Как найти длину параллелограмма построенного на векторах

Примеры решения задач

Задача 1.
Определить длины диагоналей параллелограмма,
построенного на векторах

и

,
где

таковы, что

.

Решение.
Диагонали параллелограмма есть векторы

и

.
Вычислим длину вектора

:

.

Аналогично
вычисляется длина вектора

.

Задача 2.
Найдите вектор

,
коллинеарный вектору

и удовлетворяющий условию

.

Решение.
Обозначим вектор

,
тогда из условий задачи

или

,

тогда

.
Итак:

.

Задача 3.
Найти проекцию вектора

на направление вектора

.

Решение.

.
По формуле проекции вектора на ось будет
иметь место равенство


.

Задача 4.
Даны векторы:

.

П
роверить,
есть ли среди них коллинеарные. Найти

.

Решение.
Условие коллинеарности имеет вид

.
Этому условию удовлетворяют векторы

.
Следовательно, они коллинеарны. Найдем
длины

векторов

:


.

Угол между векторами
определяется по формуле

.

Т

огда

,


.

Используя формулу


,
получим

.

Задача 5.
На материальную точку действуют силы

.
Найти работу равнодействующей этих сил

при перемещении точки из положения

в положение

.

Решение.
Найдем силу

и вектор перемещения

.


,
тогда искомая работа

.

Задачи

1. Векторы

взаимно перпендикулярны, а вектор

образует с ними углы

.
Зная, что

,
найти: 1)

;
2)

.

2. Вычислить длину
диагоналей параллелограмма, построенного
на векторах

,
если известно, что

.

3. Доказать, что
вектор

перпендикулярен к вектору

.

4. Зная, что

,
определить, при каком значении коэффициента

векторы

окажутся перпендикулярными.

5. Даны вершины
четырехугольника:

.
Доказать, что его диагонали взаимно
перпендикулярны.

6. Найти острый
угол между диагоналями параллелограмма,
построенного на векторах

.

7. Даны силы

.
Найти работу их равнодействующей при
перемещении точки из начала координат
в точку

.

8. Даны вершины
треугольника:

.
Найти проекцию вектора

на вектор

.

9. Найти вектор

,
перпендикулярный векторам

,
если известно, что его проекция на вектор

равна единице.

10. Сила, определяемая
вектором

,
разложена по трем направлениям, одно
из которых задано вектором

.
Найти составляющую силы

в направлении вектора

.

11. Даны вершины
треугольника:

.
Найти его внутренний угол при вершине
А и внешний угол при вершине В.

12. Даны три
последовательные вершины параллелограмма:


.
Найти его четвертую вершину D
и угол между векторами

.

13. На оси

найти точку, равноудаленную от точек

.

14. Доказать, что
треугольник с вершинами

прямоугольный.

Домашнее задание

1. Вычислить
скалярное произведение двух векторов


,
зная их разложение по трем единичным
взаимно перпендикулярным векторам


;


.

2. Найти длину
вектора

,
зная, что

– взаимно перпендику-

лярные орты.

3. Векторы

попарно образуют друг с другом углы,
каждый из которых равен

.
Зная, что

,
определить модуль вектора

.

4. Доказать, что
вектор

перпендикулярен к вектору

.

5. Даны векторы

,
совпадающие со сторонами треугольника
АВС. Найти разложение вектора, приложенного
к вершине В этого треугольника и
совпадающего с его высотой BD
по базису

.

6. Вычислить угол
между векторами

,
где


единичные взаимно перпендикулярные
векторы.

7. Даны силы

,
приложенные к одной точке. Вычислить,
какую работу производит равнодействующая
этих сил, когда ее точка приложения,
двигаясь прямолинейно, перемещается
из положения

в положение

.

8. Даны вершины
треугольника

.
Определить его внутренний угол при
вершине В.

9. Вычислив
внутренние углы треугольника с вершинами

,

,
убедиться, что этот треугольник
равнобедренный.

10. Найти вектор

,
зная, что он перпендикулярен векторам

и

.

11. Найти вектор

,
коллинеарный вектору

и удовлетворяющий условию

,
где

.

12. Вычислить
проекцию вектора

на ось вектора

.

13. Даны векторы


.
Вычислить

.

14. Даны точки

.
Вычислить проекцию вектора

на ось вектора

.

Ответы к задачам

1) -7, 13. 2) 15,

.
4)

.
6)

.
7) 2. 8) -1/3.

9)

.
10)

.
11)

.

12)

.
13)

.

Ответы к домашнему
заданию

1) 9. 2) 5. 3) 10. 5)

.
6)

.
7) 13. 8)

.

10)

.
12) 6. 13) 5. 14) 3.

Занятие 3

Векторое
произведения векторов. Смешанное
произведение векторов

Определение1.
Тройка
некомпланарных векторов

называется правой (левой) если, находясь
внутри телесного угла, образованного
приведенными к общему началу векторами

и от него к

,
човершающимся против часовой стрелки
(по часовой стрелке)

Тройка правая
Тройка левая

Определение
2.
Векторным
произведением вектора

на вектор

называется вектор

,
длина и направление которого определяются
условиями:

1.

,
где

— угол между

.

2.

.

3.

— правая тройка векторов.

Свойства
векторного произведения

1.

(свойство антиперестановочности
сомножителей);

2.

(распределительное относительно суммы
векторов);

3.

(сочетательное относиельно числового
множителя);

4.

(равенство нулю векторного произведения
означает коллинеарность векторов);

5.

,
т. е. момент сил равен векторному
произведению силы на плечо.

Если вектор

,
то

.

Определение
3.
Смешанным
произведением

трех векторов называется число,
определяемое следующим образом:

.
Если векторы заданы своими координатами:

,
то

~

.

Свойства
смешанного произведения

1. Необходимым и
достаточным условием компланарности
векторов

является равенство

= 0.

2. Объем
параллелепипеда, построенного на
векторах


:

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]

  • #
  • #
  • #
  • #
  • #
  • #
  • #
  • #
  • #
  • #
  • #

Найти площадь параллелограмма, построенного на векторах: онлайн-калькулятор

Для вычисления площади параллелограмма, построенного на векторах, нужны значения этих векторов или координаты точек. Онлайн-калькулятор выдает подробное решение и ответ. В зависимости от введенных данных программа подбирает формулы для расчета в нужной последовательности.

Сервисом пользуются школьники и студенты, когда надо быстро найти площадь параллелограмма – на контрольной, зачете, экзамене. Также по готовому решению задачи удобно изучать новую тему.

  1. В форме представления параллелограмма выберите способ «Двумя векторами сторон».
  2. Введите значения векторов в соответствующие поля. Отправьте задание на вычисление кнопкой «Рассчитать».
  3. Получаем решение и ответ.
  1. В форме представления параллелограмма выберите способ «Координатами точек».
  2. Введите координаты вершин в соответствующие поля. Отправьте задание на вычисление кнопкой «Рассчитать».
  3. Получаем решение и ответ.

Как найти площадь параллелограмма

Чтобы найти площадь параллелограмма, построенного на векторах, необходимо вычислить произведение длин векторов и синуса угла между ними. В заданиях, где длины векторов неизвестны, а даны координаты векторов, необходимо произвести следующие вычисления:

  1. Найти векторы a ⇀ и b ↔ по точкам.
  2. Вычислить произведение векторов.
  3. Рассчитать модуль вектора c → .
  4. Высчитать площадь S = a → × b →

Использование онлайн-калькулятора позволяет не думать о выборе способа решения, а просто ввести данные и получить поэтапные вычисления и ответ. Такой вариант подойдет учащимся, их родителям, преподавателям, инженерам.

Сервис позволяет узнать, чему равна площадь параллелограмма и других фигур, а также решить задачи на любую тему по алгебре и геометрии. Для этого не придется платить, регистрироваться на сайте, долго ждать. Расчеты производятся онлайн. Вы можете осваивать новую тему или сверяться с собственным решением неограниченное количество раз.

Если тема осталась непонятной, напишите консультанту. Наш сотрудник подберет вам преподавателя по выгодной цене или организует онлайн-помощь на зачете.

Онлайн калькуляторы векторов

Данный раздел содержит калькуляторы, позволяющие выполнять все основные действия над векторами. В частности, с помощью данных калькуляторов можно вычислять скалярное, векторное и смешанное произведения векторов, раскладывать вектора по базису, проверять их ортогональность, компланарность и др. Всего представлено 19 калькуляторов и для каждого предусмотрено подробное решение соответствующей задачи.

Операции над векторами 19

Сложение векторов Калькулятор позволяет складывать вектора, заданные в координатной форме.

Разность векторов Калькулятор позволяет вычитать вектора, заданные в координатной форме.

Умножение вектора на скаляр Калькулятор находит произведение вектора на скаляр.

Скалярное произведение векторов Калькулятор позволяет найти скалярное произведение двух векторов.

Векторное произведение векторов Калькулятор позволяет найти векторное произведение двух векторов.

Смешанное произведение векторов Калькулятор находит смешанное произведение трех векторов.

Модуль (длина) вектора Калькулятор находит модуль (длину) вектора с описанием подробного решения на русском языке.

Угол между векторами Калькулятор позволяет найти угол между векторами. Подробное решение также имеется.

Направляющие косинусы вектора Калькулятор позволяет найти направляющие косинусы вектора с подробным решением на русском языке.

Проекция вектора Калькулятор вычисляет проекцию вектора на ось или на другой вектор.

Площадь треугольника, построенного на векторах Калькулятор вычисляет площадь треугольника, построенного на векторах с описанием подробного решения на русском языке.

Площадь параллелограмма, построенного на векторах Калькулятор позволяет вычислить площадь параллелограмма, построенного на векторах с описанием подробного решения на русском языке.

Объём параллелепипеда, построенного на векторах Калькулятор позволяет найти объём параллелепипеда, который построен на трёх векторах.

Проверить ортогональность векторов Калькулятор позволяет проверить ортогональность векторов с описанием подробного решения на русском языке.

Проверить коллинеарность векторов Калькулятор позволяет проверить коллинеарность двух векторов.

Проверить компланарность векторов Калькулятор предназначен для проверки компланарности трёх векторов.

Проверить образует ли система векторов базис Калькулятор позволяет проверить образует ли система векторов базис.

Разложить вектор по базису Калькулятор позволяет разложить вектор по базису с описанием подробного решения на русском языке.

Мы в социальных сетях:
Группа ВКонтакте | Бот в Телеграмме

Векторное произведение векторов

О чем эта статья:

11 класс, ЕГЭ/ОГЭ

Статья находится на проверке у методистов Skysmart.
Если вы заметили ошибку, сообщите об этом в онлайн-чат (в правом нижнем углу экрана).

Определение векторного произведения

Система координат — способ определить положение и перемещение точки или тела с помощью чисел или других символов.

Координаты — это совокупность чисел, которые определяют положение какого-либо объекта на прямой, плоскости, поверхности или в пространстве. Как найти координаты точки мы рассказали в этой статье.

Скаляр — это величина, которая полностью определяется в любой координатной системе одним числом или функцией.

Вектор — направленный отрезок прямой, для которого указано, какая точка является началом, а какая — концом.

Вектор с началом в точке A и концом в точке B принято обозначать как →AB. Векторы также можно обозначать малыми латинскими буквами со стрелкой или черточкой над ними, вот так: →a.

Коллинеарность — отношение параллельности векторов. Два ненулевых вектора называются коллинеарными, если они лежат на параллельных прямых или на одной прямой.

Проще говоря это «параллельные» векторы. Коллинеарные векторы могут быть одинаково направлены или противоположно направлены. Основное обозначение — →a || →b. Сонаправленные коллинеарные векторы обозначаются так →a ↑↑ →b, противоположно направленные — →a ↑↓ →b.

Прежде чем дать определение векторного произведения, разберемся с ориентацией упорядоченной тройки векторов →a, →b, →c в трехмерном пространстве.

Отложим векторы →a, →b, →c от одной точки. В зависимости от направления вектора →c тройка →a, →b, →c может быть правой или левой.

Посмотрим с конца вектора →c на то, как происходит кратчайший поворот от вектора →a к →b. Если кратчайший поворот происходит против часовой стрелки, то тройка векторов →a, →b, →c называется правой, по часовой стрелке — левой.

Теперь возьмем два неколлинеарных вектора →a и →b. Отложим от точки А векторы →AB = →a и →AC = →b. Построим некоторый вектор →AD = →c, перпендикулярный одновременно и →AB и →AC.

Очевидно, что при построении вектора →AD = →c мы можем поступить по-разному, если зададим ему либо одно направление, либо противоположное.

В зависимости от направления вектора →AD = →c упорядоченная тройка векторов →a, →b, →c может быть правой или левой.

И сейчас мы подошли к определению векторного произведения. Оно дается для двух векторов, которые заданы в прямоугольной системе координат трехмерного пространства.

Еще не устали от теории? Онлайн-школа Skysmart предлагает обучение на курсах по математике — много практики и поддержка внимательных преподавателей!

Векторным произведением двух векторов →a и →b, которые заданы в прямоугольной системе координат трехмерного пространства, называется такой вектор →c, что:

  • он является нулевым, если векторы →a и →b коллинеарны;
  • он перпендикулярен и вектору →a и вектору →b;
  • длина векторного произведения равна произведению длин векторов →a и →b на синус угла между ними
  • тройка векторов →a, →b, →c ориентирована так же, как и заданная система координат.

Векторным произведением вектора →a на вектор →b называется вектор →c, длина которого численно равна площади параллелограмма построенного на векторах →a и →b, перпендикулярный к плоскости этих векторов и направленный так, чтобы наименьшее вращение от →a к →b вокруг вектора c осуществлялось против часовой стрелки, если смотреть с конца вектора →c.

Векторное произведение двух векторов a = и b = в декартовой системе координат — это вектор, значение которого можно вычислить, используя формулы вычисления векторного произведения векторов:

Векторное произведение векторов →a и →b обозначается как [→a • →b].

Другое определение связано с правой рукой человека, откуда и есть название. На рисунке тройка векторов →a, →b, [→a • →b] является правой.

Еще есть аналитический способ определения правой и левой тройки векторов — он требует задания в рассматриваемом пространстве правой или левой системы координат, причём не обязательно прямоугольной и ортонормированной.

Нужно составить матрицу, первой строкой которой будут координаты вектора →a, второй — вектора →b, третьей — вектора →c. Затем, в зависимости от знака определителя этой матрицы, можно сделать следующие выводы:

  • Если определитель положителен, то тройка векторов имеет ту же ориентацию, что и система координат.
  • Если определитель отрицателен, то тройка векторов имеет ориентацию, противоположную ориентации системы координат.
  • Если определитель равен нулю, то векторы компланарны (линейно зависимы).

Координаты векторного произведения

Рассмотрим векторное произведение векторов в координатах.

Сформулируем второе определение векторного произведения, которое позволяет находить его координаты по координатам заданных векторов.

В прямоугольной системе координат трехмерного пространства векторное произведение двух векторов →a = (ax, ay, az) и →b = (bx, by, bz) есть вектор

→i, →j, →k — координатные векторы.

Это определение показывает нам векторное произведение в координатной форме.

Векторное произведение удобно представлять в виде определителя квадратной матрицы третьего порядка, первая строка которой есть орты →i, →j, →k, во второй строке находятся координаты вектора →a, а в третьей — координаты вектора →b в заданной прямоугольной системе координат:

Если разложим этот определитель по элементам первой строки, то получим равенство из определения векторного произведения в координатах:

Важно отметить, что координатная форма векторного произведения согласуется с определением,которое мы дали в первом пункте этой статьи. Более того, эти два определения векторного произведения эквивалентны.

Свойства векторного произведения

Векторное произведение в координатах представляется в виде определителя матрицы:

На основании свойств определителя можно легко обосновать свойства векторного произведения векторов:

  1. Антикоммутативность
  2. Свойство дистрибутивности

Сочетательное свойство

, где λ произвольное действительное число.

Для большей ясности докажем свойство антикоммутативности векторного произведения.

Нам известно, что значение определителя матрицы изменяется на противоположное, если переставить местами две строки, поэтому

что доказывает свойство антикоммутативности векторного произведения.

Чтобы найти модуль векторного произведения векторов u и v нужно найти площадь параллелограмма, который построен на данных векторах: S = | u × v | = | u | * | v | * sinθ, где θ — угол между векторами.

Векторное произведение векторов u и v равно нулевому вектору, если u и v параллельны (коллинеарны): u × v = 0, если u ∥ v (θ = 0).

Примеры решения задач

Пример 1

а) Найти длину векторного произведения векторов →a и →b, если |→a| = 2, |→b| = 3, ∠(→a, →b) = π/3.

б) Найти площадь параллелограмма, построенного на векторах →a и →b, если |→a| = 2, |→b| = 3, ∠(→a, →b) = π/3.

а) По условию требуется найти длину векторного произведения. Подставляем данные в формулу:

Так как в задаче речь идет о длине, то в ответе указываем размерность — единицы.

б) По условию требуется найти площадь параллелограмма, который построен на векторах →a и →b. Площадь такого параллелограмма численно равна длине векторного произведения:

Пример 2

Найти |[-3→a x 2→b]|, если |→a| = 1/2, |→b| = 1/6, ∠(→a, →b) = π/2.

По условию снова нужно найти длину векторного произведения. Используем нашу формулу:

Согласно ассоциативным законам, выносим константы за переделы векторного произведения.

Выносим константу за пределы модуля, при этом модуль позволяет убрать знак минус. Длина же не может быть отрицательной.

Пример 3

Даны вершины треугольника A (0, 2, 0), B (-2, 5,0), C (-2, 2, 6). Найти его площадь.

Сначала найдём векторы:

Затем векторное произведение:

Вычислим его длину:

Подставим данные в формулы площадей параллелограмма и треугольника:

Геометрический смысл векторного произведения

По определению длина векторного произведения векторов равна

А из курса геометрии средней школы мы знаем, что площадь треугольника равна половине произведения длин двух сторон треугольника на синус угла между ними.

Поэтому длина векторного произведения равна удвоенной площади треугольника, имеющего сторонами векторы →a и →b, если их отложить от одной точки. Проще говоря, длина векторного произведения векторов →a и →b равна площади параллелограмма со сторонами |→a| и |→b| и углом между ними, равным (→a, →b). В этом состоит геометрический смысл векторного произведения.

Физический смысл векторного произведения

В механике — одном из разделов физики — благодаря векторному произведению можно определить момент силы относительно точки пространства. Поэтому сформулируем еще одно важное определение.

Под моментом силы →F, приложенной к точке B, относительно точки A понимается следующее векторное произведение [→A B × →F].

Вектор линейной скорости →V точки M колеса равен векторному произведению вектора угловой скорости →W и радиус-вектора точки колеса, то есть →V = →W`→rM.

источники:

http://mathforyou.net/online/vectors/

http://skysmart.ru/articles/mathematic/vektornoe-proizvedenie-vektorov

Скалярное произведение векторов, свойства. Длина векторов. Угол между векторами.

Литература: Сборник задач по математике. Часть 1. Под ред А. В. Ефимова, Б. П. Демидовича.

Длина вектора.

Пусть вектор $overline a=(x, y, z)$ представлен своими координатами в прямоугольном базисе. Тогда его длину можно вычислить по формуле $$|overline a|=sqrt{x^2+y^2+z^2}.$$

Скалярное произведение векторов.

Если заданы координаты точек $A(x_1, y_1, z_1) $ и $B(x_2, y_2, z_2),$ то координаты вектора $overline{AB}$ можно найти по формулам $$overline{AB}=(x_2-x_1, y_2-y_1, z_2-z_1).$$ Скалярным произведением ненулевых векторов $a_1$ и $a_2$ называется число $$(a_1, a_2)=|a_1||a_2|cos(widehat{a_1, a_2}).$$

Для скалярного произведения наряду с обозначением $(a_1,a_2)$ используется также обозначение $a_1a_2.$ 

Геометрические свойства скалярного произведения:

1) $a_1perp a_2Leftrightarrow a_1a_2=0$ (условие перпендикулярности векторов).

2) Если $varphi=(widehat{a_1, a_2}),$ то $$0leqvarphi<frac{pi}{2}Leftrightarrow a_1a_2>0; qquadqquad frac{pi}{2}<varphileqpiLeftrightarrow a_1 a_2<0.$$

Алгебраические свойства скалярного произведения:

1) $a_1a_2=a_2a_1;$

2) $(lambda a_1)a_2=lambda (a_1 a_2);$

3) $a(b_1+b_2)=ab_1+ab_2.$

Если векторы $a_1(X_1, Y_1, Z_1)$ и $a_2(X_2, Y_2, Z_2)$ представлены своими координатами в прямоугольном базисе, то скалярное произведение равно $$a_1a_2=X_1X_2+Y_1Y_2+Z_1Z_2. $$

Из этой формулы, в частности, следует формула для определения косинуса угла между векторами:

$$cos(widehat{a_1, a_2})=frac{a_1 a_2}{|a_1||a_2|}=frac{X_1X_2+Y_1Y_2+Z_1Z_2}{sqrt{X_1^2+Y_1^2+Z_1^2}sqrt{X_2^2+Y_2^2+Z_2^2}}.$$

Примеры.

2.65. $|a_1|=3; |a_2|=4; (widehat{a_1,a_2})=frac{2pi}{3}.$ Вычислить:

а) $a_1^2=a_1a_1;$

б) $(3a_1-2a_2)(a_1+2a_2);$

в) $(a_1+a_2)^2.$

Решение. 

а) $$a_1^2=(a_1, a_1)=|a_1||a_1|cos(widehat{a_1, a_1})=|a_1|^2=3^2=9.$$

б) $(3a_1-2a_2)(a_1+2a_2);$

Поскольку скалярное произведение зависит от длин векторов и угла между ними, то заданные векторы можно выбрать произвольно учитывая эти характеристики. Пусть $a_1=(3; 0). $ Тогда вектор $a_2,$ имея длину $|a_2|=4,$ и, образуя угол $frac{2pi}{3}$ с положительной полуосью оси $OX,$ имеет координаты $x=|a_2|cosfrac{2pi}{3}=-frac{4}{2}=-2; $ 

$y=|a_2|sinfrac{2pi}{3}=4frac{sqrt 3}{2}=2sqrt 3$

 a1a2

$3a_1-2a_2=3(3;0)-2(-2;2sqrt 3)=(9;0)-(-4; 4sqrt 3)=(13;-4sqrt 3);$

$a_1+2a_2=(3; 0)+2(-2;2sqrt 3) = (3; 0)+ (-4; 4sqrt 3)= (-1; 4sqrt 3).$

 $(3a_1-2a_2)(a_1+2a_2)=(13; -4sqrt 3)(-1; 4sqrt 3) =-13-48=-61.$

в) $(a_1+a_2)^2.$

$a_1+a_2$=$(3; 0)+(-2; 2sqrt 3)=(1; 2sqrt 3).$

$(a_1+a_2)^2=(1; 2sqrt3) (1; 2sqrt 3)=1+12=13.$

Ответ: a) 9;  б) -61; в) 13.

 {jumi[*4]}

2.67. Вычислить длину диагоналей параллелограмма, построенного на векторах $a=p-3q, $ $b=5p+2q,$ если известно, что $|p|=2sqrt{2}, |q|=3, (widehat{p, q})=frac{pi}{4}.$ 

Решение. 

parallelogrammСпособ 1.

Из треугольника $ABC$ имеем $AC=AB+BC=a+b=p-3q+5p+2q=6p-q.$ 

Зная длину векторов $p$ b $q$ и угол между этими векторами, можно найти длину вектора $AC$ по теореме косинусов:

$|AC|^2=|6p|^2+|q|^2-12pqcoswidehat{(6p, q)}=288+9-72=225.$

Отсюда $|AC|=15.$

AC

Из треугольника $ABD$ имеем: $BD=AD-AB=b-a=5p+2q-p+3q=4p+5q.$

По теореме косинусов находим длину вектора $BD:$

$|BD|^2=|4p|^2+|5q|^2-8p5qcos widehat{(6p, q)}=$ $128+225+240=593.$

Отсюда $|BD|=sqrt{593}.$

 Способ 2.

Пусть $q=(3; 0). $ Тогда вектор $p,$ имея длину $|p|=2sqrt 2,$ и образуя угол $frac{pi}{4}$ с положительной полуосью оси $OX$ имеет координаты

$x=|p|cosfrac{pi}{4}=2sqrt 2frac{1}{sqrt 2}=2; $

$y=|p|sinfrac{pi}{4}=2sqrt 2frac{1}{sqrt 2}=2.$ 

Вектор $BC=AD=b.$

Из треугольника $ABC$ имеем

$AC=AB+BC=a+b=p-3q+5p+2q=6p-q=$ $=6(2;2)-(3;0)=(12; 12)-(3;0)=(9; 12).$

 Следовательно, $|AC|=sqrt{81+144}=sqrt{225}=15.$

Из треугольника $ABD$ имеем 

$BD=AD-AB=b-a=5p+2q-p+3q=4p+5q=$ $=4(2; 2)+5(3;0)=(8; 8)+(15; 0)=(23; 8).$ 

Таким образом, $|BD|=sqrt{23^2+8^2}=sqrt {593}.$

Ответ: $15, sqrt {593}.$

2.68. Определить угол между векторами $a$ и $b$ если известно, что $(a-b)^2+(a+2b)^2=20$ и $|a|=1, |b|=2.$

Ответ: $2pi/3$

Домашнее задание:

2.66.

$|a_1|=3; |a_2|=5. $ Определить, при каком значении $alpha$ векторы $a_1+alpha a_2$ и $a_1-alpha a_2$ будут перпендикулярны.

Ответ: $alpha=pmfrac{3}{5}$

2.69. 

В треугольнике $ABC$ $overline{AB}=3e_1-4e_2;$ $overline{BC}=e_1+5e_2.$ Вычислить длину его высоты $overline{CH},$ если известно, что $e_1$ и $e_2$ взаимно перпендикулярные орты.

Ответ: $frac{19}{5}.$

Пользуйтесь нашим приложением

Доступно на Google Play

Загрузите в App Store

Мы используем файлы cookie. Пользуясь сайтом, вы принимаете условия нашего соглашения. Принять Детальнее

Задача 1 Разложить вектор По векторам и .

Пусть , т. е. ;

След., вектор .

Задача 2 Найти длину диагонали параллелограмма, построенного на векторах , если

Рассм. диагонали параллелограмма ;

Вычислим ;

;

Задача 3 Показать, что точки Являются вершинами параллелограмма и найти проекцию одной из диагоналей на большую сторону параллелограмма.

Рассм.

, след. — параллелограмм (так как две противоположные стороны параллельны и равны);

Рассм. Рассм. ; ,

След. — большая сторона параллелограмма ; рассм. диагональ ;

Вычислим Вычислим ;

.

Задача 4 Длина гипотенузы прямоугольного треугольника равна . Вычислить

Задача 5 Найти момент силы, приложенной в точке относительно точки, а также модуль и направляющие косинусы вектора силы

1) , где ; ;

;

2) ;

Направл. косинусы вектора : ; ; .

Задача 6 Треугольник построен на векторах Найти длину высоты , если векторы взаимно перпендикулярны и по модулю равны

Рассм. векторы рассм. ;

;

;

;

Задача 7 Найти координаты вершины тетраэдра, если известно, что она лежит на оси , объём тетраэдра равен , .

Пусть искомая вершина тетраэдра (т. к. т. );

Рассм. в-ры: ;

Рассм. смешанное произв-е:

Рассм. объём тетраэдра : ; ; ;

; ; ; след., возможные положения искомой т.: ; .

Задача 8 В треугольнике известны координаты двух вершин: И точки пересечения медиан . Составить уравнение высоты треугольника, проведённой из вершины .

1) Определим координаты точки Как середины отрезка :;

2) Определим координаты вершины , используя равенство , где ;

Рассм.

;

3) составим ур-е высоты : рассм. в-р ;

Рассм. т. И рассм. в-р ; тогда по условию задачи и и, след., ур-е прямой , проходящей через Перпендикулярно в-ру , можно записать в виде: т. е. .

Задача 9 В параллелограмме известны уравнения сторон и координаты точки пересечения диагоналей Составить уравнения двух других сторон и диагоналей параллелограмма.

1) определим координаты точки как точки пересечения прямых :

;

2) определим координаты точки из условия, что т. — середина отрезка :

;

3) составим уравнение диагонали как прямой, проходящей через точки : ;

4) составим уравнение стороны как прямой, проходящей через точку параллельно

Прямой ;

5) составим уравнение стороны как прямой, проходящей через точку Параллельно

Прямой ;

6) определим координаты точки как точки пересечения прямых :

;

7) составим уравнение диагонали как прямой, проходящей через точки : .

Задача 10 Составить уравнение плоскости, проходящей через точки

Пусть — искомая плоскость; рассм. векторы ;

Рассм. норм. вектор ;

Рассм. произв. т. и рассм. вектор ;

, т. е. ;

Задача 11 Составить уравнение прямой , которая, проходит через точку и пересекает две прямые и .

Рассм. направл. векторы прямых ;

Рассм. т.; рассм. векторы ;

Пусть — плоскость, в которой лежат прямые ; пусть — плоскость, в которой лежат прямые ; тогда искомая прямая есть линия пересечения плоскостей ;

;

;

В качестве направл. вектора прямой можно взять вектор ; выберем ;

Запишем канонические ур-я прямой Как ур-я прямой, проходящей через т. А параллельно

Вектору : ; параметрические ур-я прямой :

Задача 12 Составить уравнение геометрического места всех прямых, проходящих через точку перпендикулярно прямой .

Запишем канонич. уравнения прямой в виде: ; её направл. вектор ;

Рассм. произв. прямую , удовлетв. условию задачи; рассм. произв. точку и её направл. вектор ; , т. е. ;

Плоскость и есть искомое геометрическое место.

Задача 13 Вычислить определитель третьего порядка, пользуясь определением; результат проверить разложением

Определителя по первой строке.

1) Непосредственное вычисление:

2) Разложение по 1-й строке:

Задача 14 Решить систему линейных уравнений по правилу Крамера и с помощью обратной матрицы:

Запишем данную систему уравнений в матричной форме: , (1) , где ; ; ;

Рассм. опред-ль матрицы : ,

След., матр. — невырожденная и можно применять формулы Крамера и вычислять обратную матр. ;

1) решим с – му ур – й (1) по правилу Крамера, т. е. с помощью формул: , , , где ;

;

;

; , , ;

реш–е с–мы ур–й (1) в коорд. форме: вектор–решение с-мы (1): ;

2) получим реш–е с–мы ур–й (1) с помощью обратной матр. :

, след., матр.— невырожденная и существует обратная матр. ;

Умножим рав-во (1) слева на матрицу : , ; вычислим обратную матр. :

Находим алгебр. дополнения для всех эл-тов матрицы и составим из них м-цу :

Транспонируем м-цу и получим «присоединённую» м-цу

Разделим все эл-ты присоедин. м-цы на опр-ль и получим обратную матр. :

Находим теперь вектор-решение :

Задача 15 Установить, являются ли векторы линейно зависимыми.

Вычислим ранг системы векторов методом Гаусса, т. е. выпишем матрицу их координат и приведём её к ступенчатому виду:

ранг матрицы , след. данная система векторов линейно независима.

Задача 16 Исследовать систему линейных уравнений на совместность и в случае совместности найти её решение методом Гаусса.

Выпишем расширенную матрицу данной системы ур-й и приведём её к ступенчатому виду:

имеем ;

Так как , то по теореме Кронекера — Капелли данная система уравнений совместна, а так как , то система имеет бесконечное множество решений; объявим свободной переменной и выпишем общее решение системы в координатной форме:

общее решение системы имеет вид:

Задача 17 Найти матрицу преобразования, выражающего Через , если

Запишем данные преобразования в матричной форме: , где матрицы и

Вектор — столбцы имеют вид:

Рассм. ;

Вычислим матрицу .

Задача 18 Найти собственные числа и собственные векторы линейного преобразования, заданного матрицей

1) Находим собств. значения линейного преобразования , т. е. корни характеристического уравнения :

Рассм.

— собств. значения (действ.) лин. преобр-я ;

2) находим собств. векторы линейного преобразования , соотв. собств. значениям :

А) рассм.

Рассм. Пусть , тогда вектор ;

Б) рассм.

Рассм.

Пусть , тогда , вектор ;

Пусть , тогда , вектор ;

След. собств. векторы линейного преобразования суть:

; ; .

< Предыдущая

Понравилась статья? Поделить с друзьями:
  • Покемон как найти окаменелость
  • Как найти площадь земли в м2 огэ
  • Как составить письмо в министерство обороны
  • Стамбуле как найти вещи
  • Как найти подвижное веко