Как найти длину поверхности сечения шара

Длина окружности

О чем эта статья:

6 класс, 9 класс, ЕГЭ/ОГЭ

Если вы не знаете, как обозначается длина окружности, то знак окружности выглядит вот так — l

Статья находится на проверке у методистов Skysmart.
Если вы заметили ошибку, сообщите об этом в онлайн-чат (в правом нижнем углу экрана).

Как найти длину окружности через диаметр

Хорда — это отрезок, который соединяет две точки окружности.

Диаметр — хорда, которая проходит через центр окружности. Формула длины окружности через диаметр:

π— число пи — математическая константа, примерно равная 3,14

d — диаметр окружности

Как найти длину окружности через радиус

Радиус окружности — отрезок, который соединяет центр окружности с точкой на окружности. Формула длины окружности через радиус:

π — число пи, примерно равное 3,14

r — радиус окружности

Это две основные формулы для вычисления длины окружности. Ниже мы покажем еще несколько формул, которые вы сможете доказать самостоятельно, пользуясь основными формулами и свойствами геометрических фигур.

Как вычислить длину окружности через площадь круга

Если вам известна площадь круга, вы также можете узнать длину окружности:

π — число пи, примерно равное 3,14

S — площадь круга

Как найти длину окружности через диагональ вписанного прямоугольника

Как измерить окружность, если в нее вписан прямоугольник:

π — число пи, примерно равное 3,14

d — диагональ прямоугольника

Как вычислить длину окружности через сторону описанного квадрата

Давайте рассмотрим, как найти длину окружности, если она вписана в квадрат и нам известна сторона квадрата:

π — математическая константа, примерно равная 3,14

a — сторона квадрата

Как найти длину окружности через стороны и площадь вписанного треугольника

Можно найти, чему равна длина окружности, если в нее вписан треугольник и известны все три его стороны, а также известна его площадь:

π — математическая константа, она примерно равна 3,14

a — первая сторона треугольника

b — вторая сторона треугольника

c — третья сторона треугольника

S — площадь треугольника

Как найти длину окружности через площадь и полупериметр описанного треугольника

Можно определить, чему равна длина окружности, если круг вписан в треугольник, и известны следующие параметры: площадь треугольника и его полупериметр.

Периметр — это сумма всех сторон треугольника. Полупериметр равен половине этой суммы, то есть чтобы его найти, вам нужно рассчитать периметр и поделить его на два.

π — математическая константа, примерно равная 3,14

S — площадь треугольника

p — полупериметр треугольника

Как вычислить длину окружности через сторону вписанного правильного многоугольника

Разбираемся, как в этом случае измерить окружность. Для этого необходимо посчитать, сколько сторон у многоугольника, а также знать длину стороны многоугольника. Напомним, что у правильного многоугольника все стороны равны, как у квадрата.

Формула вычисления длины окружности:

π — математическая константа, примерно равная 3,14

a — сторона многоугольника

N — количество сторон многоугольника

Задачи для решения

Давайте тренироваться! Двигаемся от простого к сложному:

Задача 1. Найти длину окружности, диаметр которой равен 5 см.

Решение. Итак, нам известен диаметр окружности, значит для вычисления длины заданной окружности берем формулу:

Подставляем туда известные переменные и получается, что длина окружности равна

Задача 2. Чему равна длина окружности, описанной около правильного треугольника со стороною a = 4√3 дм

Решение. Радиус окружности равен Подставим туда наши переменные и получим

Теперь, когда нам известен радиус окружности и есть формула длины окружности через радиус l=2πr, мы можем подставить наши данные и получить решение задачи.

Обучение на курсах по математике поможет закрепить полученные знания на практике.

Сфера, шар, сегмент и сектор. Формулы и свойства сферы

Формула. Объём шара:

V = 4 π R 3 = 1 π D 3
3 6

S = 4 π R 2 = π D 2

Уравнение сферы

x 2 + y 2 + z 2 = R 2

( x — x 0) 2 + ( y — y 0) 2 + ( z — z 0) 2 = R 2

Основные свойства сферы и шара

Секущая, хорда, секущая плоскость сферы и их свойства

d m между секущей плоскостью и центром сферы всегда меньше радиуса R:

m r такого круга можно найти по формуле:

где R — радиус сферы (шара), m — расстояние от центра шара до секущей плоскости.

Касательная, касательная плоскость к сфере и их свойства

Формула. Объём сегмента сферы с высотой h через радиус сферы R:

S = π R(2 h + √ 2 h R — h 2 )

Формула. Объём сектора V с высотой O1H (h) через радиус шара OH (R):

Любые нецензурные комментарии будут удалены, а их авторы занесены в черный список!

Добро пожаловать на OnlineMSchool.
Меня зовут Довжик Михаил Викторович. Я владелец и автор этого сайта, мною написан весь теоретический материал, а также разработаны онлайн упражнения и калькуляторы, которыми Вы можете воспользоваться для изучения математики.

Длина окружности сферы радиуса 10

Длина окружности сечения сферы радиуса 10 см равна 16псм2?

Геометрия | 10 — 11 классы

Длина окружности сечения сферы радиуса 10 см равна 16псм2.

Найдите расстояние от центра сферы до плоскости сечения.

Радиусы сечений сферы двумя взаимно перпендикулярными плоскостями равны r1 и r2?

Радиусы сечений сферы двумя взаимно перпендикулярными плоскостями равны r1 и r2.

Найдите площадь сферы, если сечения имеют единственную общую точку.

Сечение сферы плоскостью имеет длину и удалено от центра шара на расстояние 12?

Сечение сферы плоскостью имеет длину и удалено от центра шара на расстояние 12.

Диаметр сферы равен.

Сферу на расстоянии 8см от центра пересекает плоскость?

Сферу на расстоянии 8см от центра пересекает плоскость.

Радиус сечения равен 15см.

Найдите площадь сферы.

На сфере радиуса 2 провели сечение радиуса 1 : а) на каком расстоянии от центра сферы проходит его плоскость ; , ) какой угол фи составляет его плоскость с радиусомсферы, проведенным в точку сечения?

На сфере радиуса 2 провели сечение радиуса 1 : а) на каком расстоянии от центра сферы проходит его плоскость ; , ) какой угол фи составляет его плоскость с радиусомсферы, проведенным в точку сечения?

СРОЧНО))радиус окружностей, являющихся сечениями сферы двумя параллельными плоскостями, равны 3 см и 4 см, а расстояние между этими плоскостями равно 7 см?

СРОЧНО))радиус окружностей, являющихся сечениями сферы двумя параллельными плоскостями, равны 3 см и 4 см, а расстояние между этими плоскостями равно 7 см.

Найдите площадь сферы?

Сферу с радиусом 20 см рассекают две перпендикулярные между собой плоскости, которые находятся на расстоянии 12 и 9 см от центра сферы?

Сферу с радиусом 20 см рассекают две перпендикулярные между собой плоскости, которые находятся на расстоянии 12 и 9 см от центра сферы.

Найдите длину общей хорды двух сечений.

Шар радиуса 17 см пересечен плоскостью?

Шар радиуса 17 см пересечен плоскостью.

Радиус сечения равен 8 см.

Найти — расстояние от центра сферы до плоскости сечения.

Площадь сферы 5Псм ^ 2?

Площадь сферы 5Псм ^ 2.

Длина линии пересечения сферы и секущей плоскости равна Псм.

Найдите расстояние от центра сферы до секущей плоскости.

Радиус сферы равен 17 см?

Радиус сферы равен 17 см.

Два параллельных сечения сферы имеют радиусы 8 см и 15 см.

Найти расстояние между плоскостями сечений сферы, если центр сферы находится между ними.

Помогите пожалуйста?

1) Через конец радиуса, лежащий на сфере, проведена плоскость под углом 60 градусов к радиусу.

Расстояние от центра сферы до плоскости равно 8 см.

Найти площадь получившегося сечения.

Перед вами страница с вопросом Длина окружности сечения сферы радиуса 10 см равна 16псм2?, который относится к категории Геометрия. Уровень сложности соответствует учебной программе для учащихся 10 — 11 классов. Здесь вы найдете не только правильный ответ, но и сможете ознакомиться с вариантами пользователей, а также обсудить тему и выбрать подходящую версию. Если среди найденных ответов не окажется варианта, полностью раскрывающего тему, воспользуйтесь «умным поиском», который откроет все похожие ответы, или создайте собственный вопрос, нажав кнопку в верхней части страницы.

По теореме Пифагора найди 2й катет (26 ^ 2 = 24 ^ 2 + x) 26 ^ 2 — 24 ^ 2 = x ^ 2 x ^ 2 = 676 — 576 x ^ 2 = 100 x = корень из 100 x = 10 cos& = 10 / 26.

Для начала начерти параллелограм АВСD и пусть сторона АВ = 12см , ВС11см, потом в решинии пиши : построим высоту ВМ в параллелограме абсд У нас получился треугольник АВМ и он прямоугольный, значит отсюда найдём высоту ВМ = 1 / 2 АВ(т. Е. ктет равен ..

1. б а остальные плохо видно.

Плохо видно! Отправь норм! Тогда скажу.

BC = 6 BD = 8 По т. Пифагора находим гипотенузу CD : 6 ^ 2 + 8 ^ 2 = √36 + 64 = √100 = 10 cosBCD = BD / CD = 8 / 10 = 0. 8.

1) 17 + 5 = 22(см) весь отрезок 2) 17 + 12 = 39(см) AD.

Косинус — отношение прилежащего катета к гипотенузе. СоsА = 3 / 4 cosA = BC / AB значит, AB = BC / (3 / 4) = 24 * 4 / 3 = 32 ответ : 32.

1)∠A = 90° — 54° = 36° ; 2)OC⇒катет , лежащий против угла = 30° ; гипотенузаDC = 2·OC = 56·2 = 112(см) ; 3)∠E = 90° — 60° = 30° AM = AE / 2 = 71 / 2 = 35. 5(м).

Одна сторона а другая сторона Б а + б = 16 а = 16 — б 3а = 5б 3(16 — б) = 5б 48 — 3б = 5б 5б + 3б = 48 8б = 48 б = 48 / 8 б = 6 а = 16 — 6 = 10см.

Длина окружности

О чем эта статья:

6 класс, 9 класс, ЕГЭ/ОГЭ

Если вы не знаете, как обозначается длина окружности, то знак окружности выглядит вот так — l

Статья находится на проверке у методистов Skysmart.
Если вы заметили ошибку, сообщите об этом в онлайн-чат (в правом нижнем углу экрана).

Как найти длину окружности через диаметр

Хорда — это отрезок, который соединяет две точки окружности.

Диаметр — хорда, которая проходит через центр окружности. Формула длины окружности через диаметр:

π— число пи — математическая константа, примерно равная 3,14

d — диаметр окружности

Как найти длину окружности через радиус

Радиус окружности — отрезок, который соединяет центр окружности с точкой на окружности. Формула длины окружности через радиус:

π — число пи, примерно равное 3,14

r — радиус окружности

Это две основные формулы для вычисления длины окружности. Ниже мы покажем еще несколько формул, которые вы сможете доказать самостоятельно, пользуясь основными формулами и свойствами геометрических фигур.

Как вычислить длину окружности через площадь круга

Если вам известна площадь круга, вы также можете узнать длину окружности:

π — число пи, примерно равное 3,14

S — площадь круга

Как найти длину окружности через диагональ вписанного прямоугольника

Как измерить окружность, если в нее вписан прямоугольник:

π — число пи, примерно равное 3,14

d — диагональ прямоугольника

Как вычислить длину окружности через сторону описанного квадрата

Давайте рассмотрим, как найти длину окружности, если она вписана в квадрат и нам известна сторона квадрата:

π — математическая константа, примерно равная 3,14

a — сторона квадрата

Как найти длину окружности через стороны и площадь вписанного треугольника

Можно найти, чему равна длина окружности, если в нее вписан треугольник и известны все три его стороны, а также известна его площадь:

π — математическая константа, она примерно равна 3,14

a — первая сторона треугольника

b — вторая сторона треугольника

c — третья сторона треугольника

S — площадь треугольника

Как найти длину окружности через площадь и полупериметр описанного треугольника

Можно определить, чему равна длина окружности, если круг вписан в треугольник, и известны следующие параметры: площадь треугольника и его полупериметр.

Периметр — это сумма всех сторон треугольника. Полупериметр равен половине этой суммы, то есть чтобы его найти, вам нужно рассчитать периметр и поделить его на два.

π — математическая константа, примерно равная 3,14

S — площадь треугольника

p — полупериметр треугольника

Как вычислить длину окружности через сторону вписанного правильного многоугольника

Разбираемся, как в этом случае измерить окружность. Для этого необходимо посчитать, сколько сторон у многоугольника, а также знать длину стороны многоугольника. Напомним, что у правильного многоугольника все стороны равны, как у квадрата.

Формула вычисления длины окружности:

π — математическая константа, примерно равная 3,14

a — сторона многоугольника

N — количество сторон многоугольника

Задачи для решения

Давайте тренироваться! Двигаемся от простого к сложному:

Задача 1. Найти длину окружности, диаметр которой равен 5 см.

Решение. Итак, нам известен диаметр окружности, значит для вычисления длины заданной окружности берем формулу:

Подставляем туда известные переменные и получается, что длина окружности равна

Задача 2. Чему равна длина окружности, описанной около правильного треугольника со стороною a = 4√3 дм

Решение. Радиус окружности равен Подставим туда наши переменные и получим

Теперь, когда нам известен радиус окружности и есть формула длины окружности через радиус l=2πr, мы можем подставить наши данные и получить решение задачи.

Обучение на курсах по математике поможет закрепить полученные знания на практике.

Длина окружности сферы радиуса 10

19.1. Определения шара, сферы и их элементов

С шаром и сферой мы уже знакомы. Напомним их определения.

Определение. Шаром называется множество всех точек пространства, находящихся от данной точки на расстоянии, не большем данного R ( R > 0). Данная точка называется центром шара, а данное расстояние R — радиусом шара .

Определение. Сферой называется множество всех точек пространства, находящихся от данной точки на расстоянии, равном данному R. Данные точка и расстояние R называются соответственно центром и радиусом сферы.

На рисунке 193 изображён шар с центром О и радиусом R = OА.

Из определений шара и сферы следует, что шар с центром О и радиусом R является объединением двух множеств точек: 1) множества точек M пространства, для которых OM (они называются внутренними точками шара и образуют его внутренность); 2) множества всех М, для которых ОМ = R (эти точки являются граничными точками шара, а их объединение составляет границу шара, которая называется шаровой поверхностью и является сферой c центром О и радиусом R ) .

Радиусом шара называют также всякий отрезок, соединяющий центр шара с точкой шаровой поверхности. Отрезок, соединяющий две точки шаровой поверхности и проходящий через центр шара, называется диаметром шара . Концы любого диаметра шара называются диаметрально nротивоположными точками шара. Отрезок, соединяющий две любые точки шаровой поверхности и не являющийся диаметром шара, называют хордой шара ( сферы ) . На рисунке 193 отрезки ОА, ОВ, ON, OS — радиусы шара; отрезки АВ , NS — диаметры шара; A и B — диаметрально противоположные точки шара. Из определения диаметра шара следует, что он равен удвоенному радиусу шара.

Покажем, что шар — тело вращения. Для этого рассмотрим полукруг F с центром О и радиусом R (рис. 194, а ). При вращении полукруга F вокруг прямой, содержащей его диаметр NS, образуется некоторое тело F 1 (рис. 194, б ). Так как вращение вокруг прямой — движение и точка О принадлежит оси l вращения, то каждая точка тела F 1 удалена от точки O на расстояние, не большее R (движение сохраняет расстояния между точками). Это означает, что тело F 1 есть шар с центром О и радиусом R. Кроме того, при вращении границы полукруга — полуокружности — вокруг прямой l образуется сфера. Прямая, содержащая любой диаметр шара, может быть рассмотрена как ось вращения. Следовательно, сечением шара плоскостью, перпендикулярной его оси вращения l и пересекающей шар, является круг, а сечением сферы такой плоскостью — окружность этого круга; центр круга (окружности) есть точка пересечения секущей плоскости с осью l.

Плоскость, проходящая через центр шара (сферы), называется диаметральной плоскостью шара ( сферы ) . Сечением шара диаметральной плоскостью является круг, радиус которого равен радиусу шара. Такой круг называется большим кругом, а его окружность — большой окружностью ; большая окружность является пересечением сферы и её диаметральной плоскости.

19.2. Изображение сферы

Рассмотрим сферу, диаметр NS которой проведён вертикально (рис. 195, а ). Большая окружность, по которой сферу пересекает диаметральная плоскость, перпендикулярная диаметру (оси) NS, называется экватором , а точки N и S — полюсами сферы . Окружность, ограничивающая круг — изображение сферы, — называется абрисом или очерковой линией .

Типичная ошибка (!) при изображении сферы (рис. 195, б ) в том, что, изображая её экватор эллипсом, полюсы изображают расположенными на абрисе.

Для верного и наглядного изображения сферы вспомним, как в курсе черчения изображают фигуру на комплексном двухкартинном чертеже (эпюре) посредством ортогонального её проектирования на две взаимно перпендикулярные плоскости, одну из которых называют фронтальной (обозначают V ) , а другую — профильной (обозначают W ) плоскостями проекций.

Сферу расположим так, чтобы её ось N ′ S ′ была параллельна профильной ( W ), но не параллельна фронтальной ( V ) плоскостям проекций. Тогда ортогональные проекции сферы на плоскости V и W имеют вид, изображённый на рисунке 196. На нём: равные круги — проекции сферы на плоскости V и W ; отрезки A 1 B 1 и N 1 S 1 — профильные проекции соответственно экватора и оси сферы; точки N, S — фронтальные проекции полюсов (строятся с помощью линий связи); точки А, В — фронтальные проекции концов диаметра экватора, параллельного фронтальной плоскости (строятся с помощью линий связи); отрезок CD — фронтальная проекция диаметра C ′ D ′ сферы, перпендикулярного профильной плоскости; эллипс с осями АВ и CD — фронтальная проекция экватора. При таком расположении относительно плоскостей проекций сфера изображается так, как показано на рисунках 195, a ; 196, a.

Обратите внимание! Полюсы N и S не лежат на абрисе, и экватор изображается эллипсом. При этом положение полюсов N и S и положение вершин А и В эллипса-экватора взаимосвязаны.

Действительно, из равенства △ ОBF = △ ЕNО (см. рис. 196, а ) следует: OВ = EN, BF = NO. Это означает: а) если изображены полюсы N и S сферы, то вершины А и В эллипса — изображения экватора определяются из равенств OВ = ОА = NE, где NE || OD ; б) если изображён экватор (т. е. дана малая ось AB эллипса-экватора), то положение полюсов N и S определяется из равенств ON = OS = BF, где BF || OD.

На рисунке 197, а — верное и наглядное изображение сферы, на рисунке 197, б — изображение сферы верное (почему?), но не наглядное; на рисунке 197, в — неверное изображение (почему?).

 ЗАДАЧА (3.106). Найти в пространстве множество вершин всех прямых углов, опирающихся на данный отрезок АВ.

Решени е. Если ∠ АМВ = 90 ° , то точка М принадлежит окружности с диаметром АВ (рис. 198, a ).

Проведём произвольную плоскость α , содержащую отрезок АВ. В этой плоскости множество всех точек М, из которых отрезок AB виден под прямым углом, есть окружность, для которой отрезок AB — диаметр. Точки А и В этому множеству точек не принадлежат. (Почему?) Таким образом, искомое множество вершин прямых углов, опирающихся на отрезок AB , есть сфера с диаметром AB . Точки А и В этому множеству точек-вершин не принадлежат.

19.3. Уравнение сферы

Составим уравнение сферы с центром А ( a ; b ; с ) и радиусом R в декартовой прямоугольной системе координат Oxyz.

Пусть М ( x ; у ; z ) — любая точка этой сферы (рис. 199). Тогда MA = R или MA 2 = R 2 . Учитывая, что MA 2 = ( x – a ) 2 + ( у – b ) 2 + ( z – c ) 2 , получаем искомое уравнение cферы

( x – a ) 2 + ( у – b ) 2 + ( z – c ) 2 = R 2 .

Если начало системы координат совпадает с центром A сферы, то a = b = c = 0 , а сфера в такой системе координат имеет уравнение

x 2 + y 2 + z 2 = R 2 .

Из полученных уравнений следует, что сфера — поверхность второго порядка.

Так как для любой точки М ( х ; у ; z ) шара с центром А ( a ; b ; с ) и радиусом R выполняется МА ⩽ R, то этот шар может быть задан неравенством

( x – a ) 2 + ( у – b ) 2 + ( z – c ) 2 ⩽ R 2 .

При этом для всех внутренних точек М шара выполняется условие МА 2 R 2 , т. е.

( х – a ) 2 + ( у – b ) 2 + ( z – c ) 2 R 2 ,

для точек М шаровой поверхности — условие

т. е. ( х – a ) 2 + ( у – b ) 2 + ( z – c ) 2 = R 2 ,

для точек М вне шара — условие

т. е. ( х – a ) 2 + ( у – b ) 2 + ( z – c ) 2 > R 2 .

19.4. Пересечение шара и сферы с плоскостью

Рассмотрим подробнее вопрос о пересечении шара и сферы с плоскостью. Имеет место следующая теорема.

Теорема 30 (о пересечении шара и сферы с плоскостью ) . 1) Если расстояние от центра шара до данной плоскости меньше радиуса шара, то пересечением шара с плоскостью является круг. Центром этого круга является основание перпендикуляра, проведённого из центра шара на плоскость, или сам центр шара, если плоскость проходит через этот центр. Пересечением сферы с плоскостью является окружность указанного круга. Радиус r сечения в этом случае равен r = , где R — радиус шара, a d — расстояние от центра шара до плоскости сечения. 2) Если расстояние от центра шара до данной плоскости равно радиусу шара, то плоскость имеет с шаром и ограничивающей его сферой только одну общую точку. 3) Если расстояние от центра шара до данной плоскости больше радиуса, то плоскость не имеет с шаром общих точек.

Доказательств о. Пусть точка О — центр шара, R — его радиус; α — данная плоскость, точка A — основание перпендикуляра, проведённого из центра O на плоскость α . Обозначим ρ ( О ; α ) = | ОА | = d — расстояние от центра шара до плоскости α .

Рассмотрим каждый из случаев взаимного расположения шара и данной плоскости α .

1) ρ ( O ; α ) = d R и плоскость α не проходит через центр О шара (рис. 200). Докажем, что пересечение шара и плоскости есть круг с центром А и радиусом r = . Для этого достаточно убедиться, что любая точка пересечения шара и плоскости α есть точка круга с центром А и радиусом r = и, обратно, любая точка этого круга есть точка указанного пересечения.

Действительно, пусть М — произвольная точка шара, принадлежащая плоскости α (см. рис. 200). В прямоугольном треугольнике AOM по теореме Пифагора ОM 2 = ОА 2 + АМ 2 , откуда AM = . Так как точка М принадлежит шару, то ОМ ⩽ R, тогда OM 2 – OA 2 ⩽ R 2 – d 2 , поэтому АМ ⩽ . Это означает, что точка М сечения шара плоскостью α находится от точки А на расстоянии, не большем , следовательно, она принадлежит кругу с центром А и радиусом .

Обратно, пусть М — произвольная точка плоскости α , принадлежащая кругу с центром А и радиусом r = . В прямоугольном треугольнике AOM по теореме Пифагора OM 2 = ОA 2 + AM 2 . Так как AM ⩽ r , то OM 2 ⩽ OA 2 + r 2 = d 2 + R 2 – d 2 = R 2 , откуда OM ⩽ R . Значит, точка М принадлежит данному шару. Учитывая, что точка М принадлежит и плоскости α , приходим к выводу: точка M принадлежит пересечению данного шара и плоскости α .

Если неравенства, которые использовались в предыдущем доказательстве, заменить равенствами, то, рассуждая аналогично, можно доказать, что при d R пересечением сферы и плоскости является окружность с центром А и радиусом r = . Проделайте это самостоятельно.

Если плоскость α проходит через центр O шара, то d = 0, значит, r = R, т. е. сечением шара такой плоскостью является большой круг, а сечением сферы — большая окружность (см. рис. 200).

2) ρ ( O ; α ) = d = OA = R (рис. 201).

Так как ОА = ρ ( O ; α ) = R, то точка А, являющаяся основанием перпендикуляра из центра О шара на плоскость α , принадлежит шаровой поверхности, ограничивающей данный шар.

Пусть M — произвольная точка плоскости α , отличная от точки A (см. рис. 201). Тогда длины наклонной ОМ и перпендикуляра OA, проведённых из точки О к плоскости α , удовлетворяют неравенству OM > ОА = R. Значит, точка М не принадлежит шару. Следовательно, плоскость α имеет только одну общую точку с шаром — точку А.

3) ρ ( О ; α ) = ОА = d > R (рис. 202). Для любой точки М плоскости α выполняется (почему?) ОМ ⩾ d > R. Это означает, что на плоскости α нет точек шара. Теорема доказана. ▼

 ЗАДАЧА (3.161). Через середину радиуса шара проведена перпендикулярная к нему плоскость. Радиус шара равен R. Найти: а) площадь получившегося сечения; б) площади боковой и полной поверхностей конуса, основанием которого служит получившееся сечение шара, а вершиной — центр шара; в) площади боковой и полной поверхностей правильной треугольной пирамиды, вписанной в этот конус.

Решени е. а) Пусть точка O — центр шара, OD — его радиус, точка С — середина радиуса OD ; α — секущая плоскость, проходящая через точку С перпендикулярно OD.

Рассмотрим сечение шара диаметральной плоскостью, проходящей через его радиус OD. Этим сечением является большой круг с центром О и радиусом R (рис. 203); АВ — диаметр круга — сечения данного шара плоскостью α .

Так как АВ ⟂ OD и точка С — середина радиуса OD, то отрезок AB равен стороне правильного треугольника, вписанного в окружность радиуса R, значит, АВ = R , откуда

АС = r = , где r — радиус сечения шара плоскостью α . Тогда площадь этого сечения равна π r 2 = .

б) Найдём площадь поверхности конуса с вершиной О и радиусом основания r = .

Образующая ОЕ конуса (рис. 204) равна радиусу R данного шара. Поэтому площадь боковой поверхности этого конуса равна

π r • R = π • • R = ,

а площадь его полной поверхности — + = π R 2 • (2 + ).

в) Найдём площадь поверхности правильной треугольной пирамиды OEFK, вписанной в конус, радиус основания которого СK = r = , боковое ребро OE пирамиды равно радиусу R данного шара (см. рис. 204).

Так как △ ЕFK — правильный, вписанный в окружность радиуса r = , то сторона этого треугольника равна r , т. е. EF = . Тогда S △ EFK = = .

Площадь боковой поверхности пирамиды равна 3 S △ EOF = EF • ОН, где OH — апофема пирамиды. В прямоугольном треугольнике OHF находим

ОН = = = .

Тогда EF • OH = — площадь боковой поверхности пирамиды.

Следовательно, площадь полной поверхности пирамиды равна

+ = R 2 ( + ).

Ответ: a) ; б) π R 2 (2 + ); в) ; R 2 ( + ).

19.5. Плоскость, касательная к сфере и шару

Из теоремы 30 следует, что плоскость может иметь со сферой (с шаром) только одну общую точку.

Определение. Плоскость, имеющая только одну общую точку со сферой (с шаром), называется касательной плоскостью к сфере (шару), а их единственная общая точка называется точкой касания (рис. 205).

Также говорят, что плоскость касается сферы (шара) .

Любая прямая, лежащая в касательной плоскости к сфере и проходящая через точку их касания, называется касательной прямой к сфере ; эта прямая имеет со сферой единственную общую точку — точку касания, и радиус сферы, проведённый в точку касания, перпендикулярен касательной прямой.

Заметим, что если прямая a касается сферы в точке М , то эта прямая касается в точке М той окружности большого круга, которая является сечением сферы и диаметральной плоскости, проходящей через прямую a.

Справедливо и обратное: если прямая a касается окружности большого круга сферы в точке М , то эта прямая касается в точке М самой сферы.

Более того, так как прямая a, касающаяся сферы в точке М , имеет со сферой лишь одну общую точку — точку М , то эта прямая касается любой окружности, по которой пересекаются данная сфера и любая (не только диаметральная) плоскость, проходящая через прямую a. А поскольку радиус, проведённый в точку касания прямой и окружности, перпендикулярен касательной прямой, то центры всех этих окружностей — полученных сечений сферы — лежат в плоскости, проходящей через точку М перпендикулярно касательной прямой a. При этом, если точка О — центр данной сферы радиуса R , точка А — центр окружности радиуса r , по которой пересекает сферу одна (любая) из плоскостей, проходящих через касательную в точке М прямую к данной сфере, ϕ — величина угла между этой секущей плоскостью и проходящей через точку М диаметральной плоскостью данной сферы, то справедливо равенство r = R • cos ϕ ( △ ОАМ — прямоугольный, так как отрезок ОА перпендикулярен секущей плоскости (почему?)).

Для плоскости, касательной к сфере, справедливы теоремы, аналогичные теоремам о прямой, касательной к окружности на плоскости.

Теорема 31. Если плоскость касается сферы, то она перпендикулярна радиусу, проведённому в точку касания.

Доказательств о. Пусть дана сфера с центром O и радиусом R. Рассмотрим плоскость α , касающуюся данной сферы в точке M (см. рис. 205) и докажем, что ОM ⟂ α .

Предположим, что радиус ОM — не перпендикуляр, а наклонная к плоскости α . Значит, расстояние от центра сферы до плоскости α , равное длине перпендикуляра, проведённого из центра О на плоскость α , меньше радиуса. Тогда по теореме 30 плоскость α пересекает сферу по окружности. Но по условию теоремы плоскость α касается сферы и имеет с ней единственную общую точку M. Пришли к противоречию, которое и доказывает, что OM ⟂ α . Теорема доказана. ▼

Справедлива обратная теорема.

Теорема 32. Если плоскость проходит через точку сферы и перпендикулярна радиусу, проведённому в эту точку, то она касается сферы.

Доказательств о. Пусть плоскость α проходит через точку M сферы и перпендикулярна радиусу ОM (см. рис. 205). Значит, расстояние от центра сферы до плоскости равно радиусу ОM. Тогда по теореме 30 плоскость α и сфера имеют единственную общую точку M, следовательно, плоскость α касается сферы (в точке M ). Теорема доказана. ▼

Так как сечение шара плоскостью есть круг, то можно доказать, что для шара выполняются следующие метрические соотношения:

— диаметр шара, делящий его хорду пополам, перпендикулярен этой хорде;

— отрезки всех касательных прямых, проведённых к шару из одной расположенной вне шара точки, равны между собой (они образуют поверхность конуса с вершиной в данной точке, а точки касания этих прямых — окружность основания этого конуса);

— произведение длин отрезков хорд шара, проходящих через одну и ту же внутреннюю точку шара, есть величина постоянная (равная R 2 – a 2 , где R — радиус шара, a — расстояние от центра шара до данной точки);

— если из одной и той же точки вне шара проведены к нему секущая и касательная, то произведение длины отрезка всей секущей на длину отрезка её внешней части равно квадрату длины отрезка касательной (и равно a 2 – R 2 , где R — радиус шара, a — расстояние от центра шара до данной точки).

19.6. Вписанные и описанные шары и сферы

Определение. Шар называется вписанным в цилиндр, если основания и каждая образующая цилиндра касаются шара (рис. 206).

Цилиндр в таком случае называется описанным около шара. В цилиндр можно вписать шар тогда и только тогда, когда он равносторонний.

Определение. Шар называется описанным около цилиндра, если основания цилиндра служат сечениями шара (рис. 207).

Цилиндр при этом называют вписанным в шар. Около любого цилиндра можно описать шар. Центром шара служит середина оси цилиндра, а радиус шара равен радиусу круга, описанного около осевого сечения цилиндра.

Определение. Шар называется описанным около конуса, если основание конуса — сечение шара, а вершина конуса принадлежит поверхности шара (рис. 208).

Конус при этом называют вписанным в шар.

Центр шара, описанного около конуса, совпадает с центром круга, описанного около осевого сечения конуса, а радиус шара равен радиусу этого круга.

Определение. Шар называется вписанным в конус, если основание и все образующие конуса касаются шара.

Конус при этом называют описанным около шара (рис. 209). Центр вписанного в конус шара совпадает с центром круга, вписанного в осевое сечение конуса, а радиус шара равен радиусу этого круга.

Определение. Шар называется вписанным в многогранник, если он касается всех граней многогранника.

Многогранник в таком случае называют описанным около шара (рис. 210).

Не во всякий многогранник можно вписать шар. Например, вписать шар можно в любую треугольную или правильную пирамиду. А в прямую призму, в основании которой лежит прямоугольник, не являющийся квадратом, шар вписать нельзя.

При нахождении радиуса r вписанного в многогранник шара (если таковой существует) удобно пользоваться соотношением

V многогр = • r • S полн. поверх .

Шар называется вписанным в двугранный угол, если он касается его граней. Центр вписанного в двугранный угол шара лежит на биссекторной плоскости этого двугранного угла. При этом для радиуса r шара, вписанного в двугранный угол, величины α этого угла и расстояния m от центра шара до ребра двугранного угла справедлива формула: r = m • sin . Этой формулой часто пользуются при решении задач.

Шар называется вписанным в многогранный угол, если он касается всех граней многогранного угла. При решении задач, в которых рассматриваются вписанные в многогранный угол шары, удобно пользоваться соотношением: r = m • sin , где r — радиус шара, вписанного в многогранный угол, m — расстояние от центра шара до ребра многогранного угла, α — величина двугранного угла при этом ребре.

Если все плоские углы трёхгранного угла равны по 60 ° , то расстояние от вершины угла до центра вписанного в этот угол шара радиуса r равно 3 r ; если все плоские углы трёхгранного угла прямые, то расстояние от вершины угла до центра вписанного в этот угол шара радиуса r равно r . Эти соотношения часто используют при решении задач, в которых рассматриваются те или иные комбинации шаров с правильными тетраэдрами или прямоугольными параллелепипедами.

Определение. Шар называется описанным около многогранника, если все вершины многогранника принадлежат поверхности шара (рис. 211) . Многогранник при этом называют вписанным в шар.

Не около всякого многогранника можно описать шар. Например, около любой правильной или любой треугольной пирамиды шар описать можно, а около четырёхугольной пирамиды, в основании которой лежит ромб, не являющийся квадратом, шар описать нельзя (около ромба нельзя описать окружность). Более того, нельзя описать шар около любой наклонной призмы.

Вообще, для того чтобы около многогранника можно было описать шар, необходимо, чтобы около любой его грани можно было описать круг. При этом центр описанного шара может лежать как внутри многогранника, так и вне его или на его поверхности (даже на ребре многогранника), и проектируется в центр описанного около любой грани круга. Кроме того, перпендикуляр, опущенный из центра описанного около многогранника шара на ребро многогранника, делит это ребро (как хорду шара) пополам.

Мы уже говорили о пирамидах, все рёбра которых одинаково наклонены к основанию. Около таких пирамид всегда можно описать шар, центр которого лежит на луче, содержащем высоту пирамиды.

Высота h пирамиды, радиус R к описанного около основания пирамиды круга и радиус R описанного около этой пирамиды шара связаны соотношением:

( R – h ) 2 + = R 2 .

Приведём формулы для вычисления радиусов вписанных и описанных шаров для правильных многогранников с ребром a.

В задачах иногда ещё рассматривают шары, касающиеся всех рёбер данного многогранника. Для куба, например, такой шар существует и его радиус равен , где a — ребро куба.

19.7. Площади поверхностей шара и его частей

Часть шара, заключённая между секущей плоскостью и одной из двух частей его сферической поверхности, называется шаровым сегментом (рис. 212 и 214). Поверхность шарового сегмента называется сегментной поверхностью : она представляет собой часть шаровой поверхности, отсекаемую какой-нибудь плоскостью. Круг АВ, по которому плоскость пересекает шар, называется основанием шарового сегмента, а окружность этого круга — основанием сегментной поверхности. Отрезок ОС радиуса, перпендикулярного секущей плоскости, называется высотой шарового сегмента ( сегментной поверхности ) .

Часть шара, заключённая между двумя параллельными секущими плоскостями, называется шаровым слоем (см. рис. 212, 214). Поверхность шарового слоя называется шаровым поясом. Шаровой пояс — часть шаровой поверхности, заключённая между двумя параллельными секущими плоскостями. Перпендикуляр, проведённый из точки одного основания к плоскости другого, называется высотой шарового слоя ( шарового пояса ).

Сегментную поверхность и шаровой пояс можно рассматривать как поверхности вращения: в то время, как при вращении полуокружности CAA 1 D (см. рис. 212) вокруг диаметра CD образуется шаровая поверхность (сфера), при вращении дуги СА этой полуокружности вокруг того же диаметра образуется сегментная поверхность, а при вращении дуги AA 1 — шаровой пояс.

Тело, образованное при вращении кругового сектора с углом ϕ ( ϕ ° ) вокруг прямой, которая содержит диаметр круга, не имеющий с круговым сектором общих внутренних точек, называется шаровым сектором .

Из этого определения следует, что поверхность шарового сектора состоит из сегментной поверхности и боковой поверхности конуса (рис. 213, а , б ) или из поверхности шарового пояса и боковых поверхностей двух конусов (рис. 213, в, г ).

На рисунке 214 изображены различные элементы шара и сферы (шаровой сектор имеет простейший вид).

Рассмотрим вопрос о вычислении площадей сферы, сегментной поверхности, шарового пояса и шарового сектора.

а) Площадь сферы. Пусть ABCDEF — правильная ломаная линия, вписанная в данную полуокружность; a — длина её апофемы (рис. 215). При вращении полуокружности вокруг её диаметра AF образуется сфера, а при вращении ломаной ABCDEF вокруг этого же диаметра AF образуется некоторая поверхность Ф .

За площадь сферы, образованной вращением полуокружности вокруг её диаметра, принимают предел, к которому стремится площадь поверхности Ф, образованной вращением вокруг того же диаметра правильной n- звенной ломаной линии, вписанной в полуокружность, при n → + ∞ ( число сторон неограниченно возрастает ).

Поверхность Ф является объединением поверхностей, образованных вращением звеньев ломаной линии, вписанной в полуокружность, вокруг её диаметра. Этими поверхностями являются боковые поверхности либо конуса (для первого и последнего звеньев ломаной), либо цилиндра (для звеньев, параллельных оси вращения; их может и не быть), либо усечённого конуса (для всех остальных звеньев ломаной).

При вычислении площадей получившихся поверхностей воспользуемся следствиями из теорем 26, 27, 29. Площадь S i ( i = 1, 2, . n ) поверхности, образованной вращением любого звена, равна произведению 2 π , расстояния b i от середины звена до центра сферы и длины m i проекции этого звена на ось вращения, т. е. S i вращ = 2 π • b i • m i .

Так как ломаная — правильная, то все b i равны апофеме a n данной n- звенной ломаной, а m 1 + m 2 + m 3 + . + m n = 2 R и S 1 + S 2 + S 3 + . + S n = 4 π • a n • R . Причём a n = , где p n — периметр данной ломаной. Поскольку ограниченная переменная величина при n → + ∞ становится бесконечно малой, то при n → ∞ апофема a n стремится к радиусу R полуокружности.

Следовательно, предел площади поверхности Ф при n → ∞ равен 4 π R • R = 4 π R 2 . Этот предел и принимается за величину площади сферы радиуса R :

S сферы = 4 π R 2 .

б) Площади сегментной поверхности и шарового пояса. Если правильная ломаная вписана не в полуокружность, а в некоторую её часть, например в дугу AD (см. рис. 215), при вращении которой образуется сегментная поверхность, то рассуждения, аналогичные предыдущим, приводят к выводу:

S сегм. поверх = 2 π Rh ,

где h — высота сферического сегмента.

Если же ломаная вписана в дугу ВЕ (см. рис. 215), при вращении которой образуется шаровой пояс, то получим:

S шар. пояса = 2 π Rh ,

где h — высота шарового пояса.

Проделайте эти рассуждения самостоятельно.

в) Площадь поверхности шарового сектора. Эта площадь может быть получена как сумма площадей поверхности сферического сегмента и боковой поверхности одного конуса (см. рис. 213, а, б ) или как сумма площадей поверхности сферического слоя и боковых поверхностей двух конусов (см. рис. 213, в, г ).

Рассмотрим частный случай (см. рис. 213, а, б ). Если R — радиус сферы, h — высота шарового сегмента, то площадь боковой поверхности конуса с вершиной в центре сферы, образующей R , и радиусом основания (докажите это) равна π R , а площадь сегментной поверхности равна 2 π Rh. Значит, для площади шарового сектора справедлива формула

S шар. сект = π R (2 h + ) .

 ЗАДАЧА (3.418). Основанием треугольной пирамиды SABC является равносторонний треугольник АВС , сторона которого равна 4. Известно также, что AS = BS = , a SC = 3. Найти площадь сферы, описанной около этой пирамиды.

Решени е. Решим эту задачу двумя методами.

Первый метод ( геометрич е ски й). Пусть точка О — центр сферы, описанной около данной пирамиды; D — точка пересечения медиан правильного △ АВС ; точка Е — середина отрезка АВ (рис. 216).

Центр О сферы равноудалён от всех вершин △ АBС, поэтому принадлежит прямой, проходящей через точку D перпендикулярно плоскости АВС.

Так как точка Е — середина отрезка АВ, то SE ⟂ АВ ( AS = BS ) и СЕ ⟂ АВ ( △ АВС — правильный). Значит, по признаку перпендикулярности прямой и плоскости AB ⟂ ( CSE ) , поэтому ( CSE ) ⟂ ( ABC ) (по признаку перпендикулярности двух плоскостей). Это означает, что прямая OD, а следовательно, и точка О — центр сферы — лежат в плоскости CSE.

Точка D является центром окружности, описанной около △ АВС. (По этой окружности плоскость АВС пересекает сферу, описанную около данной пирамиды.) Если L — точка пересечения прямой СЕ и упомянутой окружности, то CL — её диаметр. Найдём длину диаметра CL.

В правильном △ AВС имеем: CE = = 2 ; CD = СЕ = . Тогда CL = 2 CD = .

Далее △ BSE ( ∠ BES = 90 ° ): SE 2 = SB 2 – BE 2 = 19 – 4 = 15 (по теореме Пифагора); △ SEC (по теореме косинусов):

cos C = = = ;

△ SLC (по теореме косинусов):

SL 2 = SC 2 + CL 2 – 2 SC • CL • cos C = ⇒ SL = .

Плоскость CSL проходит через центр О сферы, следовательно, пересекает сферу по большой окружности, которая описана около △ CSL. Значит, радиус R этой окружности равен радиусу сферы, описанной около данной пирамиды. Найдём длину радиуса R.

В треугольнике CSL имеем = 2 R. Так как в этом треугольнике cos C = , то sin C = = . Тогда R = = : = .

Находим площадь Q сферы:

Q = 4 π R 2 = 4 π • = π .

Второй метод ( коо р динатны й). Введём в пространстве декартову прямоугольную систему координат так, чтобы её начало совпадало с вершиной А данной пирамиды, направление оси абсцисс — с направлением луча АС, ось аппликат была перпендикулярна плоскости основания АВС пирамиды (рис. 217).

В этой системе координат вершины основания пирамиды имеют координаты: А (0; 0; 0), B (2; 2 ; 0), C (4; 0; 0).

Обозначив через х, у, z координаты вершины S пирамиды, найдём их из условий: AS = BS = , CS = 3 .

AS 2 = x 2 + y 2 + z 2 = 19,
ВS 2 = ( x – 2) 2 + ( y – 2 ) 2 + z 2 = 19,
C S 2 = ( x – 4) 2 + y 2 + z 2 = 9.

Решая систему уравнений

x 2 + y 2 + z 2 = 19, ( x – 2) 2 + ( y – 2 ) 2 + z 2 = 19, ( x – 4) 2 + y 2 + z 2 = 9,

находим: х = , у = , z = .

Таким образом, вершина S имеет следующие координаты:

S .

Пусть центр O сферы имеет координаты a, b, с, а её радиус равен R. Так как сфера описана около пирамиды SABC, то OA 2 = OB 2 = OC 2 = OS 2 = R 2 . Это соотношение в координатном виде равносильно системе уравнений

a 2 + b 2 + c 2 = R 2 , ( a – 2) 2 + ( b – 2 ) 2 + c 2 = R 2 , + + = R 2 , ( a – 4) 2 + b 2 + c 2 = R 2 .

Вычитая из первого уравнения четвёртое, получаем a = 2, после чего, вычитая из первого уравнения второе, получаем b = .

После вычитания третьего уравнения системы из первого её уравнения получаем:

= 0.

Подставив в это уравнение вместо a и b найденные их значения, получаем с = . Отсюда: R 2 = a 2 + b 2 + c 2 = 4 + + = . Тогда искомая площадь Q сферы равна:

Q = 4 π R 2 = π .

Ответ: π (кв. ед.).

19.8. Объёмы шара и его частей

Рассмотрим фигуру, образованную вращением равнобедренного прямоугольного треугольника с гипотенузой 2 R вокруг прямой, проходящей через вершину прямого угла параллельно гипотенузе (рис. 218, а ). Объём этой фигуры равен разности объёма цилиндра с высотой 2 R , радиусом основания R и удвоенного объёма конуса высоты R , радиуса основания R :

V = π • R 2 • 2 R – 2 • π • R 2 • R = π • R 3 . (*)

Шар радиуса R (рис. 218, б ) и образованную выше фигуру вращения расположим между двумя параллельными плоскостями, расстояние между которыми равно 2 R . Шар при этом будет касаться каждой из данных плоскостей, а фигуру вращения расположим так, чтобы её ось вращения была перпендикулярна этим плоскостям (см. рис. 218). (Плоскость, которая содержит верхнее основание цилиндра и касается сферы в точке N , на рисунке не изображена.)

Будем пересекать наши фигуры плоскостями, параллельными данным плоскостям и удалёнными от центра шара на расстояние x (0 ⩽ x ⩽ R ).

При х = 0 площади сечений обеих фигур равны π • R 2 ; при х = R площади сечений равны нулю. В остальных случаях площадь сечения шара равна π • ( ) 2 = π • ( R 2 – x 2 ), а площадь сечения другой фигуры (ею является кольцо) равна π • R 2 – π • x 2 . Следовательно, площади равноудалённых от центра шара сечений рассматриваемых фигур равны (относятся, как 1 : 1). Поэтому на основании принципа Кавальери равны и объёмы этих тел. Тогда на основании (*):

V шара = • π • R 3 ,

гдe R — радиус шара.

Для получения объёма шарового сегмента высоты h рассмотрим предыдущую ситуацию для R – h ⩽ x ⩽ R (при h R ) (рис. 218, 219). Применяя принцип Кавальери, получим: объём шарового сегмента равен разности объёма цилиндра высоты h и радиуса основания R и объёма усечённого конуса высоты h и радиусов оснований R и R – h , т. е.

V = π • h • R 2 – π • h • ( R 2 + R • ( R – h ) + ( R – h ) 2 ) =
= π • h 2 • (3 R – h ) .

При h > R объём шарового сегмента можно найти как разность объёма шара и объёма шарового сегмента высоты 2 R – h (рис. 220): V = π • R 3 – • π • (2 R – h ) 2 • (3 R – (2 R – h )) = π • h 2 (3 R – h ) , т. е. получаем ту же самую формулу. Подставляя в эту формулу h = R , получим V = π • R 2 (3 R – R ) = π • R 3 , что соответствует объёму полушара.

Мы показали, что в шаре радиуса R объём любого шарового сегмента высоты h может быть вычислен по формуле:

V шар. сегм = π • h 2 • (3 R – h ) ,

или в другом виде

V шар. сегм = π • h 2 • .

источники:

http://ru.onlinemschool.com/math/formula/sphere/

http://b4.cooksy.ru/articles/dlina-okruzhnosti-sfery-radiusa-10

Элементы, используемые при построении сечений

Секущая сферыэто прямая, которая пересекает сферу в двух точках.

Точки пересечения называются точками протыкания поверхности или точками входа и выхода на поверхности.

Хорда сферы (шара)это отрезок, соединяющий две точки сферы (поверхности шара).

Секущая плоскостьэто плоскость, которая пересекает сферу.

Диаметральная плоскостьэто секущая плоскость, проходящая через центр сферы или шара, сечение образует соответственно большую окружность и большой круг.

Большая окружность и большой круг имеют центр, который совпадают с центром сферы (шара).

Любая хорда, проходящая через центр сферы (шара) является диаметром.

Хорда является отрезком секущей пря мой.

Расстояние d от центра сферы до секущей всегда меньше чем радиус сферы:

Контрольные вопросы

1. Дать определение шара и сферы. Уметь представить схему шара и сферы.

2. Знать элементы шара и сферы.

3. Знать формулы определения объема шара, площади поверхности сферы, уравнение сферы.

4. Знать элементы и уметь изобразить схемой элементы сечения шара и сферы.

5. Основные свойства шара и сферы.

6. Перечислить части шара, дать их характеристику и сопутствующие формулы площади поверхности и объема.

Решение задач

Стороны треугольника ΔАВС касаются сферы радиусом R = 5 см.

Найти расстояние от центра сферы до плоскости АВС, если АВ = 13 см, ВС = 14 см, СА = 15 см (рис. 2).

Рис. 2. Иллюстрация к задаче 3

1. Рассмотрим прямоугольный треугольник ΔОНК:

О – центр сферы,

Н – центр окружности сечения шара плоскостью треугольника ΔОНК,

К – точка на этой окружности.

В треугольнике ΔОНК известна сторона ОК, как радиус шара (5 см).

Чтобы найти искомое расстояние ОН от центра сферы до секущей поверхности треугольника ΔАВС, необходимо найти радиус НК вписанной в треугольник ΔАВС окружности.

2. Окружность является вписанной в треугольник ΔАВС.

Воспользуемся формулой определения площади треугольника, в который вписана окружность:

,

где r – радиус окружности, вписанной в треугольник;

S площадь треугольника АВС, в который вписана окружность;

p – полупериметр треугольника АВС.

2.1. Найдем полупериметр ΔАВС:

– полупериметр.

2.2. Найдем площадь треугольника ΔАВС по формуле Герона:

.

Тогда радиус вписанной окружности НК:

3. Найдем искомое расстояние ОН от центра сферы до плоскости ΔАВС как катет в прямоугольном ΔОНК, в котором известны гипотенуза ОК (радиус сферы – 5 см) и второй катет НК (радиус окружности сечения – 4 см) – по теореме Пифагора:

Ответ: расстояние от центра сферы до плоскости ΔАВС

Все стороны ромба, диагонали которого равны 15 см и 20 см, касаются сферы радиуса 10 см.

Найти расстояние от центра сферы до плоскости ромба.

Найти расстояние от центра сферы до плоскости ромба ОМ можно как катет в прямоугольном ΔОМК, в котором необходимо найти гипотенузу ОК (радиус сферы) и необходимо найти катет МК (радиус окружности, полученной в результате сечения сферы плоскостью ромба).

1. Рассмотрим сечение сферы плоскостью ромба. Это окружность, которая вписана в ромб.

Ромб разделен диагоналями на четыре равных прямоугольных треугольника.

По теореме Пифагора гипотенуза, то есть сторона ромба, АД, равна:

2.

Тогда высоту МК, опущенную на сторону ромба АД в ΔАМД (одного из четырех равных треугольников ромба), (рис. 4) найдем по формуле:

,

где a, b – это катеты МА и одного из четырех равных треугольников

ромба ΔАМД;

при этом катеты равны половинам диагоналей ромба: 10; 7,5 см.

с – это гипотенуза одного из четырех равных треугольников ромба,

являющаяся также уже найденной нами стороной ромба (АД)

3. Очевидно, радиусом окружности сечения будет высота МК прямоугольного треугольника АМД.

То есть это высота прямоугольного треугольника с катетами 10 и 7,5 (рис.4).

4. Искомое расстояние от центра до плоскости ОМ найдем по теореме Пифагора как неизвестный катет в прямоугольном ΔОМК (рис. 5), в котором известна гипотенуза ОК (радиус сферы) и катет МК (радиус окружности сечения)

Имеем треугольник, подобный «египетскому» треугольнику, то есть недостающий катет его равен 8:

Ответ: расстояние от центра сферы

до плоскости ромба равно 8 см.

Радиус сферы равен 112 см. Точка, лежащая на касательной плоскости к сфере, удалена от точки касания на 15 см.

Найти расстояние от данной точки до ближайшей к ней точки сферы.

Рис. 6

— центр сферы – точка О,

— точка касания – точка М,

— данная точка – точка А.

ОМ = 112 см (по условию),

МА = 15 см (по условию).

2. Пусть ОА пересекает сферу в точке В.

— точка В – искомая точка (рис. 7).

Докажем, что расстояние АВ – наименьшее.

Рис. 7

3.Пусть точка С (отличная от точки В и не лежащая на линии ОА) (рис. 8) на сфере такова, что АС

Домашнее задание

1) Диаметр шара равен N см. Через конец диаметра проведена плоскость под углом 45º к нему. Найдите длину линии пересечения сферы этой плоскостью.

Где N – это номер студента в классном журнале.

1) Все стороны правильного треугольника касаются сферы радиуса N см. Найдите расстояние от центра сферы до плоскости треугольника, если его сторона равна 50см.

Где N – это номер студента в классном журнале.

1. Сечением шара плоскостью является.

2. Сечение сферы плоскостью есть.

3. Можно ли развернуть сферу на плоскость?

4. Представление о форме сферы дают:

а) футбольный мяч б) апельсин в) коробка

5. Представление о форме шара дают:

а) колпак у Буратино б) арбуз в) башни Кремля г) коробка д) кружка

Укажите утверждения, которые являются неверными:

1. Все точки шара удалены от его центра на расстояние равное радиусу шара.

2. Всякое сечение сферы плоскостью есть окружность.

3. Всякое сечение шара плоскостью есть окружность.

4. Если точка удалена от центра шара на расстояние, меньшее радиуса шара, то она не принадлежит шару.

5. Если точка удалена от центра сферы на расстояние меньшее радиуса сферы, то она не принадлежит сфере.

Понравилась статья? Добавь ее в закладку (CTRL+D) и не забудь поделиться с друзьями:

Источник

§ 19. Шар и сфера

19.1. Определения шара, сферы и их элементов

С шаром и сферой мы уже знакомы. Напомним их определения.

Определение. Шаром называется множество всех точек пространства, находящихся от данной точки на расстоянии, не большем данного R (R > 0). Данная точка называется центром шара, а данное расстояние R — радиусом шара.

Определение. Сферой называется множество всех точек пространства, находящихся от данной точки на расстоянии, равном данному R. Данные точка и расстояние R называются соответственно центром и радиусом сферы.

Рис. 193

На рисунке 193 изображён шар с центром О и радиусом R =  OА.

Из определений шара и сферы следует, что шар с центром О и радиусом R является объединением двух множеств точек: 1) множества точек M пространства, для которых OM < R (они называются внутренними точками шара и образуют его внутренность); 2) множества всех М, для которых ОМ = R (эти точки являются граничными точками шара, а их объединение составляет границу шара, которая называется шаровой поверхностью и является сферой c центром О и радиусом R).

Радиусом шара называют также всякий отрезок, соединяющий центр шара с точкой шаровой поверхности. Отрезок, соединяющий две точки шаровой поверхности и проходящий через центр шара, называется диаметром шара. Концы любого диаметра шара называются диаметрально nротивоположными точками шара. Отрезок, соединяющий две любые точки шаровой поверхности и не являющийся диаметром шара, называют хордой шара (сферы). На рисунке 193 отрезки ОА, ОВ, ON, OS — радиусы шара; отрезки АВ, NS — диаметры шара; A и B — диаметрально противоположные точки шара. Из определения диаметра шара следует, что он равен удвоенному радиусу шара.

Рис. 194

Покажем, что шар — тело вращения. Для этого рассмотрим полукруг F с центром О и радиусом R (рис. 194, а). При вращении полукруга F вокруг прямой, содержащей его диаметр NS, образуется некоторое тело F1 (рис. 194, б). Так как вращение вокруг прямой — движение и точка О принадлежит оси l вращения, то каждая точка тела F1 удалена от точки O на расстояние, не большее R (движение сохраняет расстояния между точками). Это означает, что тело F1 есть шар с центром О и радиусом R. Кроме того, при вращении границы полукруга — полуокружности — вокруг прямой l образуется сфера. Прямая, содержащая любой диаметр шара, может быть рассмотрена как ось вращения. Следовательно, сечением шара плоскостью, перпендикулярной его оси вращения l и пересекающей шар, является круг, а сечением сферы такой плоскостью — окружность этого круга; центр круга (окружности) есть точка пересечения секущей плоскости с осью l.

Плоскость, проходящая через центр шара (сферы), называется диаметральной плоскостью шара (сферы). Сечением шара диаметральной плоскостью является круг, радиус которого равен радиусу шара. Такой круг называется большим кругом, а его окружность — большой окружностью; большая окружность является пересечением сферы и её диаметральной плоскости.

19.2. Изображение сферы

Рис. 195

Рассмотрим сферу, диаметр NS которой проведён вертикально (рис. 195, а). Большая окружность, по которой сферу пересекает диаметральная плоскость, перпендикулярная диаметру (оси) NS, называется экватором, а точки N и S — полюсами сферы. Окружность, ограничивающая круг — изображение сферы, — называется абрисом или очерковой линией.

Типичная ошибка (!) при изображении сферы (рис. 195, б) в том, что, изображая её экватор эллипсом, полюсы изображают расположенными на абрисе.

Для верного и наглядного изображения сферы вспомним, как в курсе черчения изображают фигуру на комплексном двухкартинном чертеже (эпюре) посредством ортогонального её проектирования на две взаимно перпендикулярные плоскости, одну из которых называют фронтальной (обозначают V), а другую — профильной (обозначают W) плоскостями проекций.

Сферу расположим так, чтобы её ось NS была параллельна профильной (W), но не параллельна фронтальной (V) плоскостям проекций. Тогда ортогональные проекции сферы на плоскости V и W имеют вид, изображённый на рисунке 196. На нём: равные круги — проекции сферы на плоскости V и W; отрезки A1B1 и N1S1 — профильные проекции соответственно экватора и оси сферы; точки N, S — фронтальные проекции полюсов (строятся с помощью линий связи); точки А, В — фронтальные проекции концов диаметра экватора, параллельного фронтальной плоскости (строятся с помощью линий связи); отрезок CD — фронтальная проекция диаметра CD сферы, перпендикулярного профильной плоскости; эллипс с осями АВ и CD — фронтальная проекция экватора. При таком расположении относительно плоскостей проекций сфера изображается так, как показано на рисунках 195, a; 196, a.

Рис. 196

Рис. 197

Обратите внимание! Полюсы N и S не лежат на абрисе, и экватор изображается эллипсом. При этом положение полюсов N и S и положение вершин А и В эллипса-экватора взаимосвязаны.

Действительно, из равенства ОBF = ЕNО (см. рис. 196, а) следует:  = EN, BF = NO. Это означает: а) если изображены полюсы N и S сферы, то вершины А и В эллипса — изображения экватора определяются из равенств  = ОА = NE, где NE || OD; б) если изображён экватор (т. е. дана малая ось AB эллипса-экватора), то положение полюсов N и S определяется из равенств ON = OS = BF, где BF || OD.

На рисунке 197, а — верное и наглядное изображение сферы, на рисунке 197, б — изображение сферы верное (почему?), но не наглядное; на рисунке 197, в — неверное изображение (почему?).

ЗАДАЧА (3.106). Найти в пространстве множество вершин всех прямых углов, опирающихся на данный отрезок АВ.

Решение. Если ∠ АМВ = 90°, то точка М принадлежит окружности с диаметром АВ (рис. 198, a).

Рис. 198

Проведём произвольную плоскость α, содержащую отрезок АВ. В этой плоскости множество всех точек М, из которых отрезок AB виден под прямым углом, есть окружность, для которой отрезок AB — диаметр. Точки А и В этому множеству точек не принадлежат. (Почему?) Таким образом, искомое множество вершин прямых углов, опирающихся на отрезок AB, есть сфера с диаметром AB. Точки А и В этому множеству точек-вершин не принадлежат.

19.3. Уравнение сферы

Составим уравнение сферы с центром А (a; b; с) и радиусом R в декартовой прямоугольной системе координат Oxyz.

Пусть М(x; у; z) — любая точка этой сферы (рис. 199). Тогда MA = R или MA2 = R2. Учитывая, что MA2 = (xa)2  + (уb)2 + (zc)2, получаем искомое уравнение cферы

(xa)2 + (уb)2 + (zc)2 = R2.

Если начало системы координат совпадает с центром A сферы, то a = b = c = 0, а сфера в такой системе координат имеет уравнение

x2 + y2 + z2 = R2.

Из полученных уравнений следует, что сфера — поверхность второго порядка.

Так как для любой точки М(х; у; z) шара с центром А (a; b; с) и радиусом R выполняется МА R, то этот шар может быть задан неравенством

(xa)2 + (уb)2 + (zc)2 R2.

При этом для всех внутренних точек М шара выполняется условие МА2 < R2, т. е.

Рис. 199

(хa)2 + (уb)2 + (zc)2 < R2,

для точек М шаровой поверхности — условие

МА = R,

т. е. (хa)2 + (уb)2 + (zc)2 = R2,

для точек М вне шара — условие

МА > R,

т. е. (хa)2 + (уb)2 + (zc)2 > R2.

19.4. Пересечение шара и сферы с плоскостью

Рассмотрим подробнее вопрос о пересечении шара и сферы с плоскостью. Имеет место следующая теорема.

Теорема 30 (о пересечении шара и сферы с плоскостью). 1) Если расстояние от центра шара до данной плоскости меньше радиуса шара, то пересечением шара с плоскостью является круг. Центром этого круга является основание перпендикуляра, проведённого из центра шара на плоскость, или сам центр шара, если плоскость проходит через этот центр. Пересечением сферы с плоскостью является окружность указанного круга. Радиус r сечения в этом случае равен = , где R — радиус шара, a d — расстояние от центра шара до плоскости сечения. 2) Если расстояние от центра шара до данной плоскости равно радиусу шара, то плоскость имеет с шаром и ограничивающей его сферой только одну общую точку. 3) Если расстояние от центра шара до данной плоскости больше радиуса, то плоскость не имеет с шаром общих точек.

Доказательство. Пусть точка О — центр шара, R — его радиус; α — данная плоскость, точка A — основание перпендикуляра, проведённого из центра O на плоскость α. Обозначим ρ(О; α) = | ОА | = d — расстояние от центра шара до плоскости α.

Рассмотрим каждый из случаев взаимного расположения шара и данной плоскости α.

Рис. 200

1) ρ(O; α) = d < R и плоскость α не проходит через центр О шара (рис. 200). Докажем, что пересечение шара и плоскости есть круг с центром А и радиусом r = . Для этого достаточно убедиться, что любая точка пересечения шара и плоскости α есть точка круга с центром А и радиусом r = и, обратно, любая точка этого круга есть точка указанного пересечения.

Действительно, пусть М — произвольная точка шара, принадлежащая плоскости α (см. рис. 200). В прямоугольном треугольнике AOM по теореме Пифагора ОM2  = ОА2 + АМ2, откуда AM = . Так как точка М принадлежит шару, то ОМ R, тогда OM2OA2 R2d2, поэтому АМ . Это означает, что точка М сечения шара плоскостью α находится от точки А на расстоянии, не большем , следовательно, она принадлежит кругу с центром А и радиусом .

Обратно, пусть М — произвольная точка плоскости α, принадлежащая кругу с центром А и радиусом r = . В прямоугольном треугольнике AOM по теореме Пифагора OM2 = ОA2 + AM2. Так как AM r, то OM2 OA2 + r2 = d2  + R2d2 = R2, откуда OM R. Значит, точка М принадлежит данному шару. Учитывая, что точка М принадлежит и плоскости α, приходим к выводу: точка M принадлежит пересечению данного шара и плоскости α.

Если неравенства, которые использовались в предыдущем доказательстве, заменить равенствами, то, рассуждая аналогично, можно доказать, что при d < R пересечением сферы и плоскости является окружность с центром А и радиусом r = . Проделайте это самостоятельно.

Рис. 201

Если плоскость α проходит через центр O шара, то d = 0, значит, r = R, т. е. сечением шара такой плоскостью является большой круг, а сечением сферы — большая окружность (см. рис. 200).

2) ρ(O; α) = d = OA = R (рис. 201).

Так как ОА = ρ(O; α) = R, то точка А, являющаяся основанием перпендикуляра из центра О шара на плоскость α, принадлежит шаровой поверхности, ограничивающей данный шар.

Рис. 202

Пусть M — произвольная точка плоскости α, отличная от точки A (см. рис. 201). Тогда длины наклонной ОМ и перпендикуляра OA, проведённых из точки О к плоскости α, удовлетворяют неравенству OM > ОА = R. Значит, точка М не принадлежит шару. Следовательно, плоскость α имеет только одну общую точку с шаром — точку А.

3) ρ(О; α) = ОА = d > R (рис. 202). Для любой точки М плоскости α выполняется (почему?) ОМ  d > R. Это означает, что на плоскости α нет точек шара. Теорема доказана.

ЗАДАЧА (3.161). Через середину радиуса шара проведена перпендикулярная к нему плоскость. Радиус шара равен R. Найти: а) площадь получившегося сечения; б) площади боковой и полной поверхностей конуса, основанием которого служит получившееся сечение шара, а вершиной — центр шара; в) площади боковой и полной поверхностей правильной треугольной пирамиды, вписанной в этот конус.

Решение. а) Пусть точка O — центр шара, OD — его радиус, точка С — середина радиуса OD; α — секущая плоскость, проходящая через точку С перпендикулярно OD.

Рассмотрим сечение шара диаметральной плоскостью, проходящей через его радиус OD. Этим сечением является большой круг с центром О и радиусом R (рис. 203); АВ — диаметр круга — сечения данного шара плоскостью α.

Так как АВ  OD и точка С — середина радиуса OD, то отрезок AB равен стороне правильного треугольника, вписанного в окружность радиуса R, значит, АВ = R, откуда

Рис. 203

АС = r = , где r — радиус сечения шара плоскостью α. Тогда площадь этого сечения равна πr2 = .

б) Найдём площадь поверхности конуса с вершиной О и радиусом основания r = .

Рис. 204

Образующая ОЕ конуса (рис. 204) равна радиусу R данного шара. Поэтому площадь боковой поверхности этого конуса равна

πrR = πR = ,

а площадь его полной поверхности —  +  = πR2(2 + ).

в) Найдём площадь поверхности правильной треугольной пирамиды OEFK, вписанной в конус, радиус основания которого СK =  = , боковое ребро OE пирамиды равно радиусу R данного шара (см. рис. 204).

Так как  ЕFK — правильный, вписанный в окружность радиуса r = , то сторона этого треугольника равна r , т. е. EF = . Тогда S△ EFK =  = .

Площадь боковой поверхности пирамиды равна 3SEOF  = EFОН, где OH — апофема пирамиды. В прямоугольном треугольнике OHF находим

ОН =  =  = .

Тогда EFOH =  — площадь боковой поверхности пирамиды.

Следовательно, площадь полной поверхности пирамиды равна

 +  = R2( + ).

Ответ: a) ; б) π R2 (2 +); в) ; R2( +).

19.5. Плоскость, касательная к сфере и шару

Из теоремы 30 следует, что плоскость может иметь со сферой (с шаром) только одну общую точку.

Определение. Плоскость, имеющая только одну общую точку со сферой (с шаром), называется касательной плоскостью к сфере (шару), а их единственная общая точка называется точкой касания (рис. 205).

Рис. 205

Также говорят, что плоскость касается сферы (шара).

Любая прямая, лежащая в касательной плоскости к сфере и проходящая через точку их касания, называется касательной прямой к сфере; эта прямая имеет со сферой единственную общую точку — точку касания, и радиус сферы, проведённый в точку касания, перпендикулярен касательной прямой.

 Заметим, что если прямая a касается сферы в точке М, то эта прямая касается в точке М той окружности большого круга, которая является сечением сферы и диаметральной плоскости, проходящей через прямую a.

Справедливо и обратное: если прямая a касается окружности большого круга сферы в точке М, то эта прямая касается в точке М самой сферы.

Более того, так как прямая a, касающаяся сферы в точке М, имеет со сферой лишь одну общую точку — точку М, то эта прямая касается любой окружности, по которой пересекаются данная сфера и любая (не только диаметральная) плоскость, проходящая через прямую a. А поскольку радиус, проведённый в точку касания прямой и окружности, перпендикулярен касательной прямой, то центры всех этих окружностей — полученных сечений сферы — лежат в плоскости, проходящей через точку М перпендикулярно касательной прямой a. При этом, если точка О — центр данной сферы радиуса R, точка А — центр окружности радиуса r, по которой пересекает сферу одна (любая) из плоскостей, проходящих через касательную в точке М прямую к данной сфере, ϕ — величина угла между этой секущей плоскостью и проходящей через точку М диаметральной плоскостью данной сферы, то справедливо равенство r = Rcos ϕ (ОАМ — прямоугольный, так как отрезок ОА перпендикулярен секущей плоскости (почему?)). 

Для плоскости, касательной к сфере, справедливы теоремы, аналогичные теоремам о прямой, касательной к окружности на плоскости.

Теорема 31. Если плоскость касается сферы, то она перпендикулярна радиусу, проведённому в точку касания.

Доказательство. Пусть дана сфера с центром O и радиусом R. Рассмотрим плоскость α, касающуюся данной сферы в точке M (см. рис. 205) и докажем, что ОM  α.

Предположим, что радиус ОM — не перпендикуляр, а наклонная к плоскости α. Значит, расстояние от центра сферы до плоскости α, равное длине перпендикуляра, проведённого из центра О на плоскость α, меньше радиуса. Тогда по теореме 30 плоскость α пересекает сферу по окружности. Но по условию теоремы плоскость α касается сферы и имеет с ней единственную общую точку M. Пришли к противоречию, которое и доказывает, что OM  α. Теорема доказана.

Справедлива обратная теорема.

Теорема 32. Если плоскость проходит через точку сферы и перпендикулярна радиусу, проведённому в эту точку, то она касается сферы.

Доказательство. Пусть плоскость α проходит через точку M сферы и перпендикулярна радиусу ОM (см. рис. 205). Значит, расстояние от центра сферы до плоскости равно радиусу ОM. Тогда по теореме 30 плоскость α и сфера имеют единственную общую точку M, следовательно, плоскость α касается сферы (в точке M). Теорема доказана.

Так как сечение шара плоскостью есть круг, то можно доказать, что для шара выполняются следующие метрические соотношения:

диаметр шара, делящий его хорду пополам, перпендикулярен этой хорде;

отрезки всех касательных прямых, проведённых к шару из одной расположенной вне шара точки, равны между собой (они образуют поверхность конуса с вершиной в данной точке, а точки касания этих прямых — окружность основания этого конуса);

произведение длин отрезков хорд шара, проходящих через одну и ту же внутреннюю точку шара, есть величина постоянная (равная R2a2, где R — радиус шара, a — расстояние от центра шара до данной точки);

если из одной и той же точки вне шара проведены к нему секущая и касательная, то произведение длины отрезка всей секущей на длину отрезка её внешней части равно квадрату длины отрезка касательной (и равно a2R2, где R — радиус шара, a — расстояние от центра шара до данной точки).

19.6. Вписанные и описанные шары и сферы

Определение. Шар называется вписанным в цилиндр, если основания и каждая образующая цилиндра касаются шара (рис. 206).

Рис. 206

Рис. 207

Цилиндр в таком случае называется описанным около шара. В цилиндр можно вписать шар тогда и только тогда, когда он равносторонний.

Определение. Шар называется описанным около цилиндра, если основания цилиндра служат сечениями шара (рис. 207).

Цилиндр при этом называют вписанным в шар. Около любого цилиндра можно описать шар. Центром шара служит середина оси цилиндра, а радиус шара равен радиусу круга, описанного около осевого сечения цилиндра.

Рис. 208

Рис. 209

Определение. Шар называется описанным около конуса, если основание конуса — сечение шара, а вершина конуса принадлежит поверхности шара (рис. 208).

Конус при этом называют вписанным в шар.

Центр шара, описанного около конуса, совпадает с центром круга, описанного около осевого сечения конуса, а радиус шара равен радиусу этого круга.

Определение. Шар называется вписанным в конус, если основание и все образующие конуса касаются шара.

Конус при этом называют описанным около шара (рис. 209). Центр вписанного в конус шара совпадает с центром круга, вписанного в осевое сечение конуса, а радиус шара равен радиусу этого круга.

Определение. Шар называется вписанным в многогранник, если он касается всех граней многогранника.

Многогранник в таком случае называют описанным около шара (рис. 210).

Не во всякий многогранник можно вписать шар. Например, вписать шар можно в любую треугольную или правильную пирамиду. А в прямую призму, в основании которой лежит прямоугольник, не являющийся квадратом, шар вписать нельзя.

Рис. 210

При нахождении радиуса r вписанного в многогранник шара (если таковой существует) удобно пользоваться соотношением

Vмногогр = rSполн. поверх.

Шар называется вписанным в двугранный угол, если он касается его граней. Центр вписанного в двугранный угол шара лежит на биссекторной плоскости этого двугранного угла. При этом для радиуса r шара, вписанного в двугранный угол, величины α этого угла и расстояния m от центра шара до ребра двугранного угла справедлива формула: r = msin . Этой формулой часто пользуются при решении задач.

Шар называется вписанным в многогранный угол, если он касается всех граней многогранного угла. При решении задач, в которых рассматриваются вписанные в многогранный угол шары, удобно пользоваться соотношением: r =  msin , где r — радиус шара, вписанного в многогранный угол, m расстояние от центра шара до ребра многогранного угла, α — величина двугранного угла при этом ребре.

Если все плоские углы трёхгранного угла равны по 60°, то расстояние от вершины угла до центра вписанного в этот угол шара радиуса r равно 3r; если все плоские углы трёхгранного угла прямые, то расстояние от вершины угла до центра вписанного в этот угол шара радиуса r равно r. Эти соотношения часто используют при решении задач, в которых рассматриваются те или иные комбинации шаров с правильными тетраэдрами или прямоугольными параллелепипедами.

Определение. Шар называется описанным около многогранника, если все вершины многогранника принадлежат поверхности шара (рис. 211). Многогранник при этом называют вписанным в шар.

Рис. 211

Не около всякого многогранника можно описать шар. Например, около любой правильной или любой треугольной пирамиды шар описать можно, а около четырёхугольной пирамиды, в основании которой лежит ромб, не являющийся квадратом, шар описать нельзя (около ромба нельзя описать окружность). Более того, нельзя описать шар около любой наклонной призмы.

Вообще, для того чтобы около многогранника можно было описать шар, необходимо, чтобы около любой его грани можно было описать круг. При этом центр описанного шара может лежать как внутри многогранника, так и вне его или на его поверхности (даже на ребре многогранника), и проектируется в центр описанного около любой грани круга. Кроме того, перпендикуляр, опущенный из центра описанного около многогранника шара на ребро многогранника, делит это ребро (как хорду шара) пополам.

Мы уже говорили о пирамидах, все рёбра которых одинаково наклонены к основанию. Около таких пирамид всегда можно описать шар, центр которого лежит на луче, содержащем высоту пирамиды.

Высота h пирамиды, радиус Rк описанного около основания пирамиды круга и радиус R описанного около этой пирамиды шара связаны соотношением:

(Rh)2 +  = R2.

Приведём формулы для вычисления радиусов вписанных и описанных шаров для правильных многогранников с ребром a.

В задачах иногда ещё рассматривают шары, касающиеся всех рёбер данного многогранника. Для куба, например, такой шар существует и его радиус равен , где a — ребро куба.

19.7. Площади поверхностей шара и его частей

Часть шара, заключённая между секущей плоскостью и одной из двух частей его сферической поверхности, называется шаровым сегментом (рис. 212 и 214). Поверхность шарового сегмента называется сегментной поверхностью: она представляет собой часть шаровой поверхности, отсекаемую какой-нибудь плоскостью. Круг АВ, по которому плоскость пересекает шар, называется основанием шарового сегмента, а окружность этого круга — основанием сегментной поверхности. Отрезок ОС радиуса, перпендикулярного секущей плоскости, называется высотой шарового сегмента (сегментной поверхности).

Рис. 212

Часть шара, заключённая между двумя параллельными секущими плоскостями, называется шаровым слоем (см. рис. 212, 214). Поверхность шарового слоя называется шаровым поясом. Шаровой пояс — часть шаровой поверхности, заключённая между двумя параллельными секущими плоскостями. Перпендикуляр, проведённый из точки одного основания к плоскости другого, называется высотой шарового слоя (шарового пояса).

Сегментную поверхность и шаровой пояс можно рассматривать как поверхности вращения: в то время, как при вращении полуокружности CAA1D (см. рис. 212) вокруг диаметра CD образуется шаровая поверхность (сфера), при вращении дуги СА этой полуокружности вокруг того же диаметра образуется сегментная поверхность, а при вращении дуги AA1 — шаровой пояс.

Тело, образованное при вращении кругового сектора с углом ϕ (ϕ < 180°) вокруг прямой, которая содержит диаметр круга, не имеющий с круговым сектором общих внутренних точек, называется шаровым сектором.

Рис. 213

Из этого определения следует, что поверхность шарового сектора состоит из сегментной поверхности и боковой поверхности конуса (рис. 213, а, б) или из поверхности шарового пояса и боковых поверхностей двух конусов (рис. 213, в, г).

На рисунке 214 изображены различные элементы шара и сферы (шаровой сектор имеет простейший вид).

Рассмотрим вопрос о вычислении площадей сферы, сегментной поверхности, шарового пояса и шарового сектора.

Рис. 214

Рис. 215

а) Площадь сферы. Пусть ABCDEF — правильная ломаная линия, вписанная в данную полуокружность; a — длина её апофемы (рис. 215). При вращении полуокружности вокруг её диаметра AF образуется сфера, а при вращении ломаной ABCDEF вокруг этого же диаметра AF образуется некоторая поверхность Ф.

За площадь сферы, образованной вращением полуокружности вокруг её диаметра, принимают предел, к которому стремится площадь поверхности Ф, образованной вращением вокруг того же диаметра правильной n-звенной ломаной линии, вписанной в полуокружность, при n + (число сторон неограниченно возрастает).

Поверхность Ф является объединением поверхностей, образованных вращением звеньев ломаной линии, вписанной в полуокружность, вокруг её диаметра. Этими поверхностями являются боковые поверхности либо конуса (для первого и последнего звеньев ломаной), либо цилиндра (для звеньев, параллельных оси вращения; их может и не быть), либо усечённого конуса (для всех остальных звеньев ломаной).

При вычислении площадей получившихся поверхностей воспользуемся следствиями из теорем 26, 27, 29. Площадь Si (i = 1, 2, …, n) поверхности, образованной вращением любого звена, равна произведению 2π, расстояния bi от середины звена до центра сферы и длины mi проекции этого звена на ось вращения, т. е. Si вращ = 2πbimi.

Так как ломаная — правильная, то все bi равны апофеме an данной n-звенной ломаной, а m1 + m2 + m3 + … + mn = 2R и S1 + S2 + S3 + … + Sn = 4πanR. Причём an = , где pn — периметр данной ломаной. Поскольку ограниченная переменная величина при n+ становится бесконечно малой, то при n апофема an стремится к радиусу R полуокружности.

Следовательно, предел площади поверхности Ф при n равен 4πRR = 4πR2. Этот предел и принимается за величину площади сферы радиуса R:

Sсферы = 4πR2.

б) Площади сегментной поверхности и шарового пояса. Если правильная ломаная вписана не в полуокружность, а в некоторую её часть, например в дугу AD (см. рис. 215), при вращении которой образуется сегментная поверхность, то рассуждения, аналогичные предыдущим, приводят к выводу:

Sсегм. поверх = 2πRh,

где h — высота сферического сегмента.

Если же ломаная вписана в дугу ВЕ (см. рис. 215), при вращении которой образуется шаровой пояс, то получим:

Sшар. пояса = 2πRh,

где h — высота шарового пояса.

Проделайте эти рассуждения самостоятельно.

в) Площадь поверхности шарового сектора. Эта площадь может быть получена как сумма площадей поверхности сферического сегмента и боковой поверхности одного конуса (см. рис. 213, а, б) или как сумма площадей поверхности сферического слоя и боковых поверхностей двух конусов (см. рис. 213, в, г).

Рассмотрим частный случай (см. рис. 213, а, б). Если R — радиус сферы, h — высота шарового сегмента, то площадь боковой поверхности конуса с вершиной в центре сферы, образующей R, и радиусом основания (докажите это) равна πR, а площадь сегментной поверхности равна 2πRh. Значит, для площади шарового сектора справедлива формула

Sшар. сект = πR(2h + ).

ЗАДАЧА (3.418). Основанием треугольной пирамиды SABC является равносторонний треугольник АВС, сторона которого равна 4. Известно также, что AS = BS = , a SC = 3. Найти площадь сферы, описанной около этой пирамиды.

Рис. 216

Решение. Решим эту задачу двумя методами.

Первый метод (геометрический). Пусть точка О — центр сферы, описанной около данной пирамиды; D — точка пересечения медиан правильного АВС; точка Е — середина отрезка АВ (рис. 216).

Центр О сферы равноудалён от всех вершин АBС, поэтому принадлежит прямой, проходящей через точку D перпендикулярно плоскости АВС.

Так как точка Е — середина отрезка АВ, то SE  АВ (AS =  BS) и СЕ  АВ (АВС — правильный). Значит, по признаку перпендикулярности прямой и плоскости AB  (CSE), поэтому (CSE (ABC) (по признаку перпендикулярности двух плоскостей). Это означает, что прямая OD, а следовательно, и точка О — центр сферы — лежат в плоскости CSE.

Точка D является центром окружности, описанной около АВС. (По этой окружности плоскость АВС пересекает сферу, описанную около данной пирамиды.) Если L — точка пересечения прямой СЕ и упомянутой окружности, то CL — её диаметр. Найдём длину диаметра CL.

В правильном AВС имеем: CE =  = 2; CD  =    СЕ = . Тогда CL = 2CD = .

Далее BSE (BES = 90°): SE2 = SB2BE2 = 19 – 4 = 15 (по теореме Пифагора); SEC (по теореме косинусов):

cos C =  =  = ;

SLC (по теореме косинусов):

SL2 = SC2 + CL2 – 2SCCLcos C = SL = .

Плоскость CSL проходит через центр О сферы, следовательно, пересекает сферу по большой окружности, которая описана около CSL. Значит, радиус R этой окружности равен радиусу сферы, описанной около данной пирамиды. Найдём длину радиуса R.

В треугольнике CSL имеем  = 2R. Так как в этом треугольнике cos C = , то sin C =  = . Тогда =  = :  = .

Находим площадь Q сферы:

Q = 4πR2 = 4π = π.

Второй метод (координатный). Введём в пространстве декартову прямоугольную систему координат так, чтобы её начало совпадало с вершиной А данной пирамиды, направление оси абсцисс — с направлением луча АС, ось аппликат была перпендикулярна плоскости основания АВС пирамиды (рис. 217).

В этой системе координат вершины основания пирамиды имеют координаты: А(0; 0; 0), B(2; 2 ; 0), C(4; 0; 0).

Обозначив через х, у, z координаты вершины S пирамиды, найдём их из условий: AS = BS = , CS = 3.

Имеем

AS2 = x2 + y2 + z2 = 19,

ВS2 = (x – 2)2 + (y – 2 )2 + z2 = 19,

CS2 = (x – 4)2 + y2 + z2 = 9.

Решая систему уравнений

x2 + y2 + z2 = 19,(x – 2)2 + (y – 2 )2 + z2 = 19,(x – 4)2 + y2 + z2 = 9,

находим: х = , у = , z = .

Рис. 217

Таким образом, вершина S имеет следующие координаты:

S.

Пусть центр O сферы имеет координаты a, b, с, а её радиус равен R. Так как сфера описана около пирамиды SABC, то OA2 = OB2 = OC2 = OS2 = R2. Это соотношение в координатном виде равносильно системе уравнений

a2 + b2 + c2 = R2,(a – 2)2 + (b – 2)2 + c2 = R2, +  +  = R2,(a – 4)2 + b2 + c2 = R2.

Вычитая из первого уравнения четвёртое, получаем a = 2, после чего, вычитая из первого уравнения второе, получаем b =  .

После вычитания третьего уравнения системы из первого её уравнения получаем:

 = 0.

Подставив в это уравнение вместо a и b найденные их значения, получаем с = . Отсюда: R2 = a2 + b2 + c2 = 4 +   +  = . Тогда искомая площадь Q сферы равна:

Q = 4πR2 = π.

Ответ: π (кв. ед.).

19.8. Объёмы шара и его частей

Рис. 218

Рассмотрим фигуру, образованную вращением равнобедренного прямоугольного треугольника с гипотенузой 2R вокруг прямой, проходящей через вершину прямого угла параллельно гипотенузе (рис. 218, а). Объём этой фигуры равен разности объёма цилиндра с высотой 2R, радиусом основания R и удвоенного объёма конуса высоты R, радиуса основания R:

V = πR22R – 2πR2R = πR3.(*)

Шар радиуса R (рис. 218, б) и образованную выше фигуру вращения расположим между двумя параллельными плоскостями, расстояние между которыми равно 2R. Шар при этом будет касаться каждой из данных плоскостей, а фигуру вращения расположим так, чтобы её ось вращения была перпендикулярна этим плоскостям (см. рис. 218). (Плоскость, которая содержит верхнее основание цилиндра и касается сферы в точке N, на рисунке не изображена.)

Будем пересекать наши фигуры плоскостями, параллельными данным плоскостям и удалёнными от центра шара на расстояние x (0 x R).

При х = 0 площади сечений обеих фигур равны πR2; при х =  R площади сечений равны нулю. В остальных случаях площадь сечения шара равна π()2 = π(R2x2), а площадь сечения другой фигуры (ею является кольцо) равна πR2πx2. Следовательно, площади равноудалённых от центра шара сечений рассматриваемых фигур равны (относятся, как 1 : 1). Поэтому на основании принципа Кавальери равны и объёмы этих тел. Тогда на основании (*):

Vшара = πR3,

гдe R  радиус шара.

Рис. 219

Для получения объёма шарового сегмента высоты h рассмотрим предыдущую ситуацию для Rh x R (при h < R) (рис. 218, 219). Применяя принцип Кавальери, получим: объём шарового сегмента равен разности объёма цилиндра высоты h и радиуса основания R и объёма усечённого конуса высоты h и радиусов оснований R и Rh, т. е.

V = πhR2πh(R2 + R(Rh) + (Rh)2) =

πh2(3Rh).

При h > R объём шарового сегмента можно найти как разность объёма шара и объёма шарового сегмента высоты 2R – h (рис. 220): V =  πR3π(2Rh)2(3R – (2Rh))  = πh2(3Rh), т. е. получаем ту же самую формулу. Подставляя в эту формулу h = R, получим V = πR2(3RR)  = πR3, что соответствует объёму полушара.

Рис. 220

Мы показали, что в шаре радиуса R объём любого шарового сегмента высоты h может быть вычислен по формуле:

Vшар. сегм = πh2(3Rh),

или в другом виде

Vшар. сегм = πh2.

Рис. 221

Рис. 222

Рис. 223

Выведем теперь формулу для вычисления объёма шарового сектора.

Сначала рассмотрим шаровой сектор, состоящий из шарового сегмента высоты h и конуса высоты (Rh) с вершиной в центре шара радиуса R (рис. 221). Для него имеем:

Vшар. сект = Vсегм + Vкон = πh2(3Rh) +

+ π(RhR2 – (Rh)2) = πR2h.

Докажите самостоятельно, что и для других шаровых секторов (рис. 222, 223) их объём вычисляется по формуле:

Vшар. сект = πR2h.

Отметим, что объём шарового слоя с радиусами оснований r1 и r2 и высотой Н вычисляется по формуле

Vшар. слоя = (3 + 3  + H2).

ЗАДАЧА (3.457). Четыре шара радиуса R и четыре шара радиуса r расположены так, что каждый касается трёх шаров одного радиуса и трёх шаров другого радиуса. Найти отношение объёма шара радиуса R к объёму шара радиуса r (R > r).

Решение. Обозначим V1, V2 — объёмы шаров с радиусами соответственно R и r. Тогда V1 = πR3, V2 = πr 3, значит,  = .

Пусть А, В, С, Р — центры шаров радиуса R; A1, B1, С1, P1 — центры шаров радиуса r. Тогда:

1) AB = BC = CA = AP = BP = CP = 2R РАВС — правильный тетраэдр с ребром 2R;

2) A1B1 = B1C1 = C1A1 = A1P1 = B1P= C1P1 = 2r ⇒ Р1А1В1С1 — правильный тетраэдр с ребром 2r.

Рис. 224

Обозначим точки A2, B2, C2, P2 — центры граней тетраэдра РАВС (рис. 224) и докажем, что все четыре высоты АA2, BB2, CC2, PP2 пересекаются в одной точке и делятся этой точкой в отношении 3 : 1, считая от вершин.

В самом деле, если М = 2  PP2, то из подобия треугольников НАР и НР2А2 следует HP : НA2 = AP : A2P2  = 3 : 1, тогда из подобия треугольников APM и A2P2M следует, что AP : A2P2 = PM : MP2 = AM : MA2 = 3 : 1, т. е. PM  = PP2.

Аналогично доказывается, что высоты BB2 и CC2 делятся точкой M в отношении BM : MB2 = CM : MC2 = 3 : 1 и, таким образом, точки A2, B2, C2, P2 равноудалены от точки М.

Далее, так как шар с центром P1 и радиусом r касается шаров с центрами А, В, C и радиусами R, то P1А = P1B  = P1С = R + r, т. е. точка P1 равноудалена от вершин А, В и С правильного тетраэдра РАВС. Так как (R + r) < 2R, то P1 принадлежит высоте РP2 этого тетраэдра: P1  PP2. Аналогично доказывается, что A1  АA2, B1  ВB2, C1  СC2.

Найдём дважды длину высоты РP2 тетраэдра РАВС: с одной стороны, как длину катета прямоугольного треугольника АPP2, с другой стороны, как сумму длин отрезков РМ, МР1 и P1P2.

В правильном AВС со стороной 2R имеем:

AP2 = AH =  = .

Тогда в прямоугольном AРP2 :

РР2 =  = .

Найдём длину отрезка PP2 иначе. В прямоугольном  AP1P2 имеем:

Аналогично можно убедиться, что A1A2 = B1B2 = C1C2  = P1P2 = . Тогда, учитывая, что МА2 = МB2  = МC2 = MP2, приходим к выводу: MA1 = MB1 = MC1 = MP1. Это означает, что точка M — общий центр правильных тетраэдров РАВС и Р1А1B1C1 и РP2 = РM + МP1 + P1P2.

Так как в правильном тетраэдре РАВС с ребром 2R для расстояния РМ от вершины Р до центра М этого тетраэдра выполняется РМ = РР2 =  = , то в правильном тетраэдре P1A1B1C1 с ребром 2r для расстояния P1M от вершины P1 до его центра М выполняется Р1M = .

Подставляя в равенство PP2 = РM + MP1 + P1P2 найденные значения длин отрезков РР2, РM, МP1 и P1P2, получаем:

 =  +  + ,

или после элементарных преобразований:

R2 – 6Rr + r2 = 0.

Разделив это уравнение на r2 и введя новую переменную t = , получаем уравнение t2 – 6t + 1 = 0, корнями которого являются t1 = 3 – 2 , t2 = 3 + 2 . Так как t1 < 0, то условию задачи удовлетворяет лишь значение t2 = 3 + 2 . Это означает, что  = 3 + 2 . Тогда  =  = (3 + 2 )3.

Ответ: (3 + 2 )3.

Задания для работы с интернет-ресурсами

1. Посмотрите в Интернете и отберите рисунки по темам: «Тело вращения», «Поверхность вращения». Они помогут вам при построении рисунков к решению задач.

2. Сравните материалы Интернета и учебника по темам: «Цилиндр», «Конус», «Цилиндрическая и коническая поверхности вращения», «Касательная плоскость к цилиндру и конусу», «Формулы для вычисления площадей боковой и полной поверхностей цилиндра и конуса», «Формулы для вычисления объёма цилиндра и конуса», «Развёртки цилиндра и конуса», «Модели цилиндра и конуса». Что нового вы узнали из Интернета?

3. Вы узнаете много нового и интересного о замечательных кривых, сделав запрос в Интернете по темам: «Сечения цилиндра и конуса плоскостью», «Кривые второго порядка», «Конические сечения».

4. Найдите рисунки по темам: «Призма, вписанная в цилиндр и описанная около цилиндра», «Пирамиды, вписанные в конус и описанные около конуса». Удачные рисунки скопируйте в «Избранное» или в «Картотеку», чтобы можно было ими пользоваться при решении задач.

5. Найдите в Интернете теоремы о параллельных сечениях конуса. Посмотрите рисунки усечённых конусов. Найдите формулы для вычисления площадей боковой и полной поверхностей усечённого конуса и его объёма.

6. В Интернете посмотрите материал по темам: «Сфера», «Шар», «Изображение сферы», «Уравнение сферы», «Взаимное расположение сферы и плоскости», «Пересечение шара и сферы с плоскостью», «Плоскость, касательная к сфере и шару», «Шаровой сегмент, его основание и высота; сегментная поверхность», «Шаровой слой, его основания и высота», «Шаровой пояс», «Шаровой сектор и его поверхность».

7. Найдите в Интернете формулы для вычисления площадей сферы, сегментной поверхности, шарового пояса, поверхности шарового сектора, объёмов шара, шарового сегмента, шарового сектора, шарового слоя.

8. Обратите особое внимание на материал: «Шары и сферы, вписанные в двугранный угол и многогранный угол», «Шары и сферы, вписанные в многогранники (особенно в правильные многогранники) и описанные около них», «Шары и сферы, вписанные в цилиндр, конус и описанные около них».

9. Посмотрите рисунки и материалы по темам: «Комбинации геометрических тел», «Комбинации геометрических фигур в окружающем нас мире, в архитектуре». Тем, кто интересуется черчением и графикой, предлагаем найти статьи: «Техническое черчение: цилиндр и конус», «Пересечение двух цилиндров с перпендикулярными осями», «Резьбы и резьбовые соединения», «Цилиндрическая винтовая линия».

Вопросы для самооценки

1. Оцените результаты изучения этой главы. Довольны ли вы ими?

2.Что нового вы узнали в этой главе?

3.Как могут пригодиться вам эти знания в повседневной жизни?

4.Какие задания в этой главе были для вас самыми трудными? Почему?

5.Использовали ли вы при выполнении заданий дополнительные источники: справочники, пособия, интернет-ресурсы?

6.Обращались ли вы за помощью к одноклассникам, родителям, учителю?

Сферическая поверхность — это геометрическое место точек (т. е. множество всех точек) в пространстве, равноудалённых от одной данной точки, которая называется центром сферической поверхности.

На рисунке все точки равноудалены от точки (C), радиус (CA) соединяет центр с точкой на сфере.

LodeS_vdj.png 
Рис. (1). Сфера.

Все расстояния от центра до любой точки на сфере одинаковы и равны радиусу. Используя формулу расстояния между точками с данными координатами, можно составить уравнение сферы:

AC=x−x02+y−y02+z−z02=R;AC2=x−x02+y−y02+z−z02=R2;

Шар — это тело, ограниченное сферической поверхностью.

Можно получить шар, вращая полукруг (или круг) вокруг диаметра. Все плоские сечения шара — круги. Наибольший круг лежит в сечении, проходящем через центр шара, и называется большим кругом. Его радиус равен радиусу шара.

Любые два больших круга пересекаются по диаметру шара. Этот диаметр является и диаметром пересекающихся больших кругов.

Через две точки сферической поверхности, расположенные на концах одного диаметра, можно провести бесчисленное множество больших кругов.

Например, через полюса Земли можно провести бесконечное число меридианов.

cartography-2029310_640.png

Рис. (2). Глобус.

Всякое сечение шара плоскостью есть круг (или точка, если плоскость касается шара).

При решении заданий удобнее вместо шара чертить один из больших кругов, а плоскость сечения заменить хордой этого круга.

Lode.png Lielais_sk.png

Рис. (3). Шар и его сечение.

Круговое сечение шара делит его на два шаровых сегмента, а сферу — на две сегментные поверхности.

Часть шара, ограниченная двумя параллельными круговыми сечениями и лежащим между ними сферическим поясом (или зоной), называется шаровой зоной.

Радиусы, проведённые от центра шара к точкам сферы, принадлежащим одной сегментной поверхности, или сферическому поясу, образуют шаровой сектор,  он может быть ограничен сферическим сегментом, или зоной, и одной или двумя коническими поверхностями.

Высота шаровой или сферической зоны — это расстояние между плоскостями сечений; высота шарового сегмента, или сегментной поверхности, определяется как расстояние от плоскости сечения до параллельной ей плоскости, касательной к этому сегменту. Высоту шарового сектора определяют как высоту соответствующей сегментной поверхности, или сферического пояса.

Lodes_dalas.png

Рис. (4). Шар, разделённый на сегменты.

OO1

 (= d) — расстояние между центром шара и плоскостью сечения;

(OA = R) — радиус шара;

O1A

 (= r) — радиус окружности сечения.

В вычислениях используется теорема Пифагора в прямоугольном треугольнике

AOO1

.

Lodei_ap.png    Lodei_ie.png

Рис. (5). Шар и секущая плоскость.

Источники:

Рис. 1. Сфера, © ЯКласс.

Рис. 2. Глобус. Указание авторства не требуется, 2021-06-07, бесплатно для коммерческого использования, https://clck.ru/VLuEU.

Рисунки 3-5. Шар и его сечение; шар, разделённый на сегменты, шар и секущая плоскость, © ЯКласс.

Как найти площадь сечения шара

Пусть дан шар с радиусом R, который на некотором расстоянии b от центра пересекает плоскость. Расстояние b меньше или равно радиусу шара. Требуется найти площадь S получающегося при этом сечения.

Как найти площадь сечения шара

Инструкция

Очевидно, что если расстояние от центра шара до плоскости равно радиусу плоскости, то плоскость касается шара только в одной точке, и площадь сечения будет равна нулю, то есть если b = R, то S = 0. Если b = 0, то секущая плоскость проходит через центр шара. В этом случае сечение будет представлять собой круг, радиус которого совпадает с радиусом шара. Площадь этого круга будет, согласно формуле, равна S = πR^2.

Эти два крайних случая дают границы, между которыми всегда будет лежать искомая площадь: 0 < S < πR^2. При этом любое сечение шара плоскостью всегда является кругом. Следовательно, задача сводится к тому, чтобы найти радиус окружности сечения. Тогда площадь этого сечения вычисляется по формуле площади круга.

Поскольку расстояние от точки до плоскости определяется как длина отрезка, перпендикулярного плоскости и начинающегося в точке, второй конец этого отрезка будет совпадать с центром окружности сечения. Такой вывод вытекает из определения шара: очевидно, что все точки окружности сечения принадлежат сфере, а следовательно, лежат на равном расстоянии от центра шара. Это значит, что каждая точка окружности сечения может считаться вершиной прямоугольного треугольника, гипотенузой которого служит радиус шара, одним из катетов — перпендикулярный отрезок, соединяющий центр шара с плоскостью, а вторым катетом — радиус окружности сечения.

Из трех сторон этого треугольника заданы два — радиус шара R и расстояние b, то есть гипотенуза и катет. По теореме Пифагора длина второго катета должна быть равна √(R^2 — b^2). Это и есть радиус окружности сечения. Подставляя найденное значение радиуса в формулу площади круга, легко прийти к выводу, что площадь сечения шара плоскостью равна:S = π(R^2 — b^2).В частных случаях, когда b = R или b = 0, выведенная формула полностью согласуется с уже найденными результатами.

Видео по теме

Источники:

  • сечение шара плоскостью

Войти на сайт

или

Забыли пароль?
Еще не зарегистрированы?

This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.

Понравилась статья? Поделить с друзьями:
  • Как найти человека по месту обучения
  • Как найти судебные решения по долгам
  • Как найти аппендицит при операций
  • Как составить отклик на работу
  • Деформация черепа младенца как исправить