Как найти длину ребра через координаты

Аналитическая геометрия — задача на расчет пирамиды (тетраэдра)

Краткая теория


Вузовская аналитическая геометрия отличается от курса школьной геометрии. Главное отличие состоит в том, что она основным своим инструментом имеет набор алгебраических формул и методов вычислений. В основе аналитической геометрии лежит метод координат.
Аналитическая геометрия имеет набор формул, готовых уравнений и алгоритмов действия. Для успешного и правильного решения главное — разобраться и уделить задаче достаточно времени.

Данная задача является типовой в курсе аналитической геометрии и требует использования различных методов и знаний, таких как декартовые прямоугольные координаты и вектора в пространстве.

Пример решения задачи

Задача

Даны координаты
вершин пирамиды 
. Найти:

Сделать чертеж.

На сайте можно заказать решение контрольной или самостоятельной работы, домашнего задания, отдельных задач. Для этого вам нужно только связаться со мной:

ВКонтакте
WhatsApp
Telegram

Мгновенная связь в любое время и на любом этапе заказа. Общение без посредников. Удобная и быстрая оплата переводом на карту СберБанка. Опыт работы более 25 лет.

Подробное решение в электронном виде (docx, pdf) получите точно в срок или раньше.

Решение

Длина ребра

Длину ребра

 найдем по
формуле расстояния между 2-мя точками:

Угол между ребрами

Угол между ребрами

 и

 найдем как угол
между направляющими векторами

  и

:

Косинус угла между
векторами:

Угол между ребром и гранью. Векторное произведение

Вычислим угол между
ребром

 и гранью

.

Для этого вычислим
координаты нормального вектора плоскости

 –им будет
векторное произведение векторов 

 и

.

 

Найдем векторное произведение. Для этого

вычислим определитель:

Нормальный вектор
плоскости:

  

Синус угла:

Площадь грани

Вычислим площадь
грани

. Она будет численно равна половине модуля векторного
произведения векторов

    и 

:

Искомая площадь:

Объем пирамиды. Смешанное произведение векторов

Вычислим объем
пирамиды. Он будет равен шестой части модуля смешанного произведения векторов

  и

:

Для того чтобы вычислить смешанное произведение, необходимо
найти определитель квадратной матрицы, составленной из координат векторов:

Искомый объем
пирамиды:

Уравнение прямой в пространстве

Вычислим уравнение
прямой

.  Направляющим
вектором искомой прямой является вектор

. Кроме того, прямая проходит через точку

 

Уравнение искомой
прямой:

Уравнение плоскости

Вычислим уравнение
плоскости

. Нормальный вектор плоскости

. кроме того, плоскость проходит через точку

 -уравнение
грани

 

Уравнение высоты, опущенной на грань

Составим уравнение
высоты, опущенной на грань

 из вершины

:

Нормальный вектор

 является
направляющим вектором высоты, кроме того, высота проходит через точку

 

Искомое уравнение
высоты:

Сделаем схематический чертеж:

Онлайн решение Пирамиды по координатам вершин

Данный онлайн-сервис вычисляет (показываются промежуточные расчёты) следующие параметры треугольной пирамиды (тетраэдра):

1) чертёж пирамиды по координатам её вершин;

2) длины и уравнения рёбер, медиан, апофем, высот;

3) площади и уравнения граней;

4) система линейных неравенств, определяющих пирамиду;

5) основания и точка пересечения медиан (центроид);

6) уравнения плоскостей, проходящих через вершины параллельно противолежащим граням;

7) объём пирамиды;

8) основания, площади и уравнения биссекторов;

9) углы между рёбрами, между рёбрами и гранями, двугранные (внутренние между гранями), телесные;

10) параметры и уравнения вписанной и описанной сфер;

Внимание! Этот сервис может не работать в браузере Internet Explorer.

Запишите координаты вершин пирамиды и нажмите кнопку.

Математический форум (помощь с решением задач, обсуждение вопросов по математике).

Кнопка "Поделиться"

Если заметили ошибку, опечатку или есть предложения, напишите в комментариях.

Пример 1:

Даны координаты вершин пирамиды А1А2А3А4.

Найти:

1) координаты и модули векторов А1 А2и А1 А4;  

2) угол между ребрами А1 А2и А1 А4;          

3) площадь грани А1 А2 А3;         

4) объем пирамиды;

5) уравнение прямой А1 А2;

6) уравнение плоскости А1 А2 А3;

7) уравнение высоты, опущенной из вершины  А4 на грань А1 А2 А3.

Сделать чертеж.

А1 (0; 4; -4), А2 (5; 1; -1), А3 (-1; -1; 3), А4 (0; -3; 7).

Решение от преподавателя:

Пример 2:

Даны координаты вершин пирамиды А1А2А3А4.

Найти: 1) длину ребра А1 А2;

2) угол между ребрами А1 А2и А1 А4;          

3) угол между ребром А1 А4 и гранью А1 А2 А3;

4) площадь грани А1 А2 А3;         

5) объем пирамиды;

6) уравнение прямой А1 А2;

7) уравнение плоскости А1 А2 А3;

8) уравнение высоты, опущенной из вершины  А4 на грань А1 А2 А3. Сделать чертеж.

1. А1 (7; 7; 3), А2 (6; 5; 8), А3 (3; 5; 8), А4 (8; 4; 1).

Решение от преподавателя:

Пример 3:

Решение от преподавателя:

 Уравнение плоскости. 
Если точки A1(x1; y1; z1), A2(x2; y2; z2), A3(x3; y3; z3) не лежат на одной прямой, то проходящая через них плоскость представляется уравнением: 

x-x1

y-y1

z-z1

x2-x1

y2-y1

z2-z1

x3-x1

y3-y1

z3-z1

 

= 0

Уравнение плоскости A1A2A3 

(x-3)(1*2-0*3) — (y-2)((-2)*2-3*3) + (z+2)((-2)*0-3*1) = 2x + 13y — 3z-38 = 0 

Угол между прямой A1A4 и плоскостью A1A2A3
Синус угла между прямой с направляющими коэффициентами (l; m; n) и плоскостью с нормальным вектором N(A; B; C) можно найти по формуле: 
https://chart.googleapis.com/chart?cht=tx&chl=sin%20gamma%20%20%20=%20frac%7b|Al%20%2B%20Bm%20%2B%20Cn|%7d%7bsqrt%7bA%5e%7b2%7d%20%2B%20B%5e%7b2%7d%20%2B%20C%5e%7b2%7d%7dsqrt%7bl%5e%7b2%7d%20%2B%20m%5e%7b2%7d%20%2B%20n%5e%7b2%7d%7d%7d
Уравнение плоскости A1A2A3: 2x + 13y — 3z-38 = 0 
Уравнение прямой A1A4
https://chart.googleapis.com/chart?cht=tx&chl=frac%7bx%20-%203%7d%7b-3%7d%20=%20frac%7by%20-%202%7d%7b0%7d%20=%20frac%7bz%20%2B%202%7d%7b4%7d
γ = arcsin(0.267) = 15.486o 

Уравнение высоты пирамиды через вершину A4(0,2,2) 
Прямая, проходящая через точку M0(x0;y0;z0) и перпендикулярная плоскости Ax + By + Cz + D = 0 имеет направляющий вектор (A;B;C) и, значит, представляется симметричными уравнениями: 
Уравнение плоскости A1A2A3: 2x + 13y — 3z-38 = 0 
https://chart.googleapis.com/chart?cht=tx&chl=frac%7bx%20-%20x_%7b0%7d%7d%7bA%7d%20=%20frac%7by%20-%20y_%7b0%7d%7d%7bB%7d%20=%20frac%7bz%20-%20z_%7b0%7d%7d%7bC%7d
https://chart.googleapis.com/chart?cht=tx&chl=frac%7bx%20-%200%7d%7b2%7d%20=%20frac%7by%20-%202%7d%7b13%7d%20=%20frac%7bz%20-%202%7d%7b-3%7d

Уравнение плоскости через вершину A4(0,2,2) 
Плоскость, проходящая через точку M0(x0;y0;z0) и параллельная плоскости Ax + By + Cz + D = 0 имеет направляющий вектор (A;B;C) и, значит, представляется уравнением: 
A(x-x0) + B(y-y0) + C(z-z0) = 0 
Уравнение плоскости A1A2A3: 2x + 13y — 3z-38 = 0 
2(x-0)+13(y-2)-3(z-2) = 0 
или 
2x+13y-3z-20 = 0

Пример 4:

Решение от преподавателя:

Даны координаты пирамиды: A1(0,1,1), A2(3,4,4), A3(-3,9,3), A4(0,5,4) 

  1. Уравнение плоскости
    Если точки A1(x1; y1; z1), A2(x2; y2; z2), A3(x3; y3; z3) не лежат на одной прямой, то проходящая через них плоскость представляется уравнением: 

x-x1

y-y1

z-z1

x2-x1

y2-y1

z2-z1

x3-x1

y3-y1

z3-z1

 

= 0

Уравнение плоскости A1A2A3 

(x-0)(3*2-8*3) — (y-1)(3*2-(-3)*3) + (z-1)(3*8-(-3)*3) = -18x — 15y + 33z-18 = 0 
Упростим выражение: -6x — 5y + 11z-6 = 0 

2) Угол между прямой A1A4 и плоскостью A1A2A3
Синус угла между прямой с направляющими коэффициентами (l; m; n) и плоскостью с нормальным вектором N(A; B; C) можно найти по формуле: 

Уравнение плоскости A1A2A3: -6x — 5y + 11z-6 = 0 
Уравнение прямой A1A4

γ = arcsin(0.193) = 11.128o 

3) Уравнение высоты пирамиды через вершину A4(0,5,4) 
Прямая, проходящая через точку M0(x0;y0;z0) и перпендикулярная плоскости Ax + By + Cz + D = 0 имеет направляющий вектор (A;B;C) и, значит, представляется симметричными уравнениями: 
Уравнение плоскости A1A2A3: -6x — 5y + 11z-6 = 0 

4) Уравнение плоскости через вершину A4(0,5,4) 
Плоскость, проходящая через точку M0(x0;y0;z0) и параллельная плоскости

Ax + By + Cz + D = 0 имеет направляющий вектор (A;B;C) и, значит, представляется уравнением: 
A(x-x0) + B(y-y0) + C(z-z0) = 0 
Уравнение плоскости A1A2A3: -6x — 5y + 11z-6 = 0 
-6(x-0)-5(y-5)+11(z-4) = 0 
или 
-6x-5y+11z-19 = 0 

5)  Координаты вектора  A1A4(0;4;3) 

Уравнение прямой, проходящей через точку А1(0,1,1) параллельно вектору А1А2(0,4,3) имеет вид:

Пример 5:

Даны координаты вершин пирамиды А1А2А3А4.

Найти: 1) длину ребра А1 А2;

2) угол между ребрами А1 А2и А1 А4;          

3) угол между ребром А1 А4 и гранью А1 А2 А3;

4) площадь грани А1 А2 А3;         

5) объем пирамиды;

6) уравнение прямой А1 А2;

7) уравнение плоскости А1 А2 А3;

8) уравнение высоты, опущенной из вершины  А4 на грань А1 А2 А3. Сделать чертеж.

А1 (4; 4; 10), А2 (4; 10; 2), А3 (2; 8; 4), А4 (9; 6; 9).

Решение от преподавателя:

Пример 6:

Решение от преподавателя:

1) Даны координаты  вершин пирамиды: A1(0,1,1), A2(3,4,4), A3(-3,9,3), A4(0,5,4) 
Координаты векторов
Координаты векторов:       A1A2(3;3;3)        A1A4(0;4;3) 

Модули векторов (длина ребер пирамиды) 
Длина вектора a(X;Y;Z) выражается через его координаты формулой: 


Угол между ребрами.

 Угол между векторами a1(X1;Y1;Z1), a2(X2;Y2;Z2) можно найти по формуле: 
   ,    где a1a2 = X1X2 + Y1Y2 + Z1Z2 
Найдем угол между ребрами A1A2(3;3;3) и A1A3(0;4;3): 

А1 = arccos(0,808)

Найдем площадь грани с учётом геометрического смысла векторного произведения: 
S =
Найдем векторное произведение

=i(3*2-8*3) — j(3*2-(-3)*3) + k(3*8-(-3)*3) = -18i — 15j + 33k 

3) Объем пирамиды
Объем пирамиды, построенный на векторах a1(X1;Y1;Z1), a2(X2;Y2;Z2), a3(X3;Y3;Z3) равен: 

 

Координатывекторов:A1A2(3;3;3)    A1A3(-3;8;2) A1A4(0;4;3) :      

где определитель матрицы равен: 
∆ = 3*(8*3-4*2)-(-3)*(3*3-4*3)+0*(3*2-8*3) = 39 

Пример 7:

Решение от преподавателя:

  1. Угол между ребрами. 
    Угол между векторами a1(X1;Y1;Z1), a2(X2;Y2;Z2) можно найти по формуле: 
    https://chart.googleapis.com/chart?cht=tx&chl=cos%20gamma%20%20%20=%20frac%7ba_%7b1%7da_%7b2%7d%7d%7b|a_%7b1%7d|cdot%20|a_%7b2%7d|%7d
    где a1a2 = X1X2 + Y1Y2 + Z1Z2 
    Найдем угол между ребрами A1A2(-2;1;3) и A1A3(3;0;2): 
    https://chart.googleapis.com/chart?cht=tx&chl=cos%20gamma%20%20%20=%20frac%7b(-2)cdot%203%20%2B%201cdot%200%20%2B%203cdot%202%7d%7bsqrt%7b14%7dcdot%20sqrt%7b13%7d%7d%20=%200
    γ = arccos(0) = 90.0030 
  2. Площадь грани 
    Площадь грани можно найти по формуле: 
    https://chart.googleapis.com/chart?cht=tx&chl=S%20=%20frac%7b1%7d%7b2%7d%20|a|cdot%20|b|%20sin%20gamma
    где 
    https://chart.googleapis.com/chart?cht=tx&chl=sin%20gamma%20%20=%20sqrt%7b1%20-%20cos%20gamma%5e%7b2%7d%7d
    Найдем площадь грани A1A2A3 
    Найдем угол между ребрами A1A2(-2;1;3) и A1A3(3;0;2): 
    https://chart.googleapis.com/chart?cht=tx&chl=cos%20gamma%20%20%20=%20frac%7b(-2)cdot%203%20%2B%201cdot%200%20%2B%203cdot%202%7d%7bsqrt%7b14%7dcdot%20sqrt%7b13%7d%7d%20=%200
    https://chart.googleapis.com/chart?cht=tx&chl=sin%20gamma%20%20=%20sqrt%7b1%20-%200%5e%7b2%7d%7d%20=%201
    Площадь грани A1A2A3 
  3. Объем пирамиды, построенный на векторах a1(X1;Y1;Z1), a2(X2;Y2;Z2), a3(X3;Y3;Z3) равен: 

https://chart.googleapis.com/chart?cht=tx&chl=V%20=%20frac%7b1%7d%7b6%7d

 

https://chart.googleapis.com/chart?cht=tx&chl=V%20=%20frac%7b1%7d%7b6%7d

https://chart.googleapis.com/chart?cht=tx&chl=%20=%20frac%7b18%7d%7b6%7d%20=%203

где определитель матрицы равен: 
∆ = (-2)*(0*4-0*2)-3*(1*4-0*3)+(-3)*(1*2-0*3) = -18 

Пример 8:

Даны координаты вершин пирамиды А1А2А3А4 . Найти:

1) длину ребра А1А2;

2) угол между рёбрами А1Аи А1А4 ;

3) угол между ребром А1А4 и гранью А1А2А3;

4) площадь грани А1А2А3;

5) объём пирамиды;

6) уравнение прямой А1А2;

7) уравнение плоскости А1А2А3;

8) уравнение высоты, опущенной из вершины А4 на грань А1А2А3;

Сделать чертёж.

А1(3; 5; 4),        А2(8; 7; 4),            А3(5; 10; 4),          А4(4; 7; 8).

Решение от преподавателя:

1) Длина ребра A1A2;

2) угол между ребрами А1А2 и А1А4;

3) угол между ребрами А1А4 и гранью А1А2А3;

Найдем уравнение стороны А1А4:

Вектор нормали:  к плоскости А1А2А3.

4) площадь грани А1А2А3;

5) объем пирамиды;

6) уравнение прямой А1А2;

7) уравнение плоскости А1А2А3;

Итак: z=4 – уравнение плоскости А1А2А3.

8) уравнение высоты, опущенной из вершины А4 на грань А1А2А3.

A4O – высота:

Уравнение A4O:

Т.к. , то

В результате получаем уравнение высоты:

Пример 9:

Даны координаты вершин пирамиды А1А2А3А4.

Найти: 1) длину ребра А1 А2;

2) угол между ребрами А1 А2и А1 А4;          

3) угол между ребром А1 А4 и гранью А1 А2 А3;

4) площадь грани А1 А2 А3;         

5) объем пирамиды;

6) уравнение прямой А1 А2;

7) уравнение плоскости А1 А2 А3;

8) уравнение высоты, опущенной из вершины  А4 на грань А1 А2 А3. Сделать чертеж.

А1 (4; 4; 10), А2 (4; 10; 2), А3 (2; 8; 4), А4 (9; 6; 9).

Решение от преподавателя:

Примечание: дробные числа записывайте
через точку, а не запятую.

Округлять до -го знака после запятой.

Онлайн калькулятор. Модуль вектора. Длина вектора

Этот онлайн калькулятор позволит вам очень просто найти длину вектора для плоских и пространственных задач.

Воспользовавшись онлайн калькулятором, вы получите детальное решение вашей задачи, которое позволит понять алгоритм решения задач на вычисление модуля вектора и закрепить пройденный материал.

Калькулятор для вычисления длины вектора (модуля вектора) по двум точкам

Размерность вектора:

Форма представления вектора:

Инструкция использования калькулятора для вычисления длины вектора

Ввод даных в калькулятор для вычисления длины вектора (модуля вектора)

В онлайн калькулятор можно вводить числа или дроби. Более подробно читайте в правилах ввода чисел..

Дополнительные возможности калькулятора для вычисления длины вектора (модуля вектора)

  • Между полями для ввода можно перемещаться нажимая клавиши «влево» и «вправо» на клавиатуре.

Вычисления длины вектора (модуля вектора)

Например, для вектора a = x; ay; az> длина вектора вычисляется cледующим образом:

Вводить можно числа или дроби (-2.4, 5/7, . ). Более подробно читайте в правилах ввода чисел.

Любые нецензурные комментарии будут удалены, а их авторы занесены в черный список!

Добро пожаловать на OnlineMSchool.
Меня зовут Довжик Михаил Викторович. Я владелец и автор этого сайта, мною написан весь теоретический материал, а также разработаны онлайн упражнения и калькуляторы, которыми Вы можете воспользоваться для изучения математики.

Векторы в пространстве и метод координат

Существует два способа решения задач по стереометрии

Первый — классический — требует отличного знания аксиом и теорем стереометрии, логики, умения построить чертеж и свести объемную задачу к планиметрической. Способ хорош тем, что развивает мозги и пространственное воображение.

Другой метод — применение векторов и координат. Это простые формулы, алгоритмы и правила. Он очень удобен, особенно когда времени до экзамена мало, а решить задачу хочется.

Если вы освоили векторы на плоскости и действия с ними — то и с векторами в пространстве разберетесь. Многие понятия окажутся знакомыми.

Система координат в пространстве

Выберем начало координат. Проведем три взаимно перпендикулярные оси X, Y и Z. Зададим удобный масштаб.

Получилась система координат в трехмерном пространстве. Теперь каждая его точка характеризуется тремя числами — координатами по X, Y и Z. Например, запись M(−1; 3; 2) означает, что координата точки M по X (абсцисса) равна −1, координата по Y (ордината) равна 3, а координата по Z (аппликата) равна 2.

Векторы в пространстве определяются так же, как и на плоскости. Это направленные отрезки, имеющие начало и конец. Только в пространстве вектор задается тремя координатами x, y и z:

Как найти координаты вектора? Как и на плоскости — из координаты конца вычитаем координату начала.


Длина вектора в пространстве – это расстояние между точками A и B. Находится как корень квадратный из суммы квадратов координат вектора.

Пусть точка M – середина отрезка AB. Ее координаты находятся по формуле:

Для сложения векторов применяем уже знакомые правило треугольника и правило параллелограмма

Сумма векторов, их разность, произведение вектора на число и скалярное произведение векторов определяются так же, как и на плоскости. Только координат не две, а три. Возьмем векторы и .

Произведение вектора на число:

Скалярное произведение векторов:

Косинус угла между векторами:

Последняя формула удобна для нахождения угла между прямыми в пространстве. Особенно если эти прямые – скрещиваются. Напомним, что так называются прямые, которые не параллельны и не пересекаются. Они лежат в параллельных плоскостях.

1. В кубе ABCDA1B1C1D1 точки E и K — середины ребер соответственно A1B1 и B1C1. Найдите косинус угла между прямыми AE и BK.

Если вам достался куб — значит, повезло. Он отлично вписывается в прямоугольную систему координат. Строим чертеж:

Длина ребра куба не дана. Какой бы она ни была, угол между AE и BK от нее не зависит. Поэтому возьмем единичный куб, все ребра которого равны 1.

Прямые AE и BK — скрещиваются. Найдем угол между векторами и . Для этого нужны их координаты.

Запишем координаты векторов:

и найдем косинус угла между векторами и :

2. В правильной четырехугольной пирамиде SABCD, все ребра которой равны 1, точки E, K — середины ребер SB и SC соответственно. Найдите косинус угла между прямыми AE и BK.

Лучше всего выбрать начало координат в центре основания пирамиды, а оси X и Y сделать параллельными сторонам основания.

Координаты точек A, B и C найти легко:

Из прямоугольного треугольника AOS найдем

Координаты вершины пирамиды:

Точка E — середина SB, а K — середина SC. Воспользуемся формулой для координат середины отрезка и найдем координаты точек E и K.

Найдем координаты векторов и

и угол между ними:

Покажем теперь, как вписать систему координат в треугольную призму:

3. В правильной треугольной призме ABCA1B1C1, все ребра которой равны 1, точка D — середина ребра A1B1. Найдите косинус угла между прямыми AD и BC1

Пусть точка A — начало координат. Возьмем ось X параллельно стороне BC, а ось Y перпендикулярно ей. Другими словами, на оси Y будет лежать отрезок AH, являющийся высотой треугольника ABC. Нарисуем отдельно нижнее основание призмы.

Запишем координаты точек:

Точка D — середина A1B1. Значит, пользуемся формулами для координат середины
отрезка.

Найдем координаты векторов и , а затем угол между ними:

Смотрите, как легко с помощью векторов и координат найти угол между прямыми. А если требуется найти угол между плоскостями или между прямой и плоскостью? Для решения подобных задач нам понадобится уравнение плоскости в пространстве.

Плоскость в пространстве задается уравнением:

Здесь числа A, B и C — координаты вектора, перпендикулярного этой плоскости. Его называют нормалью к плоскости.

Вместо x, y и z можно подставить в уравнение координаты любой точки, принадлежащей данной плоскости. Получится верное равенство.

Плоскость в пространстве можно провести через любые три точки, не лежащие на одной прямой. Поэтому для того, чтобы написать уравнение плоскости, берем координаты трех принадлежащих ей точек. Подставляем их по очереди в уравнение плоскости. Решаем полученную систему.

Покажем, как это делается.

Напишем уравнение плоскости, проходящей через точки M (1; 0; 1), N (2; −2; 0) и K (4; 1; 2).

Уравнение плоскости выглядит так:

Подставим в него по очереди координаты точек M, N и K.

То есть A + C + D = 0.

Аналогично для точки K:

Получили систему из трех уравнений:

В ней четыре неизвестных: A, B, C и D. Поэтому одну из них мы выберем сами, а другие выразим через нее. Правило простое — вместо одной из переменных можно взять любое число, не равное нулю.

Пусть, например, D = −2. Тогда:

Выразим C и B через A и подставим в третье уравнение:

Решив систему, получим:

Уравнение плоскости MNK имеет вид:

Умножим обе части уравнения на −3. Тогда коэффициенты станут целыми:

Вектор — это нормаль к плоскости MNK.

Уравнение плоскости, проходящей через заданную точку имеет вид:

Угол между плоскостями равен углу между нормалями к этим плоскостям:

Не правда ли, знакомая формула? Скалярное произведение нормалей поделили на произведение их длин.

Заметим, что при пересечении двух плоскостей вообще-то образуется четыре угла.

Мы берем меньший из них. Поэтому в формуле стоит модуль скалярного произведения — чтобы косинус угла был неотрицателен.

4. В кубе ABCDA1B1C1D1 точки E и F — середины ребер соответственно A1B1 и A1D1. Найдите тангенс угла между плоскостями AEF и BDD1.

Строим чертеж. Видно, что плоскости AEF и BDD1 пересекаются где-то вне куба. В классическом решении пришлось бы строить линию их пересечения. Но векторно-координатный метод значительно всё упрощает. Не будем ломать голову над тем, по какой прямой пересекаются плоскости. Просто отметим координаты нужных нам точек и найдем угол между нормалями к плоскостям AEF и BDD1.

Сначала — нормаль к плоскости BDD1. Конечно, мы можем подставить координаты точек B, D и D1 в уравнение плоскости и найти коэффициенты, которые и будут координатами вектора нормали. А можем сделать хитрее — увидеть нужную нормаль прямо на чертеже. Ведь плоскость BDD1 — это диагональное сечение куба. Вектор перпендикулярен этой плоскости.

Итак, первый вектор нормали у нас уже есть:

Напишем уравнение плоскости AEF.

Берем уравнение плоскости и по очереди подставляем в него, вместо x, y и z, соответствующие координаты точек A, E и F.

Пусть С = -1. Тогда A = B = 2.

Уравнение плоскости AEF:

Нормаль к плоскости AEF:

Найдем угол между плоскостями:

5. Основание прямой четырехугольной призмы BCDA1B1C1D1 — прямоугольник ABCD, в котором AB = 5, AD = √33. Найдите тангенс угла между плоскостью грани AA1D1D и плоскостью, проходящей через середину ребра CD перпендикулярно прямой B1D, если расстояние между прямыми A1C1 и BD равно √3.

Эта задача наглядно показывает, насколько векторный метод проще классического. Попробуйте, для разнообразия, построить необходимые сечения и провести все доказательства — как это делается в «классике» :-)

Строим чертеж. Прямую четырехугольную призму можно по-другому назвать «параллелепипед».

Замечаем, что длина и ширина параллелепипеда у нас есть, а вот высота — вроде не дана. Как же ее найти?

«Расстояние между прямыми A1C1 и BD равно √3». Прямые A1C1 и BD скрещиваются. Одна из них — диагональ верхнего основания, другая — диагональ нижнего. Вспомним, что расстояние между скрещивающимися прямыми равно длине их общего перпендикуляра. Общий перпендикуляр к A1C1 и BD — это, очевидно, OO1, где O — точка пересечения диагоналей нижнего основания, O1 — точка пересечения диагоналей верхнего. А отрезок OO1 и равен высоте параллелепипеда.

Плоскость AA1 D1 D — это задняя грань призмы на нашем чертеже. Нормаль к ней — это любой вектор, перпендикулярный задней грани, например, вектор или, еще проще, вектор .

Осталась еще «плоскость, проходящая через середину ребра CD перпендикулярно прямой B1D». Но позвольте, если плоскость перпендикулярна прямой B1D — значит, B1D и есть нормаль к этой плоскости! Координаты точек B1 и D известны:

Координаты вектора — тоже:

Находим угол между плоскостями, равный углу между нормалями к ним:

Зная косинус угла, находим его тангенс по формуле

Получим:

Ответ:

Угол между прямой m и плоскостью α тоже вычисляется с помощью скалярного произведения векторов.

Пусть — вектор, лежащий на прямой m (или параллельный ей), — нормаль к плоскости α.

Находим синус угла между прямой m и плоскостью α по формуле:

6. В кубе ABCDA1B1C1D1 точка E — середина ребра A1B1. Найдите синус угла между прямой AE и плоскостью BDD1.

Как всегда, рисуем чертеж и выбираем систему координат

Находим координаты вектора .

Нужно ли нам уравнение плоскости BDD1? В общем-то, без него можно обойтись. Ведь эта плоскость является диагональным сечением куба, а значит, нормалью к ней будет любой вектор, ей перпендикулярный. Например, вектор .

Найдем угол между прямой и плоскостью:

Ответ:

Расстояние от точки M с координатами x0, y0 и z0 до плоскости α, заданной уравнением Ax + By + Cz + D = 0, можно найти по формуле:

7. В основании прямоугольного параллелепипеда BCDA1B1C1D1 лежит прямоугольник ABCD со сторонами AB = , AD = . Высота параллелепипеда AA1 = . Найдите расстояние от точки A до плоскости A1DB.

Построим чертеж и выпишем координаты точек:

Запишем уравнение плоскости A1DB. Вы помните, как это делается — по очереди подставляем координаты точек A1, D и B в уравнение Ax + Be + Cz + D

Решим эту систему. Выберем

Тогда

Уравнение плоскости A1DB имеет вид:

Дальше все просто. Находим расстояние от точки A до плоскости A1DB:

В некоторых задачах по стереометрии требуется найти расстояние от прямой до параллельной ей плоскости. В этом случае можно выбрать любую точку, принадлежащую данной прямой.

источники:

http://ru.onlinemschool.com/math/assistance/vector/length/

http://ege-study.ru/ru/ege/materialy/matematika/vektory-v-prostranstve-i-metod-koordinat/



5.7. Задача с треугольной пирамидой

Концептуально эта задача напоминает задачу с треугольником на плоскости. Только вот треугольников у нас теперь

четыре, и образуют они треугольную пирамиду или тетраэдр:

У треугольной пирамиды есть:

– четыре вершины;

– шесть рёбер (сторон);

– четыре грани.

Чем богаты, тем и рады.

Не буду перечислять геометрические свойства данной фигуры, известные из школьной программы, поскольку аналитическую геометрию интересует совсем

другое, а именно: уравнения рёбер, плоскостей, всевозможные длины, углы и некоторые другие вещи, которые вы увидите прямо сейчас. Типовая задача

формулируется так:

Задача 166

Треугольная пирамида задана координатами своих вершин, пусть это будут вершины . Требуется: … если повезёт, то только 3-4 пункта из перечисленных:

1) найти длину ребра ;

2) составить уравнения стороны ;

3) найти угол между рёбрами ;

4) найти площадь грани ;

5) найти угол между ребром  и плоскостью ;

6) составить уравнение грани ;

7) составить уравнения высоты , опущенной из вершины  на грань ;

8) вычислить длину высоты ;

9) найти основание высоты ;

10) вычислить объем пирамиды;

11) составить уравнения медианы  грани ;

12) составить уравнение плоскости, проходящей через прямую  и вершину ;

13) найти угол между плоскостями  и

14) выполнить чертёж пирамиды  в прямоугольной системе координат.

15) перекреститься левой пяткой.

Во-первых, разберёмся с обозначениями вершин. Самый распространённый вариант, когда они обозначены буквами :

Если бегло просмотреть пункты условия, то легко заметить, что

там часто встречается грань . Чаще всего требуется составить уравнение этой

«особенной» грани, а также найти её площадь. В качестве «особенной» вершины выступает точка , обычно из неё строится перпендикуляр к плоскости .

А всё это я сказал к тому, что в вашей задаче могут быть совершенно другие обозначения вершин. Например, . Здесь «особой» гранью, скорее всего, будет , а «особенной» точкой – вершина .

В этой связи очень важно выполнить схематический рисунок пирамиды, чтобы не запутаться в дальнейшем алгоритме решение. Да, более подготовленные

читатели могут представлять тетраэдр мысленно, но для «чайников» чертёж просто обязателен.

Итак, на предварительном этапе разбираемся с обозначениями вершин, анализируем условие, находим «особенную» плоскость и точку и

выполняем бесхитростный набросок на черновике.

С чего начать решение? Начать лучше всего с того, что загнать координаты вершин в Геометрический

калькулятор (см. приложения), который автоматически рассчитает наиболее популярные пункты. Ибо приятно заранее знать

правильные ответы ;)

Но расписать-то всё нужно подробно. И поэтому оформление решения удобно начать с нахождения векторов. Почти всегда векторы

откладываются от первой вершины, в данном случае – от точки :
Решим эту элементарную задачу:
     

Чтобы комфортнее воспринимать информацию, координаты четырёх точек и трёх полученных вектора рекомендую переписать на отдельный листочек.

Это же сделайте, когда  будете решать свою задачу – чтобы каждый раз не выискивать нужный вектор, нужную точку. Их удобно держать перед

глазами.

Понеслось:

1) Найдём длину ребра . Длина данного ребра равна длине вектора :

Я обычно округляю результаты до двух знаков после запятой, но в условии задачи может быть дополнительное указание проводить округления,

например, до 1 или 3 десятичных знаков.

Полагаю, в случае надобности никого не затруднит аналогичным образом найти длину ребра   или . Как вариант, можно использовать

формулу расстояния между двумя точками: . Но зачем? У нас уже найдены

векторы.

2) Найдём уравнения ребра . Строго говоря, здесь следует

сказать «уравнения прямой, которая содержит ребро», но этим почти всегда пренебрегают. «По умолчанию» обычно подразумевается, что студент запишет канонические уравнения прямой.

Уравнения ребра  составим по точке  (можно взять ) и направляющему

вектору :

Для проверки подставляем координаты точек  в полученное уравнение. Обе

должны «подойти».

3) Найдём угол между сторонами :

Перед вами обычный угол пространственного треугольника,

который рассчитывается как угол между векторами: . И снова при делах задро тривиальная формула:

 – заметьте, что в ходе вычислений можно (и нужно) использовать ранее полученные результаты, в данном случае нам

уже известно, что  (см. пункт 1).

С помощью обратной функции находим сам угол:

4) Найдём площадь грани :

Площадь треугольника вычислим с помощью векторного произведения векторов, используя формулу:


Найдём векторное произведение:


и вычислим его длину:

 …и вынести из-под корня ничего нельзя, поэтому он войдёт в ответ в

неизменном виде.

Таким образом, площадь грани :

Если получаются страшноватые числа, не обращайте внимания, обычная картина. Главное, не допустить ошибку в вычислениях.

5) Найдём угол  между ребром  и плоскостью , прошу прощения за неточность

последующих чертежей, я рисую от руки:

Это стандартная задача, рассмотренная в Задаче 162 (пункт

«д»). Используем формулу:

и с помощью арксинуса рассчитываем сам угол:

6) Составим уравнение грани . А точнее, «уравнение  плоскости,

которая содержит грань». Первая мысль – использовать точки , но есть более выгодное решение. У нас уже найден

вектор нормали  плоскости . Поэтому уравнение грани  составим по точке  (можно взять  либо ) и вектору нормали :

Таким образом:

Для проверки можно подставить координаты точек  в полученное уравнение, все три точки

должны «подойти».

7) Как составить уравнения высоты пирамиды? Звучит грозно, решается просто.

Уравнения высоты , опущенной из вершины  на грань , составим по точке  и направляющему

вектору :

 – по умолчанию записываем канонические уравнения.

Вектор нормали в рассматриваемой задаче работает «на всю катушку», и как только вам предложили найти площадь грани, составить уравнение грани или

уравнения высоты – сразу «пробивайте» векторное произведение.

8) Длину высоты  найдём как расстояние от точки  до плоскости :

Результат громоздкий, поэтому позволим себе вольность не избавляться от иррациональности в знаменателе.

Теперь пунктик потруднее:

9) Найдём основание высоты – точку . Тема пересечения

прямой и плоскости подробно муссировалась в той же в Задаче 162 (пункт «б»). Повторим.

Перепишем уравнения высоты в параметрической форме:

Неизвестным координатам точки  соответствует вполне конкретное значение

параметра :
, или: .

Основание высоты, понятно, лежит в плоскости. Подставим параметрические координаты точки  в уравнение :

Кому-то покажется жестью, но на самом деле шифер :)  Который шуршит.

Полученное значение параметра подставим в координаты нашей точки:
 

Сурово, но идеально точно. Я проверил.

10)  Объём треугольной пирамиды в ангеме традиционно рассчитывается с помощью

смешанного произведения векторов:

Таким образом,

И тут уместно выполнить проверку, вычислив объем тетраэдра по школьной формуле , где  – площадь грани,  – длина высоты, опущенной к этой грани. Уместно ПОТОМУ, что мы знаем и площадь грани , и длину высоты :
, чему мы очень рады.

11) Составим уравнения медианы  грани . Ничего сложного, обычная медиана обычного пространственного треугольника:
По сравнению с треугольником на

плоскости, добавится лишь дополнительная координата. Нам известны вершины , и по формулам координат середины отрезка находим адрес точки :

Уравнения медианы можно составить по двум точкам, но сначала (см. по ссылке, почему) лучше найти

направляющий вектор: . В качестве направляющего можно взять любой

коллинеарный вектор, и сейчас подходящий момент избавиться от дробей:

Уравнения медианы составим по точке  и направляющему вектору :

Заметьте, что уравнения с эстетической точки зрения лучше составить по точке , так как координаты точки «эм» – дробные. Проверка обыденна, нужно подставить координаты точек  в полученные уравнения.

12) Составим уравнение плоскости, проходящей через прямую  и вершину :

Увы, мы не знаем «вкусный» вектор нормали, и поэтому уравнение

плоскости  придётся добывать по точке и двум

неколлинеарным векторам.

В качестве точки обязательно выбираем «одинокую» точку, которая не принадлежит прямой, в данном случае – это вершина . Один из нужных  векторов уже известен: , но, конечно же, удобнее выбрать друга-мажора . Ему в пару подходит вектор , но лучше .
Ибо координаты этого вектора будут целыми:

Уравнение плоскости составим по точке  и двум неколлинеарным векторам :

Непременно проверяем, что координаты точек  удовлетворяют

полученному уравнению.

13) Найдём угол между плоскостями  и .

Это типовая задача.

Обозначим искомый угол через  и используем формулу: , где  – вектор

нормали плоскости . Напоминаю, что вектор  и его длина  уже известны.

Осталось из уравнения  снять вектор нормали:  и аккуратно провести вычисления:

Возиться с такими корнями смысла нет, поэтому сразу находим угол:

От тупизны подальше за ответ таки лучше принять смежного соседа:

14) Выполним точный чертёж пирамиды  прямоугольной системе координат. Да, конечно, существуют программы и онлайн сервисы для построения чертежей, но не

факт, что они под рукой, и не факт, что такой чертёж будет качественным. Поэтому я расскажу вам о ручном способе построения – в тетради с помощью

карандаша и линейки.

С чего начать?

Во-первых, нужно правильно изобразить декартову систему координат на клетчатой бумаге. Во-вторых, необходимо уметь строить точки в трёхмерном пространстве, о чём мы уже вспомнили, когда разбирали канонические уравнения прямой. И сейчас тема получает продолжение.

Построим точку .  Для этого отмеряем 2 единицы в положительном направлении

оси  и 3 единицы в отрицательном направлении оси . В плоскости  прочерчиваем тонкие

пунктирные дорожки, которые параллельны соответствующим  координатным осям. Пересечение этих дорожек отмечено ромбиком (слева

внизу):

Теперь, в соответствии с отрицательной «зетовой» координатой, отмеряем 1 единицу вниз и тоже проводим пунктирную дорожку. Здесь и будет находиться

наша точка , она расположена в нижнем полупространстве.

Для точки  отмеряем 5 единиц «на себя» и 4 единицы вправо, строим параллельные

осям пунктирные дорожки и находим их точку пересечения. В соответствии с «зетовой» координатой, чертим пунктиром «подставку для точки» – 2 единицы

вверх. Данная точка расположена в верхнем полупространстве.

Аналогично строятся две другие точки. Заметьте, что вершина  лежит в самой

плоскости .

Теперь нужно разобраться в удалённости точек, а в этом как раз и помогут пунктирные линии. Немного включаем пространственное воображение и

внимательно смотрим на ось . Очевидно, что самая близкая к нам вершина – , а самая удалённая – .

Строим рёбра. Если есть сомнения, то сначала тонко-тонко прочерчиваем все 6 сторон и начинаем разбираться, какие рёбра видимы, а какие нет. Лучше начать от самой близкой точки . Очевидно, что все

три «исходящих» ребра в поле нашего зрения:

Должен предостеречь, что так бывает далеко не всегда, одно ребро, например, может быть от нас скрыто. Не теряйте визуального восприятия

пространства!

Какие ещё стороны в зоне видимости? ВиднЫ рёбра , а вот сторона  спряталась за пирамидой. Обратите внимание, что она лежит в нижнем

полупространстве и проходит под осями :

Готово.

Следует отметить, что чертеж-«конфетка» получается далеко не всегда. Бывает, что фортуна разворачивается задом. Так, грань пирамиды может полностью

или частично закрывать всё остальное (слева).
       

Но самое скверное, когда перекрываются рёбра (справа). Тут сразу три ребра выстроились на одной прямой (правая верхняя прямая). В

подобной ситуации можно жирно прочертить накладывающиеся стороны разными цветами и ниже чертежа записать дополнительные комментарии о расположении

пирамиды. А можно поступить творчески – поменять оси местами (например,  и ).

Существуют и более мелкие неприятности, например, одна из сторон пирамиды может наложить на координатную ось (а то и вовсе расположиться за ней).
Увы, перечисленные случаи – не редкость на практике.

В конце решения следует выполнить Пункт 15, после чего желательно записать ответ, где по пунктам перечислить

полученные результаты.

6.1. Поверхности второго порядка

5.6.7. Добро пожаловать в «реальные боевые условия»!

| Оглавление |



Автор: Aлeксaндр Eмeлин

Понравилась статья? Поделить с друзьями:
  • Как найти асимметрию в математике
  • Как найти человека программа поиска
  • Как найти зависимость между данными
  • Как найти силу давления тела на опору
  • Как найти человека нетрадиционной ориентации