Загрузить PDF
Загрузить PDF
Найти длину вертикального или горизонтального отрезка на координатной плоскости можно с помощью координат, а вот сделать это с диагональным отрезком сложнее. Длину диагонального отрезка можно вычислить по формуле, которая основана на теореме Пифагора, где гипотенузой прямоугольного треугольника является наш диагональный отрезок.[1]
С помощью этой формулы можно быстро найти длину любого отрезка на координатной плоскости.
-
1
Запишите формулу для вычисления длины. Формула: , где — длина отрезка, — координаты начальной точки отрезка, — координаты конечной точки отрезка.[2]
-
2
Найдите координаты точек отрезка. Возможно, они будут даны. Если нет, найдите их по осям Х и Y.[3]
-
3
Подставьте координаты в формулу. Будьте внимательны и подставьте значения соответствующих переменных. Две координаты должны находится внутри первой пары скобок, а две координаты — внутри второй пары скобок.[4]
Реклама
-
1
Выполните вычитание в скобках. Сделайте это, потому что операции в скобках имеют приоритет.[5]
-
2
Возведите в квадрат полученные значения. В нашем случае возведение в степень — это вторая по важности операция.[6]
-
3
Сложите числа под знаком корня. Делайте вычисления так, как будто работаете с целыми числами.
-
4
Вычислите длину отрезка . Для этого извлеките корень из полученной суммы чисел.
Реклама
Советы
- Не путайте эту формулу с другими, например, с формулой для вычисления углового коэффициента или с линейным уравнением.
- Помните о порядке выполнения математических операций. Сначала вычтите, затем возведите в квадрат, затем сложите, а затем извлеките квадратный корень.
Реклама
Об этой статье
Эту страницу просматривали 24 709 раз.
Была ли эта статья полезной?
План урока:
Взаимосвязь координат векторов и его начала и конца
Определение координат середины отрезка
Вычисление длины вектора и отрезка
Простейшие задачи с использованием координатного метода
Использование признака коллинеарности векторов
Деление отрезка в заданном отношении
Введение прямоугольной системы координат
Взаимосвязь координат векторов и его начала и конца
На координатной плоскости любые две точки можно соединить друг с другом. В результате получается отрезок. Если же дополнительно указано, какая из этих точек – начало отрезка, а какая – конец, то в итоге мы уже имеем вектор. Попробуем определить, есть ли связь между координатами вектора и координатами (можно использовать сокращение коор-ты) его граничных точек.
Пусть в прямоугольной системе координат отмечены точки А (хА;уА) и В(хB;уB).Тогда можно задать вектор АВ. Также построим ещё два вспомогательных вектора ОА и ОВ, начинающиеся в точке О – начале коор-т:
Вектора ОВ и ОА – это радиус-векторы (так как их начало находится в начале координат), поэтому их коор-ты ОВ и ОА совпадают с коор-тами их концов (В и А соответственно):
Итак, зная коор-ты граничных точек вектора, можно найти и координаты данного вектора:
Например, если вектор начинается в точке А (2; 1), а заканчивается в точке В (6; 3), то коор-ты вектора АВ можно определить так:
Задание. Начало вектора находится в точке М, а конец – в точке К. Определите его коор-ты, если:
а) М(2; 7) и К(6; 8);
б) М(5; 1) и К(2; 10);
в) М(0; и К(9; -5).
Решение. Из коор-т К мы просто вычитаем соответствующие коор-ты М, и в итоге определяем коор-ты вектора:
Задание. От точки H (8; 15) отложили вектор m{5; – 6}. Каковы координаты конца этого вектора?
Решение. Обозначим интересующие нас коор-ты как (хк; ук). Для вектора, начинающегося в точке (8; 15) и заканчивающегося в точке (хк; ук), коор-ты можно вычислить так:
x = xk — 8
y = yk — 15
Однако нам даны координаты вектора, то есть величины х и у, поэтому мы можем записать:
5 = xk — 8
-6 = yk — 15
Оба равенства представляет собой уравнения, которые можно решить:
5 = xk — 8
xk = 5 + 8 = 13
-6 = yk — 15
yk = -6 + 15 = 9
В итоге получили, что конец вектора находится в точке (13; 9).
Ответ:(13; 9).
Определение координат середины отрезка
Пусть построен вектор АВ, причем известны коор-ты его начала А (хА; уА) и его конца B (хB; уB). Обозначим буквой С середину отрезка АВ и попытаемся вычислить коор-ты С, которые мы обозначим как (хC; уC):
Рассмотрим вектора АС и СВ. Они имеют одинаковую длину, потому что С разбивает АВ пополам. Также АС и СВ коллинеарны, так как они лежат на одной прямой АВ. При этом они и сонаправлены, а значит, эти вектора равны:
Нам удалось выразить коор-ты С через координаты А и В. В итоге можно сформулировать правило:
Например, пусть необходимо найти координаты середины отрезка HK, при этом известны коор-ты его концов: Н(5; – 2) и К(3; 4). Сначала найдем полусумму коор-т х и получим эту же коор-ту у середины:
Итак, точка середины отрезка имеет коор-ты (4; 1). Для наглядности построим отрезок ОК и продемонстрируем, что его середина действительно находится в точке (4; 1):
Вычисление длины вектора и отрезка
Пусть есть произвольный вектор с коор-тами {x; у}. Отложим его от точки начала координат, после чего из его конца опустим перпендикуляры ОВ и ОС на координатные оси:
Для простоты рассмотрим случай, когда х и у – положительные числа, то есть точка А находится в первой четверти. Тогда длина ОВ будет равна х:
OB = x
Так как ОСАВ – прямоугольник, то стороны ОС и АВ одинаковы, причем ОС имеет длину, равную коор-те у:
AB = OC = y
Теперь изучим ∆ОВА. Он прямоугольный, и ОА в нем – гипотенуза, поэтому можно записать теорему Пифагора:
OA2 = OB2 + AB2
Теперь заменим отрезки ОВ и АВ на х и у:
OA2 = x2 + y2
Осталось извлечь квадратный корень:
Мы вывели формулу для вычисления длины вектора по его координатам. Можно рассмотреть и остальные случаи, когда точка А лежит в другой четверти координатной плоскости или на координатных осях, однако во всех случаях будет получаться одинаковая формула.
Задание. Определите длину вектора с коор-тами:
Решение. Во всех случаях просто возводим каждую коор-ту в квадрат, потом складываем полученные числа и извлекаем из полученной суммы квадратный корень:
Теперь предположим, что имеется две точки с коор-тами (х1; у1) и (х2; у2). Требуется найти длину отрезка, их соединяющего, то есть расстояние между этими двумя точками. Если принять одну из этих точек, например первую, за начало вектора, а вторую за его конец, то задача сведется к вычислению длины этого вектора. Его коор-ты можно будет высчитать так:
x = x2 — x1
y = y2 — y1
Тогда расстояние между точками (обозначим его как d) будет вычисляться по формуле:
Задание. Определите длину отрезка MP, если известны коор-ты его концов:
Простейшие задачи с использованием координатного метода
Выведенные нами формулы являются базовыми для расчетов, связанных с коор-тами. До этого мы решали лишь простейшие задачи на использование этих формул, однако в более сложных задачах надо использовать сразу несколько более сложных формул.
Задание. Известны коор-ты трех вершин параллелограмма АВСD: А(4; 1), В(1; 1), С(3; 5). Определите коор-ты четвертой вершины D.
Решение.
Сначала найдем коор-ты вектора ВС. Мы можем это сделать, так как нам известны коор-ты его начальной и конечной точки:
xBC = xC — xB = 3 — 1 = 2
yBC = yC — yB = 5 — 1 = 4
Так как в параллелограмме противоположные стороны имеют одинаковую длину и при этом параллельны, то вектора ВС и АD равны, то есть имеют одинаковые коор-ты:
Итак, D имеет коор-ты (6; 5).
Ответ (6; 5).
Задание. В – середина отрезка АС. Известны коор-ты точек: А(2; 4) и В(0; 18). Найдите коор-ты С.
Решение.
Для начала будем работать только с коор-той х. Так как В – середина АС, то их абсциссы (напомним, так называют координату х точек) связаны соотношением:
Задание. Отрезок MN имеет длину 13. Даны координаты концов отрезка: M(4; 6) и N (х; 1). Найдите величину переменной х.
Нам по условию известно это расстояние для точек M и N, а также известны 3 и 4 коор-т точек. Поэтому надо просто подставить все известные данные в формулу, получить уравнение и решить его:
Далее извлекаем корень из обеих частей, но при этом появляется два различных корня (так обычно и бывает при решении квадратных уравнений):
Ответ: – 8 или 16.
Задание. Расстояние от точки S(2x; – 2) до точки T (6; 4х) составляет 14. Определите величину х.
Решение. Задача во многом аналогично предыдущей, надо подставить в формулу расстояния между точками данные из условия и решить получившееся уравнение:
Решаем это квадратное уравнение через дискриминант:
Ответ: (– 2,6) или 3.
Задание. Найдите коор-ты точки M на рисунке, если точка А имеет коор-ты (4; 2).
Решение. По рисунку видно, что середина отрезка находится в точке О(0; 0). Коор-ты середины отрезка (то есть точки О) и его граничных точек связаны формулами:
Использование признака коллинеарности векторов
На прошлом уроке мы выяснили, что если вектора коллинеарны, то их коор-ты пропорциональны. Это позволяет определить, лежит ли та или иная точка на указанной прямой.
Задание. Даны точки А(1; 2), В(4; 7) и С (10; 17). Определите, лежит ли точка В на прямой АС.
Решение. Если А, В и С принадлежат одной прямой, то любые два вектора, проведенные через эти точки, окажутся коллинеарными друг другу. Если же они НЕ лежат на одной прямой, то наоборот, любые два таких вектора окажутся неколлинеарными. То есть надо составить два вектора, например, АВ и ВС, и проверить их коллинеарность.
Определим коор-ты АВ:
Напомним, что для проверки векторов на коллинеарность надо поделить их коор-ты друг на друга. Если получится одно и то же число, то вектора коллинеарны:
В обоих случаях получилось одинаковое число, значит, вектора коллинеарны.
Ответ: Да, точка B лежит на прямой AC.
Задание. Проверьте, лежат ли точки А(3; 7), В (8; 12) и С(6; 4) на одной прямой.
Решение. Снова вычисляем коор-ты векторов АВ и ВС:
Получились разные числа, следовательно, вектора АВ и ВС не коллинеарны, а потому точки А, В и С никак не могут лежать на одной прямой.
Ответ: Нет, точки A,B,C не лежат на одной прямой.
Задание. Проверьте, параллельны ли друг другу отрезки АВ и CD, если известны коор-ты: А(1; 1), В(5; 5), С(4; 2), D(6; 4).
Решение. Если отрезки параллельны, то и вектора АВ и CD должны быть коллинеарными. Проверим это также, как мы это делали в двух предыдущих задачах:
Итак, вектора коллинеарны. Означает ли это, что отрезки АВ и CD параллельны? Ещё нет. На самом деле возможно два случая:
1) АВ и CD действительно параллельны;
2) АВ и СD лежат на одной прямой, и тогда их параллельными считать нельзя.
Как же проверить, какой из двух случаев относится к этой задаче? Надо рассмотреть ещё один ВС. Если реализуется второй случай, то он окажется коллинеарен вектору АВ. В первом же случае он будет ему не коллинеарен.
Получили различные числа, значит, АВ и ВС не коллинеарны. Теперь мы можем точно утверждать, что АВ и СD параллельны.
Ответ: Да, отрезки AB и CD параллельны.
Деление отрезка в заданном отношении
Мы уже научились находить коор-ты середины отрезка. Можно сказать, что середина – это точка, которая разбивает отрезок в отношении 1:1, то есть на равные отрезки. А что делать в более сложном случае, если нужно найти точку, разбивающую отрезок в другом отношении, например, в отношении 2:1? Выведем для такого случая формулу.
Пусть точка С разбивает отрезок АВ в некотором отношении так, что отрезок АС в k больше отрезка СВ:
(Примечание. Если отрезок АС меньше СВ, то число k будет меньше единицы.)
Как и обычно, для обозначения коор-т точек используем индексы, совпадающие с обозначением точек: А(xА; уА), В(xВ; уВ) и С(xС; уС).
Нам также потребуются вектора АС{xАС; уАС} и СВ{xСВ; уСВ}. Так как эти вектора сонаправлены, и АС в k раз длиннее, то
Абсолютно аналогичные образования приведут к такому же выражению для коор-ты у:
Рассмотрим на примерах использование этой формулы.
Задание. На отрезке РM отложена точка K так, что она разбивает РM на отрезки РK и KM в отношении РK:KM = 2:1. Даны коор-ты точек: Р(6; 3) и К (18; 12). Вычислите коор-ты K.
Решение.
Отношение РК:КМ = 2:1 означает, что отрезок РК в 2 раза длиннее, чем КМ. Это означает, что в формуле
Задание. Точки B (5; – 16) и H(29; 24) соединены отрезком. Точка M на отрезке ВН отмечена так, что ВМ:МН = 3:5. Определите коор-ты точки М.
Решение. Из отношения ВМ:МН = 3:5 вытекает, что ВМ длиннее МН в
3/5 = 0,6 раз
то есть фактически ВМ короче МН. То есть при использовании формулы
Рассмотрим ещё несколько более усложненных задач с использованием коор-т.
Задание. Точка K лежит на оси Ох, при этом она равноудалена от точек Е(2; 2) и F(6; 10). Найдите коор-ты К.
Решение. У любой точки, лежащей на оси Ох, коор-та у будет равна нулю, в том числе и у точки К:
yk = 0
Будем обозначать неизвестную коор-ту К как х:
xk = x
Напомним расстояние между точками можно рассчитать, используя формулу:
Получили иррациональное уравнение. В данном случае можно просто приравнять подкоренные выражения, однако после получения корней надо проверить, нет ли среди них посторонних:
Проверяем, не является ли корень посторонним. Для этого просто подставляем его в уравнение:
Корень действительно подошел, поэтому коор-та х точки К равна 16.
Ответ: (16; 0).
Введение прямоугольной системы координат
Даже если в формулировке задачи коор-ты и вектора прямо не упоминаются, может быть полезным самостоятельно добавить в нее прямоугольную систему координат. Это позволит использовать формулы, используемые в методе коор-т, для решения задачи.
Задание. Докажите, что если в параллелограмме сложить квадраты всех его сторон, то получится то же число, что и при сложении квадратов диагоналей этого параллелограмма.
Решение. Расположим систему коор-т таким образом, одна из сторон параллелограмма находилась на оси Ох, причем одна ее вершина совпадала с началом коор-т, а другая имела положительную коор-ту х:
Пусть вершина А находится в начале коор-т, и тогда она имеет коор-ты (0; 0). Вершина D лежит на Ох, тогда ее ордината равна нулю, а абсциссу обозначим буквой а. Точка В имеет произвольные коор-ты (b; с), коор-ты же точки С можно рассчитать. Сначала заметим, что вектор коор-ты вектора АВ совпадают с коор-тами точки В, так как он является радиус-вектором:
Вектора АВ и DC равны, потому что они лежат на параллельных прямых и имеют одинаковую длину:
Итак, коор-ты С – это (а + b; с).
Теперь мы должны длину каждой стороны параллелограмма и возвести ее в квадрат. Обратите внимание, что если расстояние между точками рассчитывается по формуле
Равенство доказано.
Задание. В равнобедренном треугольнике длина основания составляет 80 см, а опущенная на нее медиана имеет длину 160 см. Вычислите длины двух других медиан.
Решение. Пусть АВС – рассматриваемый в задаче треугольник, причем АВ – его основание. Расположим систему коор-т так, чтобы ее начало совпадало с точкой, в которой медиана пересекается с основанием:
В этом случае вершина, из которой опущена медиана, будет иметь коор-ты (0; 160), а две другие вершины будут иметь коор-ты (– 40; 0) и (40; 0).
Нам надо найти длину двух других медиан АM и BN. Они одинаковы по длине, поэтому достаточно найти длину только одной из них, например, АМ. Для этого сначала найдем коор-ты М, которая является серединой ВС:
Сегодня мы познакомились с важнейшими формулами, используемыми в методе коор-т, и научились решать некоторые простейшие задачи. В будущем мы узнаем о более сложных задачах, в которых будут фигурировать не только отрезки и многоугольники, но и окружности.
Длина, как уже отмечалось, обозначается знаком модуля.
Если даны две точки плоскости и , то длину отрезка можно вычислить по формуле:
Если даны две точки пространства и , то длину отрезка можно вычислить по формуле:
Примечание: соответствующие координаты можно переставить местами: и ,
но это нестандартный вариант.
Задача 3
Даны точки и . Найти длину отрезка .
Решение: по соответствующей формуле:
Ответ: (единицы)
Обратите внимание на вынесение множителя из-под корня: (см. Приложение Школьные материалы). Это крайне
желательное действие, если оно возможно. Ибо будет придирка со стороны преподавателя. С высокой вероятностью.
И для наглядности снова выполню чертёж, тут есть что сказать:
Отрезок – это не вектор, а обычный ненаправленный
отрезок. И перемещать его куда-либо, конечно, нельзя.
Кроме того, если вы выполните чертеж в масштабе: 1 ед. = 1 см (две тетрадные клетки), то полученный ответ можно проверить обычной линейкой, непосредственно измерив длину
отрезка . Но проще, конечно, использовать Калькулятор (приложен к книге).
Кстати, в ответе не забываем указать размерность: «единицы». В условии не сказано, ЧТО это – миллиметры, сантиметры, метры
или километры. Поэтому математически грамотным решением будет общая формулировка: «единицы» – сокращенно «ед.».
Задание для самостоятельного решения с отрезком в пространстве:
Задача 4
Даны точки и . Найти длину отрезка .
Решение и ответ в конце книги.
1.5.3. Как найти длину вектора?
1.5.1. Как найти вектор по двум точкам?
| Оглавление |
Автор: Aлeксaндр Eмeлин
Содержание:
Декартовы координаты на плоскости:
Изучая материал этой лекции, вы расширите свои знания о координатной плоскости.
Вы научитесь находить длину отрезка и координаты его середины, зная координаты его концов.
Сформируете представление об уравнении фигуры, выведете уравнения прямой и окружности.
Ознакомитесь с методом координат, позволяющим решать геометрические задачи средствами алгебры.
Расстояние между двумя точками с заданными координатами. Координаты середины отрезка
В 6 классе вы ознакомились с координатной плоскостью, то есть с плоскостью, на которой изображены две перпендикулярные координатные прямые (ось абсцисс и ось ординат) с общим началом отсчета (рис. 8.1). Вы умеете отмечать на ней точки по их координатам и наоборот, находить координаты точки, отмеченной на координатной плоскости.
Договорились координатную плоскость с осью
Координаты точки на плоскости называют декартовыми координатами в честь французского математика Рене Декарта (см. рассказ на с. 103).
Вы знаете, как находить расстояние в между двумя точками, заданными своими координатами на координатной прямой. Для точек (рис. 8.2) имеем:
Научимся находить расстояние между точками заданными на плоскости
Рассмотрим случай, когда отрезок не перпендикулярен ни одной из координатных осей (рис. 8.3).
Через точки проведем прямые, перпендикулярные координатным осям. Получим прямоугольный треугольник в котором Отсюда
Тогда формулу расстояния между точками можно записать так:
Докажите самостоятельно, что эта формула остается верной и для случая, когда отрезок перпендикулярен одной из осей координат.
Пусть — точки плоскости Найдем координаты точки — середины отрезка
Рассмотрим случай, когда отрезок не перпендикулярен ни одной из координатных осей (рис. 8.4). Будем считать, что (случай, когда рассматривается аналогично). Через точки проведем прямые, перпендикулярные оси абсцисс, которые пересекут эту ось соответственно в точках По теореме Фалеса тогда Поскольку то можем записать: Отсюда Аналогично можно показать что
Формулы для нахождения координат середины отрезка остаются верными и для случая, когда отрезок перпендикулярен одной из осей координат. Докажите это самостоятельно.
Пример №1
Докажите, что треугольник с вершинами в точках является равнобедренным прямоугольным.
Решение:
Используя формулу расстояния между двумя точками, найдем стороны данного треугольника:
Следовательно, то есть треугольник равнобедренный.
Поскольку то треугольник прямоугольный.
Пример №2
Точка — середина отрезка Найдите координаты точки
Решение:
Обозначим — координаты точки — координаты точки — координаты точки
Поскольку то получаем:
Аналогично
Ответ:
Пример №3
Докажите, что четырехугольник с вершинами в точках является прямоугольником.
Решение:
Пусть точка — середина диагонали Тогда
Следовательно,
Пусть точка — середина диагонали Тогда
Следовательно,
Таким образом, точки совпадают, то есть диагонали четырехугольника имеют общую середину. Отсюда следует, что четырехугольник — параллелограмм.
Найдем диагонали параллелограмма:
Следовательно, диагонали параллелограмма равны. Отсюда следует, что этот параллелограмм является прямоугольником.
Уравнение фигуры. Уравнение окружности
Из курса алгебры 7 класса вы знаете, какую фигуру называют графиком уравнения. В этом пункте вы ознакомитесь с понятием уравнения фигуры.
Координаты каждой точки параболы, изображенной на рисунке 9.1, являются решением уравнения И наоборот, каждое решение уравнения с двумя переменными является координатами точки, лежащей на этой параболе. В этом случае говорят, что уравнение параболы, изображенной на рисунке 9.1, имеет вид
Определение. Уравнением фигуры заданной на плоскости называют уравнение с двумя переменными обладающее следующими свойствами:
- если точка принадлежит фигуре то ее координаты являются решением данного уравнения;
- любое решение данного уравнения является координатами точки, принадлежащей фигуре
Например, уравнение прямой, изображенной на рисунке 9.2, имеет вид а уравнение гиперболы, изображенной на рисунке 9.3, имеет вид Принято говорить, что, например, уравнения задают прямую и гиперболу соответственно.
Если данное уравнение является уравнением фигуры то эту фигуру можно рассматривать как геометрическое место точек (ГМТ), координаты которых удовлетворяют данному уравнению.
Пользуясь этими соображениями, выведем уравнение окружности радиуса с центром в точке
Пусть — произвольная точка данной окружности (рис. 9.4). Тогда Используя формулу расстояния между точками, получим:
Отсюда
Мы показали, что координаты произвольной точки данной окружности являются решением уравнения Теперь покажем, что любое решение уравнения является координатами точки, принадлежащей данной окружности.
Пусть пара чисел — произвольное решение уравнения
Тогда Отсюда
Это равенство показывает, что точка удалена от центра окружности на расстояние, равное радиусу окружности, а следовательно, точка принадлежит данной окружности.
Итак, мы доказали следующую теорему.
Теорема 9.1. Уравнение окружности радиуса с центром в точке имеет вид
Верно и такое утверждение: любое уравнение вида где некоторые числа, причем является уравнением окружности радиуса с центром в точке с координатами
Если центром окружности является начало координат (рис. 9.5), то В этом случае уравнение окружности имеет вид
Пример №4
Составьте уравнение окружности, диаметром которой является отрезок если
Решение:
Поскольку центр окружности является серединой диаметра, то можем найти координаты центра окружности:
Следовательно,
Радиус окружности равен отрезку Тогда
Следовательно, искомое уравнение имеет вид
Ответ:
Пример №5
Докажите, что уравнение задает окружность. Найдите координаты центра и радиус этой окружности.
Решение:
Представим данное уравнение в виде
Следовательно, данное уравнение является уравнением окружности с центром в точке и радиусом
Ответ:
Пример №6
Докажите, что треугольник с вершинами в точках является прямоугольным, и составьте уравнение окружности, описанной около треугольника
Решение:
Найдем квадраты сторон данного треугольника:
Поскольку то данный треугольник является прямоугольным с прямым углом при вершине Центром описанной окружности является середина гипотенузы — точка радиус окружности Следовательно, искомое уравнение имеет вид
Ответ:
Уравнение прямой
В предыдущем пункте, рассматривая окружность как ГМТ, равноудаленных от данной точки, мы вывели ее уравнение. Для того чтобы вывести уравнение прямой, рассмотрим ее как ГМТ, равноудаленных от двух данных точек.
Пусть — данная прямая. Выберем две точки и так, чтобы прямая была серединным перпендикуляром отрезка (рис. 10.1).
Пусть — произвольная точка прямой Тогда по свойству серединного перпендикуляра отрезка выполняется равенство то есть
Мы показали, что координаты произвольной точки прямой являются решением уравнения
Теперь покажем, что любое решение уравнения является координатами точки, принадлежащей данной прямой
Пусть — произвольное решение уравнения Тогда Это равенство означает, что точка равноудалена от точек следовательно, точка принадлежит серединному перпендикуляру отрезка то есть прямой
Итак, мы доказали, что уравнение является уравнением данной прямой
Однако из курса алгебры 7 класса вы знаете, что уравнение прямой выглядит гораздо проще, а именно: где и — некоторые числа, причем не равны нулю одновременно. Покажем, что уравнение можно преобразовать к такому виду. Возведем обе части уравнения в квадрат. Имеем:
Раскроем скобки и приведем подобные слагаемые. Получим:
Обозначив получим уравнение
Поскольку точки различны, то хотя бы одна из разностей не равна нулю. Следовательно, числа и не равны нулю одновременно.
Итак, мы доказали следующую теорему.
Теорема 10.1. Уравнение прямой имеет вид?
где — некоторые числа, причем не равны нулю одновременно.
Верно и такое утверждение: любое уравнение вида где — некоторые числа, причем не равны нулю одновременно, является уравнением прямой.
Если то графиком уравнения является вся плоскость Если то уравнение не имеет решений.
Из курса алгебры 7 класса вы знаете, что уравнение вида называют линейным уравнением с двумя переменными. Уравнение прямой является частным видом линейного уравнения. Схема, изображенная на рисунке 10.2, иллюстрирует сказанное.
на уроках алгебры в 7 классе мы приняли без доказательства тот факт, что графиком линейной функции является прямая. Сейчас мы можем это доказать.
Перепишем уравнение Мы получили уравнение вида для случая, когда Поскольку в этом уравнении то мы получили уравнение прямой.
А любую ли прямую на плоскости можно задать уравнением вида Ответ на этот вопрос отрицательный.
Дело в том, что прямая, перпендикулярная оси абсцисс, не может являться графиком функции, а следовательно, не может быть задана уравнением вида
Вместе с тем, если в уравнении прямой принять то его можно переписать так: Мы получили частный вид уравнения прямой, все точки которой имеют одинаковые абсциссы. Следовательно, эта прямая перпендикулярна оси абсцисс. Ее называют вертикальной.
Если то уравнение прямой можно записать так:
Обозначив получим уравнение
Следовательно, если то уравнение прямой задает вертикальную прямую; если то это уравнение задает невертикальную прямую.
Уравнение невертикальной прямой удобно записывать в виде
Данная таблица подытоживает материал, рассмотренный в этом пункте.
Пример №7
Составьте уравнение прямой, проходящей через точки:
Решение:
1) Поскольку данные точки имеют равные абсциссы, то прямая является вертикальной. Ее уравнение имеет вид
2) Поскольку данные точки имеют разные абсциссы, то прямая не является вертикальной. Тогда можно воспользоваться уравнением прямой в виде
Подставив координаты точек в уравнение получаем систему уравнений:
Решив эту систему уравнений, находим, что
Ответ:
Пример №8
Найдите периметр и площадь треугольника, ограниченного прямой и осями координат.
Решение:
Найдем точки пересечения данной прямой с осями координат.
С осью абсцисс: при получаем
С осью ординат: при получаем
Следовательно, данная прямая и оси координат ограничивают прямоугольный треугольник (рис. 10.3) с вершинами Найдем стороны треугольника:
Тогда искомые периметр и площадь соответственно равны
Ответ:
Угловой коэффициент прямой
Рассмотрим уравнение Оно задает невертикальную прямую, проходящую через начало координат.
Покажем, что прямые где параллельны.
Точки принадлежат прямой а точки и принадлежат прямой (рис. 11.1). Легко убедиться (сделайте это самостоятельно), что середины диагоналей четырехугольника совпадают. Следовательно, четырехугольник — параллелограмм. Отсюда
Теперь мы можем сделать такой вывод: если то прямые параллельны (1).
Пусть прямая пересекает единичную полуокружность в точке (рис. 11.2). Угол называют углом между данной прямой и положительным направлением оси абсцисс.
Если прямая совпадает с осью абсцисс, то угол между этой прямой и положительным направлением оси абсцисс считают равным
Если прямая образует с положительным направлением оси абсцисс угол то считают, что и прямая параллельная прямой также образует угол с положительным направлением оси абсцисс (рис. 11.3).
Рассмотрим прямую уравнение которой имеет вид (рис. 11.2). Если Поскольку точка принадлежит прямой Отсюда Таким образом, для прямой получаем, что
где — угол, который образует эта прямая с положительным направлением оси абсцисс. Поэтому коэффициент называют угловым коэффициентом этой прямой.
Если невертикальные прямые параллельны, то они образуют равные углы с положительным направлением оси абсцисс. Тогда тангенсы этих углов равны, следовательно, равны и их угловые коэффициенты. Таким образом,
если прямые параллельны, то (2).
Выводы (1) и (2) объединим в одну теорему.
Теорема 11.1. Прямые параллельны тогда и только тогда, когда
Пример №9
Составьте уравнение прямой, которая проходит через точку и параллельна прямой
Решение:
Пусть уравнение искомой прямой Поскольку эта прямая и прямая параллельны, то их угловые коэффициенты равны, то есть
Следовательно, искомое уравнение имеет вид Учитывая, что данная прямая проходит через точку получаем: Отсюда
Искомое уравнение имеет вид
Ответ:
Метод координат
Мы часто говорим: прямая парабола окружность тем самым отождествляя фигуру с ее уравнением. Такой подход позволяет сводить задачу о поиске свойств фигуры к задаче об исследовании ее уравнения. В этом и состоит суть метода координат.
Проиллюстрируем сказанное на таком примере.
Из наглядных соображений очевидно, что прямая и окружность имеют не более двух общих точек. Однако это утверждение не является аксиомой, поэтому его надо доказывать.
Эта задача сводится к исследованию количества решений системы уравнений
где числа одновременно не равны нулю и
Решая эту систему методом подстановки, мы получим квадратное уравнение, которое может иметь два решения, одно решение или вообще не иметь решений. Следовательно, для данной системы существует три возможных случая:
- система имеет два решения — прямая и окружность пересекаются в двух точках;
- система имеет одно решение — прямая касается окружности;
- система не имеет решений — прямая и окружность не имеют общих точек.
С каждым из этих случаев вы встречались, решая задачи 10.17-10.19.
Метод координат особенно эффективен в тех случаях, когда требуется найти фигуру, все точки которой обладают некоторым свойством, то есть найти геометрическое место точек.
Отметим на плоскости две точки Вы хорошо знаете, какой фигурой является геометрическое место точек таких, что
Это серединный перпендикуляр отрезка Интересно выяснить, какую фигуру образуют все точки для которых Решим эту задачу для
Плоскость, на которой отмечены точки «превратим» в координатную. Сделаем это так: в качестве начала координат выберем точку в качестве единичного отрезка — отрезок ось абсцисс проведем так, чтобы точка имела координаты (рис. 11.6).
Пусть — произвольная точка искомой фигуры Тогда Отсюда
Следовательно, если точка принадлежит фигуре то ее координаты являются решением уравнения
Пусть — некоторое решение уравнения Тогда легко показать, что А это означает, что точка такова, что Тогда Следовательно, точка принадлежит фигуре
Таким образом, уравнением фигуры является уравнение то есть фигура — это окружность с центром в точке и радиусом
Мы решили задачу для частного случая, когда Можно показать, что искомой фигурой для любого положительного будет окружность. Эту окружность называют окружностью Аполлония
Как строили мост между геометрией и алгеброй
Идея координат зародилась очень давно. Ведь еще в старину люди изучали Землю, наблюдали звезды, а по результатам своих исследований составляли карты, схемы.
Во II в. до н. э. древнегреческий ученый Гиппарх впервые использовал идею координат для определения места расположения объектов на поверхности Земли.
Только в XIV в. французский ученый Николя Орем (ок. 1323-1382) впервые применил в математике идею Гиппарха: он разбил плоскость на клетки (как разбита страница вашей тетради) и стал задавать положение точек широтой и долготой.
Однако огромные возможности применения этой идеи были раскрыты лишь в XVII в. в работах выдающихся французских математиков Пьера Ферма и Рене Декарта. В своих трудах эти ученые показали, как благодаря системе координат можно переходить от точек к числам, от линий к уравнениям, от геометрии к алгебре.
Несмотря на то что П. Ферма опубликовал свою роботу на год раньше Р. Декарта, систему координат, которой мы сегодня пользуемся, называют декартовой. Р. Декарт в своей работе «Рассуждение о методе» предложил новую удобную буквенную символику, которой с незначительными изменениями мы пользуемся и сегодня. Вслед за Декартом мы обозначаем переменные последними буквами латинского алфавита а коэффициенты — первыми: Привычные нам обозначения степеней и т. д. также ввел Р. Декарт.
Справочный материал
Расстояние между двумя точками
Расстояние между точками можно найти по формуле
Координаты середины отрезка
Координаты середины отрезка с концами можно найти по формулам:
Уравнение фигуры
Уравнением фигуры заданной на плоскости называют уравнение с двумя переменными обладающее следующими свойствами:
1) если точка принадлежит фигуре то ее координаты являются решением данного уравнения;
2) любое решение данного уравнения является координатами точки, принадлежащей фигуре
Уравнение окружности
Уравнение окружности радиуса с центром в точке имеет вид
Любое уравнение вида где — некоторые числа, причем является уравнением окружности радиуса с центром в точке с координатами
Уравнение прямой
Уравнение прямой имеет вид — некоторые числа, причем не равны нулю одновременно. Любое уравнение вида — некоторые числа, причем не равны нулю одновременно, является уравнением прямой.
Если то уравнение прямой задает вертикальную прямую; если то это уравнение задает невертикальную прямую.
Угловой коэффициент прямой
Коэффициент в уравнении прямой называют угловым коэффициентом прямой, и он равен тангенсу угла, который образует эта прямая с положительным направлением оси абсцисс.
Необходимое и достаточное условие параллельности невертикальных прямых
Прямые параллельны тогда и только тогда, когда
- Декартовы координаты в пространстве
- Геометрические преобразования в геометрии
- Планиметрия — формулы, определение и вычисление
- Стереометрия — формулы, определение и вычисление
- Перпендикулярность прямой и плоскости
- Взаимное расположение прямых в пространстве, прямой и плоскости
- Перпендикулярность прямых и плоскостей в пространстве
- Ортогональное проецирование
Длина отрезка
Отрезком называют часть прямой линии, состоящей из всех точек этой линии, которые расположены между данными двумя точками — их называют концами отрезка.
Рассмотрим первый пример. Пусть в плоскости координат задан двумя точками некий отрезок. В данном случае его длину мы можем найти, применяя теорему Пифагора.
Итак, в системе координат начертим отрезок с заданными координатами его концов (x1; y1) и (x2; y2). На оси X и Y из концов отрезка опустим перпендикуляры. Отметим красным цветом отрезки, которые являются на оси координат проекциями от исходного отрезка. После этого перенесем параллельно к концам отрезков отрезки-проекции. Получаем треугольник (прямоугольный). Гипотенузой у данного треугольника станет сам отрезок АВ, а его катетами являются перенесенные проекции.
Вычислим длину данных проекций. Итак, на ось Y длина проекции равна y2-y1, а на ось Х длина проекции равна x2-x1. Применим теорему Пифагора: |AB|² = (y2 — y1)² + (x2 — x1)². В данном случае |AB| является длиной отрезка.
Если использовать данную схему для вычисления длины отрезка, то можно даже отрезок и не строить. Теперь высчитаем, какова длина отрезка с координатами (1;3) и (2;5). Применяя теорему Пифагора, получаем: |AB|² = (2 — 1)² + (5 — 3)² = 1 + 4 = 5. А это значит, что длина нашего отрезка равна 5:1/2.
Рассмотрим следующий способ нахождения длины отрезка. Для этого нам необходимо знать координаты двух точек в какой-либо системе. Рассмотрим данный вариант, применяя двухмерную Декартову систему координат.
Итак, в двухмерной системе координат даны координаты крайних точек отрезка. Если проведем прямые лини через эти точки, они должны быть перпендикулярными к оси координат, то получим прямоугольный треугольник. Исходный отрезок будет гипотенузой полученного треугольника. Катеты треугольника образуют отрезки, их длина равна проекции гипотенузы на оси координат. Исходя из теоремы Пифагора, делаем вывод: для того чтобы найти длину данного отрезка, нужно найти длины проекций на две оси координат.
Найдем длины проекций (X и Y) исходного отрезка на координатные оси. Их вычислим путем нахождения разницы координат точек по отдельной оси: X = X2-X1, Y = Y2-Y1.
Рассчитаем длину отрезка А, для этого найдем квадратный корень:
A = √(X²+Y²) = √ ((X2-X1)²+(Y2-Y1)²).
Если наш отрезок расположен между точками, координаты которых 2;4 и 4;1, то его длина, соответственно, равна √((4-2)²+(1-4)²) = √13 ≈ 3,61.