пример

Сторона основания правильной треугольной пирамиды равна 4 см, объём равен 10√3.

Нужно найти высоту пирамиды.

Воспользуемся вышеприведённой формулой:

H = V * (4√3 / a²) = 10√3 * 4√3 / 16 = 120 / 16 = 7,5 см.

Вы уже знакомы с пирамидой, т. е. многогранником, одна грань которого является многоугольником, а остальные грани-треугольники имеют общую вершину.

Треугольные грани пирамиды, имеющие общую вершину, называют боковыми гранями, а эту общую вершину — вершиной пирамиды. Ребра боковых граней, сходящиеся в вершине пирамиды, называют боковыми ребрами пирамиды. Многоугольник, которому не принадлежит вершина пирамиды, называют основанием пирамиды (рис. 107).

Пирамиды разделяют на треугольные, четырехугольные, пятиугольные и т. д. в зависимости от количества сторон их оснований. Пирамида, изображенная на рисунке 107, — пятиугольная, а на рисунке 108, — восьмиугольная. Треугольную пирамиду называют еще тетраэдром. У тетраэдра все грани являются треугольниками (рис. 109).

Пирамида в геометрии - элементы, формулы, свойства с примерами

Перпендикуляр, проведенный из вершины пирамиды к плоскости ее основания, называется высотой пирамиды. На рисунке 108 показана высота Пирамида в геометрии - элементы, формулы, свойства с примерами

Пирамида в геометрии - элементы, формулы, свойства с примерами

Пирамида в геометрии - элементы, формулы, свойства с примерами

Плоскость, проходящая через два боковых ребра пирамиды, не принадлежащие одной грани, называется диагональной плоскостью, а сечение пирамиды диагональной плоскостью — диагональным сечением. На рисунке 111 показано диагональное сечение шестиугольной пирамиды.

Пирамида, основанием которой является правильный многоугольник, а основание ее высоты совпадает с центром этого многоугольника, называется правильной пирамидой (рис. 112).

Высота боковой грани правильной пирамиды, проведенная из ее вершины, называется апофемой пирамиды.

Отметим, что в правильной пирамиде:

  • боковые ребра равны;
  • боковые грани равны;
  • апофемы, равны;
  • двугранные углы при основании равны;
  • двугранные углы при боковых ребрах равны;
  • каждая точка высоты равноудалена от вершин основания;
  • каждая точка высоты равноудалена от ребер основания;
  • каждая точка высоты равноудалена от боковых граней.

Отметим, что если в пирамиде равны все:

  • боковые ребра, то около ее основания можно описать окружность, и центр этой окружности совпадает с основанием высоты пирамиды (рис. 113);
  • двугранные углы при основании, то в это основание можно вписать окружность, и центр этой окружности совпадает с основанием высоты пирамиды (рис. 114).

Пирамида в геометрии - элементы, формулы, свойства с примерами Пирамида в геометрии - элементы, формулы, свойства с примерами

Боковые грани составляют боковую поверхность пирамиды, а боковые грани вместе с основанием — полную поверхность пирамиды.

Вы знаете, что боковая поверхность правильной пирамиды равна произведению полупериметра ее основания и апофемы.

Теорема 1.

Если пирамиду пересечь плоскостью, параллельной основанию, то:

  • а) боковые ребра и высота разделяются на пропорциональные части;
  • б) в сечении получается многоугольник, подобный основанию;
  • в) площади сечения и основания относятся как квадраты их расстояний от вершины пирамиды.

Используя рисунок 115, докажите эту теорему самостоятельно.

Пирамида в геометрии - элементы, формулы, свойства с примерами

Секущая плоскость, параллельная основанию пирамиды, разделяет ее на две части (рис. 116). Одна из этих частей также является пирамидой, а другая — многогранником, который называется усеченной пирамидой.

Параллельные грани усеченной пирамиды называются ее основаниями (рис. 117). Основания усеченной пирамиды — подобные многоугольники, стороны которых попарно параллельны, поэтому ее боковые грани являются трапециями.

Высотой усеченной пирамиды называется перпендикуляр, проведенный из какой-либо точки одного основания пирамиды к плоскости другого основания.

Пирамида в геометрии - элементы, формулы, свойства с примерами

Усеченная пирамида называется правильной, если она является частью правильной пирамиды. Высота боковой грани правильной усеченной пирамиды называется апофемой усеченной пирамиды. На рисунке 118 показана четырехугольная правильная усеченная пирамида и одна из ее апофем.

Теорема 2.

Боковая поверхность правильной усеченной пирамиды равна произведению полусуммы периметров ее оснований и апофемы:

Пирамида в геометрии - элементы, формулы, свойства с примерами

Доказательство:

Пусть есть правильная Пирамида в геометрии - элементы, формулы, свойства с примерами-угольная усеченная пирамида (рис. 119). Пусть Пирамида в геометрии - элементы, формулы, свойства с примерами и Пирамида в геометрии - элементы, формулы, свойства с примерами — соответственно периметры нижнего и верхнего оснований и Пирамида в геометрии - элементы, формулы, свойства с примерами — апофема пирамиды.

Боковая поверхность данной пирамиды состоит из Пирамида в геометрии - элементы, формулы, свойства с примерами равных трапеций. Пусть Пирамида в геометрии - элементы, формулы, свойства с примерами и Пирамида в геометрии - элементы, формулы, свойства с примерами — основания одной из этих трапеций, тогда ее площадь равна Пирамида в геометрии - элементы, формулы, свойства с примерами. Учитывая, что боковая поверхность пирамиды состоит из Пирамида в геометрии - элементы, формулы, свойства с примерами таких трапеций, получим, что

Пирамида в геометрии - элементы, формулы, свойства с примерами

Теперь установим формулу для вычисления объема пирамиды.

Тела, имеющие равные объемы, называются равновеликими.

Пирамида в геометрии - элементы, формулы, свойства с примерами

Теорема 3.

Треугольные пирамиды с равновеликими основаниями и равными высотами равновелики.

Пирамида в геометрии - элементы, формулы, свойства с примерами

Доказательство:

Пусть есть две треугольные пирамиды с равновеликими основаниями и равными высотами (рис. 120). Разделим высоты одной и другой пирамид на Пирамида в геометрии - элементы, формулы, свойства с примерами долей и через точки деления проведем плоскости, параллельные основаниям. Этим самым пирамиды разделяются на Пирамида в геометрии - элементы, формулы, свойства с примерами частей. Для каждой части первой пирамиды построим наибольшие по объему призмы, целиком содержащиеся в пирамиде, а для каждой части другой пирамиды — наименьшие по объему призмы, целиком содержащие эту часть.

Пусть Пирамида в геометрии - элементы, формулы, свойства с примерами и Пирамида в геометрии - элементы, формулы, свойства с примерами — объемы первой и второй пирамид, a Пирамида в геометрии - элементы, формулы, свойства с примерами и Пирамида в геометрии - элементы, формулы, свойства с примерами — суммарные объемы призм, построенных для этих пирамид. При счете от оснований пирамид призма в Пирамида в геометрии - элементы, формулы, свойства с примерами-й части первой пирамиды равновелика призме для Пирамида в геометрии - элементы, формулы, свойства с примерами-й части второй пирамиды, так как у этих призм равновелики основания и равные высоты. Поэтому объем Пирамида в геометрии - элементы, формулы, свойства с примерами больше объема Пирамида в геометрии - элементы, формулы, свойства с примерами на объем первой призмы, у которой основанием является основание второй пирамиды, а высота равна Пирамида в геометрии - элементы, формулы, свойства с примерами, где Пирамида в геометрии - элементы, формулы, свойства с примерами — высота пирамиды (см. рис. 120), т.е. Пирамида в геометрии - элементы, формулы, свойства с примерами, или Пирамида в геометрии - элементы, формулы, свойства с примерами, где Пирамида в геометрии - элементы, формулы, свойства с примерами — площадь основания пирамиды. Теперь учтем, что Пирамида в геометрии - элементы, формулы, свойства с примерами, a Пирамида в геометрии - элементы, формулы, свойства с примерами. Поэтому Пирамида в геометрии - элементы, формулы, свойства с примерами, или Пирамида в геометрии - элементы, формулы, свойства с примерами. При увеличении значения переменной Пирамида в геометрии - элементы, формулы, свойства с примерами значение выражения Пирамида в геометрии - элементы, формулы, свойства с примерами стремится к нулю, а это означает, что Пирамида в геометрии - элементы, формулы, свойства с примерами, или

Пирамида в геометрии - элементы, формулы, свойства с примерами

Такие же рассуждения можно провести, если первую и вторую пирамиды поменять ролями. В результате получим неравенство

Пирамида в геометрии - элементы, формулы, свойства с примерами

Из неравенств (1) и (2) следует, что Пирамида в геометрии - элементы, формулы, свойства с примерами.

Теорема 4.

Объем пирамиды равен третьей доле произведения площади ее основания и высоты:

Пирамида в геометрии - элементы, формулы, свойства с примерами

Пирамида в геометрии - элементы, формулы, свойства с примерами

Доказательство:

Пусть есть треугольная пирамида Пирамида в геометрии - элементы, формулы, свойства с примерами (рис. 121). Достроим ее до призмы Пирамида в геометрии - элементы, формулы, свойства с примерами с основанием Пирамида в геометрии - элементы, формулы, свойства с примерами (рис. 122). Отделим от призмы данную пирамиду, получится четырехугольная пирамида Пирамида в геометрии - элементы, формулы, свойства с примерами (рис. 122 и 123). Диагональная плоскость Пирамида в геометрии - элементы, формулы, свойства с примерами разделяет ее на две пирамиды Пирамида в геометрии - элементы, формулы, свойства с примерами и Пирамида в геометрии - элементы, формулы, свойства с примерами, у которых одна и та же высота, проведенная из вершины Пирамида в геометрии - элементы, формулы, свойства с примерами, и равные основания Пирамида в геометрии - элементы, формулы, свойства с примерами и Пирамида в геометрии - элементы, формулы, свойства с примерами. Поэтому, в соответствии с теоремой 3, пирамиды Пирамида в геометрии - элементы, формулы, свойства с примерами и Пирамида в геометрии - элементы, формулы, свойства с примерами равновелики. Сравним пирамиду Пирамида в геометрии - элементы, формулы, свойства с примерами с данной пирамидой Пирамида в геометрии - элементы, формулы, свойства с примерами. У них равные основания Пирамида в геометрии - элементы, формулы, свойства с примерами и Пирамида в геометрии - элементы, формулы, свойства с примерами и высоты, проведенные из вершин Пирамида в геометрии - элементы, формулы, свойства с примерами и Пирамида в геометрии - элементы, формулы, свойства с примерами, поэтому эти пирамиды также равновелики. Получается, что все три пирамиды Пирамида в геометрии - элементы, формулы, свойства с примерами, Пирамида в геометрии - элементы, формулы, свойства с примерами и Пирамида в геометрии - элементы, формулы, свойства с примерами равновелики. Поскольку объем призмы Пирамида в геометрии - элементы, формулы, свойства с примерами равен произведению Пирамида в геометрии - элементы, формулы, свойства с примерами площади Пирамида в геометрии - элементы, формулы, свойства с примерами основания Пирамида в геометрии - элементы, формулы, свойства с примерами и высоты призмы Пирамида в геометрии - элементы, формулы, свойства с примерами, которая равна высоте пирамиды Пирамида в геометрии - элементы, формулы, свойства с примерами, то объем пирамиды Пирамида в геометрии - элементы, формулы, свойства с примерами, т. е. третьей части призмы Пирамида в геометрии - элементы, формулы, свойства с примерами, равен третьей доле этого объема, т. е. Пирамида в геометрии - элементы, формулы, свойства с примерами.

Пирамида в геометрии - элементы, формулы, свойства с примерами

Пусть теперь есть произвольная пирамида Пирамида в геометрии - элементы, формулы, свойства с примерами (рис. 124). Через диагонали Пирамида в геометрии - элементы, формулы, свойства с примерами основания Пирамида в геометрии - элементы, формулы, свойства с примерами, выходящие из одной вершины Пирамида в геометрии - элементы, формулы, свойства с примерами, проведем диагональные сечения, они разделят данную пирамиду на треугольные пирамиды Пирамида в геометрии - элементы, формулы, свойства с примерами. Поскольку все они имеют общую высоту Пирамида в геометрии - элементы, формулы, свойства с примерами, то

Пирамида в геометрии - элементы, формулы, свойства с примерами

Пирамида в геометрии - элементы, формулы, свойства с примерами

Пример:

Найдем объем усеченной пирамиды, нижнее и верхнее основания которой имеют площади Пирамида в геометрии - элементы, формулы, свойства с примерами и Пирамида в геометрии - элементы, формулы, свойства с примерами, а высота равна Пирамида в геометрии - элементы, формулы, свойства с примерами (рис. 125).

Для этого достроим данную усеченную пирамиду до полной. Пусть высота дополнительной пирамиды равна Пирамида в геометрии - элементы, формулы, свойства с примерами. Искомый объем Пирамида в геометрии - элементы, формулы, свойства с примерами можно найти как разность объемов полной и дополнительной пирамид:

Пирамида в геометрии - элементы, формулы, свойства с примерами

Чтобы найти высоту Пирамида в геометрии - элементы, формулы, свойства с примерами, используем установленное в теореме 1 утверждение о том, что площади сечений пирамиды относятся как квадраты их расстояний от вершины:

Пирамида в геометрии - элементы, формулы, свойства с примерами

Решим это уравнение, учитывая, что Пирамида в геометрии - элементы, формулы, свойства с примерами и Пирамида в геометрии - элементы, формулы, свойства с примерами — положительные числа:

Пирамида в геометрии - элементы, формулы, свойства с примерами

Таким образом, объем Пирамида в геометрии - элементы, формулы, свойства с примерами усеченной пирамиды равен третьей доле произведения высоты Пирамида в геометрии - элементы, формулы, свойства с примерами пирамиды и суммы площадей Пирамида в геометрии - элементы, формулы, свойства с примерами и Пирамида в геометрии - элементы, формулы, свойства с примерами оснований пирамиды и их среднего геометрического Пирамида в геометрии - элементы, формулы, свойства с примерами.

  • Конус в геометрии
  • Сфера в геометрии
  • Шар в геометрии
  • Правильные многогранники в геометрии
  • Возникновение геометрии
  • Призма в геометрии
  • Цилиндр в геометрии
  • Стереометрия — формулы, определение и вычисление

Как найти натуральную величину пирамиды

Ответ — никак. Универсальная метрика натуральной величины пирамиды может быть выражена только объёмом. А объём
начертательной геометрией не выражается.

Для пирамиды возможно найти следующие натуральные величины: высота, двугранный угол при ребре, угол наклона ребра к грани,
натуральную величину грани (основания), угол между рёбрами и ребра.

Как найти натуральную величину пирамиды

Натуральные величины пирамиды найдены наглядным методом замены плоскостей проекций.
В плоскости основания построена горизонталь перпендикулярно которой построена плоскость проекции заменяющая фронтальную
плоскость. Относительно новой плоскости, основание пирамиды занимает проецирующее положение.

Высота пирамиды

На П4 грань основания пирамиды занимает проецирующее положение. Таким образом, любой перпендикуляр к плоскости
этой грани будет проецироваться в натуральную величину и
определять натуральную величину высоты пирамиды.

Натуральная величина (основания) грани пирамиды

Пирамида ограничена плоскими фигурами, для определения истинных величин граней следует
использовать преобразование чертежа для получения положения граней параллельно плоскости проекций.

Плоскость П5 построена параллельно грани основания и заменяет горизонтальную проекцию, т.о.
A5B5C5=ABC —
определяет натуральную величину основания пирамиды.

Угол между ребром и гранью пирамиды

Параллельно ребру пирамиды построена проекция П6, которая заменяет П4, в результате чего,
плоскость основания занимает проецирующее положение, а ребро проецируется в натуральную величину. Тем самым, угол γ равен
углу между ребром и гранью основания пирамиды.

Двугранный угол при ребре пирамиды

Плоскость проекции П8 построена перпендикулярно ребру AB и обе плоскости, содержащие ребро имеют
проецирующее на П8 положение, тем самым угол φ
определяет истинную величину двугранного угла при ребре заданной пирамиды.

Ребро пирамиды

Натуральная величина ребер пирамиды может быть найдена способами вращения или заменой плоскостей
проекций параллельно грани. В большинстве комплексных задач, натуральная величина ребра пирамиды будет найдена при
решении других задач: натуральная величина грани, угол между ребром и гранью, а также как промежуточный этап определения
двугранного угла при ребре.


Найти натуральную величину треугольника методом замены плоскостей.
Нахождение натуральной величины сечения.


Определение натуральной величины.

Решение задач по начертательной геометрии.

Понравилась статья? Поделить с друзьями:
  • Как составить цены для салона
  • Как найти трудоемкость программы
  • Как найти закладку с солью
  • Инстаграм как найди друга
  • Как составить необычное поздравление