Как найти длину рычага в равновесии

Содержание:

Рычаг:

Взаимодействие может происходить через промежуточные тела.

Взаимодействие может происходить не только при непосредственном контакте, но и при наличии промежуточных тел. Таких примеров можно привести большое количество. Так, если мастер забивает гвоздь в углублении, он ставит на головку гвоздя металлический стержень и по нему ударяет молотком (рис. 58). Молоток действует на стержень, который, в свою очередь, уже действует на гвоздь.

Рычаг в физике - виды, формулы и определения с примерами

Можно ли изменять значения силы

Если взаимодействие между телами происходит через промежуточные тела, то можно изменять силы взаимодействия между ними. Оно может изменить как направление силы, так и ее значение. Одним из примеров такого использования промежуточных тел для взаимодействия между телами является рычаг. В быту и на производстве можно наблюдать много таких примеров.

Часто можно видеть, как тяжелый предмет поднимают или перемещают с помощью металлического стержня (рис. 59). В этом случае стержень называют рычагом.
Рычаг в физике - виды, формулы и определения с примерами

Что такое рычаг

Рычагом называют жесткий стержень, имеющий ось вращения.

Ось вращения рычага может проходить через один из его концов или посередине рычага — между точками приложения сил.

Под действием нескольких сил рычаг может вращаться или быть неподвижным. В последнем случае говорят, что рычаг уравновешен.

Как уравновесить рычаг

Выясним, при каких условиях рычаг, на который действует несколько сил, будет уравновешен.

Рычаг в физике - виды, формулы и определения с примерами

Для этого возьмем деревянную планку с отверстием посередине и поместим ее на оси, закрепленной в штативе (рис. 60). Это и будет рычаг. Слева от оси вращения повесим в точке А на расстоянии 10 см гирьку массой 102 г. В этом случае говорят, что точка А является точкой действия силы 1 Н. Под действием этой силы рычаг начнет вращаться против часовой стрелки. Для того чтобы он не вращался и оставался в горизонтальном положении, на другом конце рычага найдем такую точку В, при закреплении в которой гирьки массой 102 г рычаг перестанет вращаться. Измерив расстояние ОВ, увидим, что оно также равно 10 см. Таким образом, OA = ОВ, если Fl = F2. Если направление действия силы перпендикулярно к направлению оси вращения рычага, то расстояние от его оси вращения к направлению действия силы называют плечом силы.

Если силы, действующие на рычаг, находящийся в равновесии, равны, то равны и плечи этих сил.

Если левую гирьку оставить прикрепленной в точке А, а в точке В подвесить две такие гирьки массой по 102 г каждая, то равновесие рычага нарушится и он начнет вращаться. Достигнуть равновесия в этом случае можно, изменяя положение точки подвеса двух гирек. Так можно установить новое положение точки подвеса С. Измерив оба плеча, увидим, что правое плечо ОС в два раза меньше левого плеча OA.

Рычаг в физике - виды, формулы и определения с примерами

В случае равновесия рычага плечо большей силы меньше, и наоборот, плечо меньшей силы больше.

Рычаг в физике - виды, формулы и определения с примерами

Используя свойства пропорции, получаем

Рычаг в физике - виды, формулы и определения с примерами

В уравновешенном рычаге плечи сил обратно пропорциональны силам.

Что такое момент силы

Физическую величину, равную произведению силы на плечо, называют моментом силы. Единицей измерения момента силы является ньютон-метр (Н-м).

Сформулируем условие равновесия рычага в общем виде.

Рычаг пребывает в равновесии, если момент силы, вращающий рычаг по часовой стрелке, равен моменту силы, вращающему рычаг против часовой стрелки.

Конструктивно рычаг может быть таким, что силы будут действовать по одну сторону от оси вращения. Условие равновесия для него будет такое же, как и для рычага, рассмотренного выше.

Используя условие равновесия рычага, можно рассчитывать силы, действующие на него, или плечи этих сил.

Пример:

На одно из плеч рычага длиной 30 см действует сила 2 Н. Какая сила должна подействовать на другое плечо этого рычага длиной 15 см, чтобы он оставался неподвижным.

Дано:

Рычаг в физике - виды, формулы и определения с примерами

Решение

При условии равновесия рычага Рычаг в физике - виды, формулы и определения с примерами Отсюда

Рычаг в физике - виды, формулы и определения с примерами

Ответ. На второе плечо рычага должна подействовать сила 4 Н.

Где используют рычаги

Рычаг известен человеку с того времени, когда человек взял палку, чтобы сбить плод с дерева. И вся следующая история человечества связана с использованием рычагов. Так, исследования историков показывают, что при строительстве пирамид древние египтяне использовали рычаги для поднятия тяжелых блоков на значительную высоту (рис. 61). Историкам науки известно, что древние римляне использовали рычаги для создания различных строительных и военных машин (рис. 62). Значительный вклад в теорию рычагов внес древнегреческий ученый и изобретатель Архимед. Сконструированные им машины помогали оборонять греческие города от захватчиков, подавать воду для орошения полей (рис. 63), перемещать значительные грузы на стройках, выполнять большое количество других подобных работ.

Рычаг в физике - виды, формулы и определения с примерами

Рычаги широко используются и в современной технике, в самых разнообразных машинах.

Рычагом является стрела подъемного крана, используемого в строительстве. Она дает возможность получить выигрыш в силе или расстоянии. Момент силы, действующей на конце стрелы при подъеме груза, уравновешивается моментом противовеса, находящегося на противоположном конце стрелы.

Принцип рычага используется во многих устройствах и инструментах, которыми мы пользуемся ежедневно. На рисунке 64 изображены некоторые из них. На них легко найти части, исполняющие роль рычагов.Рычаг в физике - виды, формулы и определения с примерами

Рычаги можно найти и в живых организмах. По принципу рычага работают руки человека (рис. 65), ноги, голова.
Рычаг в физике - виды, формулы и определения с примерами

Рычаг в физике - виды, формулы и определения с примерамиАрхимед (около 287-212 гг. до н. э.) — известный древнегреческий ученый. Научные труды касаются математики, механики, физики и астрономии. Автор многих изобретений и открытий, в том числе машины для орошения полей, винта, рычагов, блоков, военных метательных машин и пр. В его труде «О плавающих телах» изложены основы гидростатики.

Условие равновесия рычага и момент силы

Как уже отмечалось, рычаг — твёрдое тело, которое может вращаться около неподвижной опоры. Его применяют для изменения направления и значения силы, например для уравновешивания большой силы малой. Рычаг имеет следующие характеристики

(рис. 202).

Рычаг в физике - виды, формулы и определения с примерами

Точка приложения силы — это точка, в которой на рычаг действует другое тело.

Ось вращения — прямая, проходящая через неподвижную точку опоры рычага О, и вокруг которой он может свободно вращаться. Рассмотрим случай, когда ось вращения расположена между точками приложения сил Рычаг в физике - виды, формулы и определения с примерами и Рычаг в физике - виды, формулы и определения с примерами.

Линия действия силы — это прямая, вдоль которой направлена сила.

Плечо силы — кратчайшее расстояние от оси вращения тела О до линии действия силы. Плечо силы обозначается буквой d. Единицей плеча силы в СИ является один метр (1 м).

Опыт. Возьмём рычаг, подобный изображённому на рис. 203. На расстоянии 10 см от оси вращения подвесим к нему 6 грузиков, каждый массой по 100 г. Чтобы уравновесить рычаг двумя такими же грузиками, нам придётся их подвесить с другой стороны рычага, но на расстоянии 30 см.

Следовательно, для того чтобы рычаг находился в равновесии, нужно к длинному плечу приложить силу, во столько раз меньшую, во сколько раз его длина больше длины короткого плеча. Такое правило рычага описывают формулой обратно пропорциональной зависимости: Рычаг в физике - виды, формулы и определения с примерами,

где Рычаг в физике - виды, формулы и определения с примерами и Рычаг в физике - виды, формулы и определения с примерами— силы, действующие на рычаг; Рычаг в физике - виды, формулы и определения с примерами и Рычаг в физике - виды, формулы и определения с примерами — плечи соответствующих сил. Поэтому правило (условие) равновесия рычага можно сформулировать так. 

Рычаг находится в равновесии тогда, когда значения сил, действующих на него, обратно пропорциональны плечам этих сил.

С тех пор, когда Архимед установил правило рычага, оно просуществовало в первозданном виде почти 1900 лет. И лишь в 1687 г. французский учёный П. Вариньон придал ему более общую форму, используя понятие момента силы.

Момент силы М— это физическая величина, значение которой опре-Г деляется произведением модуля силы F, вращающей тело, и ее плеча d : Рычаг в физике - виды, формулы и определения с примерами.

Единицей момента силы в СИ является один ньютон-метр (1 Н • м), равный моменту силы 1 Н, приложенной к плечу 1 м.

Докажем, что рычаг находится в равновесии под действием двух сил, если значение момента М1 силы, вращающей рычаг против часовой стрелки, равно значению момента М2 силы, вращающей его по часовой стрелке, т.е.: Рычаг в физике - виды, формулы и определения с примерами

Из правша рычага Рычаг в физике - виды, формулы и определения с примерами на основе свойства пропорции вытекает

равенство:Рычаг в физике - виды, формулы и определения с примерами. Но Рычаг в физике - виды, формулы и определения с примерами  — момент силы, вращающей рычаг против часовой стрелки (рис. 202),Рычаг в физике - виды, формулы и определения с примерами— момент силы, вращающей рычаг по часовой стрелке. Таким образом: Рычаг в физике - виды, формулы и определения с примерами,

что и требовалось доказать. Итак, правило (условие) равновесия рычага можно ещё сформулировать так.

Рычаг находится в равновесии под действием двух сил, если значение момента силы, вращающей рычаг против часовой стрелки, равно значению момента силы, вращающей его по часовой стрелке.

Момент силы — важная физическая величина, она характеризует действие силы, показывает, что оно зависит и от модуля силы, и от её плеча. Например, мы знаем, что действие силы на дверь зависит и от модуля силы, и оттого, где приложена сила: дверь тем легче повернуть, чем дальше от оси вращения приложена сила, действующая на неё; гайку легче открутить длинным гаечным ключом, чем коротким; ведро тем легче вытянуть из колодца, чем длиннее ручка ворота.

Основы статики и равновесие рычага

Еще в давние времена люди использовали обычную палку в качестве рычага, выигрывая этим в силе. На рисунке 2.35 показано, как с помощью рычага можно поднять по ступенькам большие каменные глыбы, например для строительства пирамид.

Рычаг в физике - виды, формулы и определения с примерами
В древних книгах по механике, написанных учеными Греции и Египта, главным образом рассматривались вопросы статики. Важнейшие открытия в этой области принадлежали великому греческому философу Аристотелю, который и дал название «механика» науке, изучающей простейшие движения материальных тел, находящихся в природе или создающихся людьми в процессе их деятельности.

Ученые уже тогда понимали значение статики как одной из основных составляющих фундамента механики. Дальнейшее развитие науки и, особенно, техники подтвердило правильность их вывода: действие огромного количества £ механизмов и машин базируется на законах о равновесии сил. 

Аристотель (384-322 до н. э.) — один из известнейших ученых Древней Греции. Изучал вопросы ста-тики, разработал классификацию механических движений, сформулировал закон прямолинейного распространения света, объяснил природу атмосферных явлений и др.

Основы науки о равновесии были заложены еще Архимедом. Именно он ввел в физику такое понятие, как центр тяжести и момент силы относительно точки и оси, определил положение центра тяжести для многих тел и фигур, математически обосновал законы рычага, сформулировал правила приложения параллельных сил.

  • Заказать решение задач по физике

В своей работе «О равновесии плоских фигур» Архимед опирался на положения, которые считал само собой разумеющимися:

Архимед (287-212 до н. э.) — древнегреческий физик, математик, исследователь, инженер. Изучал условия равновесия тел, простые механизмы, плавание тел и др. Установил, что соотношение длины любой окружности к ее диаметру (число Рычаг в физике - виды, формулы и определения с примерами) колеблется между Рычаг в физике - виды, формулы и определения с примерами и Рычаг в физике - виды, формулы и определения с примерами(3,142 — 3,140); на то время это были точные данные.

Рычаг в физике - виды, формулы и определения с примерами

  1. одинаковые грузы, приложенные к одинаковым плечам рычага, уравновешиваются (рис. 2.36, а);
  2. одинаковые грузы, приложенные к неодинаковым плечам рычага, не находятся в равновесии; груз, приложенный к более длинному рычагу, падает (рис. 2.36, б);
  3. если грузы, подвешенные к неодинаковым плечам рычага, уравновешиваются и к одному из них что-либо прибавить, то равновесие нарушится и этот груз будет падать (рис. 2.36, в);
  4. если при тех же условиях, что в предыдущем случае, один груз уменьшить, то равновесие нарушится, и тогда другой груз будет падать (рис. 2.36, г).

Рычаг находится в равновесии, если плечи сил обратно пропорциональны значениям сил, действующих на него
Рычаг в физике - виды, формулы и определения с примерами
Из этих положений Архимед сделал вывод: грузы пребывают в равновесии, когда плечи рычага обратно пропорциональны грузам:

Рычаг в физике - виды, формулы и определения с примерами

Условия равновесия тел. Устойчивое и неустойчивое равновесие

Равновесие — состояние тела, при котором в рассматриваемой системе отсчета отсутствуют перемещения каких-либо его точек под действием приложенных к нему сил.

Вспомним, что момент силы относительно какой-либо оси равен произведению модуля силы на ее плечо: М = Fl. Плечом силы l называется кратчайшее расстояние от оси вращения до линии действия данной силы. Момент силы считается положительным, если сила стремится повернуть тело по часовой стрелке, и отрицательным, если такое действие противоположно. Для равновесия тел необходимы два условия: 1) геометрическая сумма приложенных к телу сил равна нулю:  Рычаг в физике - виды, формулы и определения с примерами

2) алгебраическая сумма моментов сил относительно любой неподвижной оси равна нулю:Рычаг в физике - виды, формулы и определения с примерами

Момент силы: М = Fl.

Условия равновесия тел:

Рычаг в физике - виды, формулы и определения с примерами
Равновесие устойчивое, если при незначительном смещении тело вновь возвращается в положение равновесия (рис. 2.37).

При неустойчивом равновесии незначительное смещение тела вызывает в дальнейшем значительное удаление его от исходного положения (рис. 2.38).

Равновесие тела  может быть устойчивым, неустойчивым и безразличным.  
Рычаг в физике - виды, формулы и определения с примерами

Рычаг в физике - виды, формулы и определения с примерами

Если любые смещения тела не нарушают его состояния равновесия, то можно говорить о безразличном равновесии (рис. 2.39).Рычаг в физике - виды, формулы и определения с примерами

Примеры решения задач на равновесие рычага

Рассмотрим примеры решения задач статики.

Пример №1

Метровая линейка, весом которой можно пренебречь, положена средним делением на подставку и нагружена гирями (рис. 2.40). Какого направления и значения сила должна быть приложена на делении 1 м для того, чтобы линейка находилась в равновесии? Какой будет сила реакции опоры, если приложить эту силу?
Рычаг в физике - виды, формулы и определения с примерами

Решение:

Выполняем рисунок в соответствии с условием задачи (рис. 2.41), указав силы и их плечи. Линейка под действием моментов сил может вращаться вокруг неподвижной оси О, которая проходит через точку О. Будем считать положительными все моменты, вращающие систему по часовой стрелке. В задаче это момент силы Рычаг в физике - виды, формулы и определения с примерами Отрицательные моменты создают силы Рычаг в физике - виды, формулы и определения с примерами
Рычаг в физике - виды, формулы и определения с примерами
Для упрощения вычислений значение ускорения свободного падения будем считать равным 10 Рычаг в физике - виды, формулы и определения с примерами

Рычаг в физике - виды, формулы и определения с примерами

Рычаг в физике - виды, формулы и определения с примерами

Предположим, что для равновесия системы на конце линейки 1 м должна быть приложена сила Рычаг в физике - виды, формулы и определения с примерами направленная вертикально вверх. Если же мы ошиблись в выборе направления этой силы, то в ответе значение силы получится со знаком  «-«. Для решения задачи воспользуемся вторым условием равновесия тела: 

Рычаг в физике - виды, формулы и определения с примерами

Ответ:Рычаг в физике - виды, формулы и определения с примерами= 3,2H, направление силы выбрано правильно.

Пример №2

Метровая линейка, весом которой можно пренебречь, положена крайними точками на две опоры и нагружена гирями, как в предыдущей задаче. Нужно определить силы реакции опор Рычаг в физике - виды, формулы и определения с примерами (рис. 2.42).

Рычаг в физике - виды, формулы и определения с примерами

Решение:

Чтобы определить силу реакции опоры Рычаг в физике - виды, формулы и определения с примерами можно воспользоваться таким приемом. Если опору забрать, то для равновесия системы на отметке 1 м необходимо приложить силу, направленную вертикально вверх. Иначе система будет вращаться вокруг оси в точке О линейки по часовой стрелке. Теперь можно применить правило моментов:
Рычаг в физике - виды, формулы и определения с примерами
Чтобы определить силу реакции опоры Рычаг в физике - виды, формулы и определения с примерами действуем аналогично. Теперь система будет вращаться вокруг оси против часовой стрелки, когда она проходит через отметку 1 м:Рычаг в физике - виды, формулы и определения с примерами

Чтобы найти силы реакции опор, можно воспользоваться правилом сложения параллельных сил. Им же можно пользоваться и для контроля найденных значений.

Ответ: Рычаг в физике - виды, формулы и определения с примерами = 3,9 H; Рычаг в физике - виды, формулы и определения с примерами =7,1 Н.

Рычаг в физике - виды, формулы и определения с примерами
Оригинальный метод решения задач статики был предложен Симоном Сте-вином (1548-1620). Для случаев равновесия тел на наклонной плоскости он доказал, что массы тел соотносятся как длины плоскостей, которые их образуют (рис. 2.43):

Рычаг в физике - виды, формулы и определения с примерами

Он же установил принцип сложения статических сил (треугольник сил): три силы, действующие на одну точку, находятся в равновесии тогда, когда они бывают параллельны и пропорциональны трем сторонам плоского треугольника (рис. 2.44). Приведем пример решения одной из задач статики с применением треугольника сил.

Рычаг в физике - виды, формулы и определения с примерами

Пример №3

На кронштейне висит лампа весом 4 Н. Найти значение сил упругости в деталях ОА и ОВ.
Дано:

Р = 4 Н
Рычаг в физике - виды, формулы и определения с примерами— ? 

Решение:

Выбираем масштаб построения треугольника. Пусть 1 см на рисунке соответствует значению силы 1 Н. Теперь строим сторону треугольника
А’В’, длина которой известна: 4 см = 4 Н. Эта сторона параллельна направлению силы тяжести, действующей на лампу. Из точки А’ проводим линию, параллельную направлению действия силы в подвесе ОА, а потом из точки В’ — параллельную направлению действия силы в упоре ОВ. На пересечении линий находится точка О’. Таким образом мы получили замкнутый треугольник сил. Зная масштаб, при помощи линейки измеряем значения силы упругости в подвесе ОА (О’А’) и силы реакции в упоре ОВ (О’В’).

  • Блоки в физике
  • Движение тела под действием нескольких сил
  • Наклонная плоскость в физике
  • Давление газов и жидкостей
  • Равнодействующая сила и движение тела под действием нескольких сил 
  • Сила давления в физике и единицы давления
  • Механическое давление в физике
  • Столкновения в физике

Задачи на простые механизмы с решениями

Формулы, используемые на уроках «Задачи на простые механизмы,
условия равновесия рычага, блоки, золотое правило механики».

Название величины

Обозначение

Единица измерения

Формула

Сила

F

Н

F1l1 = F2l2

Плечо силы

l

м

Момент силы

M

Нм

M = Fl




ПРИМЕРЫ РЕШЕНИЯ ЗАДАЧ


Задача № 1.
 С помощью рычага рабочий поднимает плиту массой 120 кг. Какую силу он прикладывает к большему плечу рычага, равному 2,4 м, если меньшее плечо 0,8 м?


Задача № 2.
 На концах рычага действуют силы 20 Н и 120 Н. Расстояние от точки опоры до большей силы равно 2 см. Определите длину рычага, если рычаг находится в равновесии.


Задача № 3.
 На рисунке изображен рычаг, имеющий ось вращения в точке О. Груз какой массы надо подвесить в точке В для того, чтобы рычаг был в равновесии?


Задача № 4.
 На меньшее плечо рычага действует сила 300 Н, на большее — 20 Н. Длина меньшего плеча 5 см. Определите длину большего плеча.


Задача № 5.
 Рычаг длиной 60 см находится в равновесии. Какая сила приложена в точке В?


Задача № 6.
  Момент силы действующей на рычаг, равен 20 Н*м. Найти плечо силы 5 Н, если рычаг находится в равновесии.


Задача № 7.
 Какое усилие необходимо приложить, чтобы поднять груз 1000 Н с помощью подвижного блока? Какая совершится работа при подъеме груза на 1 м? (Вес блока и трение не учитывать).


Задача № 8.
  Система блоков находится в равновесии. Определите вес правого груза. (Вес блоков и силу трения не учитывать).


Задача № 9.
 При помощи подвижного блока поднимают груз, прилагая силу 105 Н. Определите силу трения, если вес блока равен 20 Н, а вес груза 180 Н.


Задача № 10.
  ОГЭ
 Стержень цилиндрической формы длиной l = 40 см состоит на половину своей длины из свинца и наполовину — из железа. Найти расстояние от центра тяжести до центра симметрии стержня. Плотность свинца p1 = 11,4 г/см3, плотность железа p2 = 7,8 г/см3.

Решение. Центр тяжести тела (центр масс) — точка приложения силы притяжения его к земле — веса тела P. У тел, имеющих какую-либо симметрию, он совпадает с центром симметрии. Например, у однородного цилиндра центр тяжести расположен на его оси в центре цилиндра. Тело, закреплённое на оси, проходящей через его центр тяжести, находится в состоянии безразличного равновесия. Мысленно закрепим стержень AB на оси, перпендикулярной стержню и проходящей через его центр тяжести C, отстоящий от его геометрического центра O на расстояние x в сторону более тяжёлой половины стержня. Центры инерций половинок размещены на расстояниях l/4 от середины стержня.

х = (11,4–7,8)/(11,4+7,8) • 0,4/4 = 0,01875 ≈ 0,019 (м)

Ответ: 1,9 см.


Задача № 11.
   ЕГЭ
 Масса якоря корабля m = 50 кг. Радиус барабана, на который наматывают якорную цепь, R = 0,2 м, длина каждой из двух ручек ворота l = 1 м. Какую силу нужно приложить к каждой из них, чтобы поднять якорь?


Краткая теория для решения задачи на простые механизмы.

Задачи на простые механизмы


Конспект урока «Задачи на простые механизмы с решениями».

Следующая тема: «Задачи на КПД простых механизмов».

Общая характеристика правила равновесия рычага

Характеристика понятия

Описываемое устройство является довольно простым. Но разбираясь в тонкостях правила рычага в физике, стоит отметить наличие у него нескольких составных частей:

 определение понятия момента силы

  • Балки или доски, на которую воздействует две противоположные силы.
  • Опоры, представляющей собой ось вращения. От её размещения под балкой зависит определение типа рычага (таковых существует три).
  • Плеча, под которым понимают отрезок доски между её концом и опорой (при этом воздействующие силы должны прилагаться по краям балки). От длины плеча зависят условия равновесия механизма.

Рычаг применяется для преобразования перемещения в силу и наоборот. Таким образом, удаётся добиться перераспределения выполняемой работы в пользу производимого перемещения или прикладываемой силы.

Если рассматривать строение человеческого скелета, можно прийти к выводу, что всем людям с самого рождения предоставляется способность пользоваться системой рычагов. При этом в роли механизма выступают плечи и предплечья.

Начало применения устройства с целью облегчения физической работы датируется древними временами. Имеются сведения, что ещё в Древнем Египте эти приборы шли в ход, когда люди поднимали из реки или колодца наполненный водой сосуд.

В 100 году до нашей эры была издана работа Плутарха под названием «Параллельные жизни». В ней говорится, что Архимеду удалось без посторонней помощи поднять над водой корабль, на борту которого на тот момент находились пассажиры и груз. Для этого были использованы блоки и рычаги. По сей день считается, что именно Архимед изобрёл механизм, поскольку самые древние сохранившиеся письменные работы, свидетельствующие о создании закона, принадлежат перу именно этого философа.

Момент силы

Правила ручага

При изучении правила равновесия рычага следует отдельно разобраться в том, что значит единица измерения, называемая моментом силы (или крутящим моментом). Чтобы её изобразить с помощью формулы, необходимо умножить непосредственно величину силы (F) на плечо силы (d).

Схематически это будет изображаться так: М = d x F. Очень важное значение имеет ось вращения. Без её определения действующий момент силы лишён смысла. Использование величины М говорит о способности силы оборачивать систему вокруг оси. Применить её на практике можно на примере гайки, если постараться открутить последнюю без помощи гаечного ключа, а лишь одними руками. Тот же эффект будет наблюдаться и при попытке открыть дверь толчком около петель, а не за ручку.

При решении задач величина М способна приводить к вращению механизм как по ходу часовой стрелки, так и против него. При этом в первом случае момент отрицательный, а во втором — положительный.

Правило рычага

Чтобы разобраться, в чём заключается правило рычага, стоит рассмотреть пример работы классического механизма с двумя плечами и опорой, расположенной далеко от обоих концов доски. Во время применения прибора отмечается действие двух сил на него:

  • Внешней F, прикладываемой для осуществления полезной работы.
  • R, оказывающей F сопротивление и выполняющей отрицательную работу.

Как вычислить силу рычага

Обычно для создания F прикладываются человеческие усилия, а R определяется массой поднимаемого груза. Механизм достигнет равновесия лишь в том случае, если действующие на него моменты в сумме окажутся равны нулю. С учётом момента силы формулу для правила рычага можно записать так: R х DR — F х DF = 0, где D является плечом силы. F отрицательная из-за того, что стремится оборачивать плечо устройства по кругу в направлении движения часовой стрелки. Если записать формулу в виде равенства, она будет выглядеть так: R х DR = F х DF.

Отсюда следует, что для достижения простым рычагом равновесия достаточно добиться равенства моментов сил действия F и противодействия R. При применении механизма сохраняется энергия системы, свидетельствующая о необходимости проделывания определённой работы во время поднятия груза на какую-либо высоту.

Поскольку для получения значения правила рычага длину плеча умножают на силу, то существует возможность осуществления работы как с применением большей, так и меньшей силы. Но при первом варианте плечо механизма придётся установить на меньшую величину в вертикальном направлении, а второй случай предполагает перемещение плеча на большую величину. Эта особенность называется выигрышем и проигрышем в применении рычага.

Стоит отметить, что значения моментов никак не влияют на работу. Осуществление действия благодаря моменту силы отмечается лишь в тех случаях, когда система начинает поворачиваться на определённый угол по часовой стрелке.

Виды механизмов

Как известно, все рычаги подразделяются на три типа. Основывается эта классификация на относительном расположении опоры к силам R и F. Каждый из видов механизма стоит охарактеризовать отдельно:

Понятие и принцип действия правила равновесия рычага

  • В приборах первого типа опора размещается между R и F. При этом от длины плеч зависит, будет ли рычаг использован для выигрыша в силе либо же в пути. По этому принципу устроена работа ножниц, весов на механике, гвоздодёра.
  • Работа устройств второго типа основывается на воздействии силы R, приложенной между F и опорой. Однако использовать такие рычаги можно при расчёте на получение выигрыша лишь в силе. Наиболее простыми примерами устройств считаются ручные тачки и орехоколы.
  • Третий тип основывается на размещении F между грузом и опорой. Такие механизмы позволяют получить выигрыш только в пути. Пронаблюдать работу этого типа можно с помощью использования рыболовной удочки, циркуля или лопаты.

Методы вычисления силы рычага

Помимо рычагов, при изучении правила равновесия стоит обратить внимание и на другой простой механизм, называемый блоком. Это цилиндр, оснащённый осью вращения и углублением, сформированным вдоль боковой поверхности. При его применении полностью отсутствует выигрыш в силе и пути, однако, благодаря использованию неподвижного блока, можно поменять направление воздействия F. К устройству применимо правило рычага, но только тогда, когда необходимо добиться выигрыша в силе для подвижных блоков, каждый из которых способен увеличить такое значение вдвое. Но при этом методе идентичная величина проигрывается в пути.

Пример решения задачи

Онлайн калькулятор для вычисления рычага

В интернете существует масса приложений со встроенными онлайн-калькуляторами, позволяющими вычислить то или иное значение. Для решения задач по правилу рычага можно воспользоваться этими программами либо же научиться вычислять необходимые величины на основе примеров.

Итак, по условию задачи требуется узнать длину рычага, который позволит 50-килограммовой девушке поднять полуторатонный автомобиль, надавив на механизм всем весом. При этом точка опоры располагается в одном метре от края короткого плеча (D1), где D2 — длинное плечо.

Чтобы выяснить, во сколько раз механизм может дать выигрыш в силе, используется формула F/R=D1/D2. Обе силы оказывают воздействие на рычаг по разные стороны от его опоры, поэтому общая длина доски измеряется по формуле: D = D1+D2.

Согласно условию задачи, величина R, оказывающая действие на плечо D1, это вес автомобиля, обозначаемый Mg. При этом F представляет собой действующую на плечо D2 силу, являющуюся весом девушки (mg). Для получения длины рычага достаточно решить уравнение. Итак, в соответствии с вышеописанной формулой (mg/Mg = D1/D2), чтобы получить D2 необходимо произведение массы авто и длины короткого плеча разделить на вес девушки: (Mg x D1)/mg: D2 = (1500 кг х 1 м)/50 кг = 30 м. Чтобы получить общую длину рычага, понадобится сложить D2 и D1: 30м+1 м. Таким образом, искомая величина будет равна 31 метру.

В наши дни рычаги находят широкое применение как в быту, так и на производстве. Поэтому понимание принципа их работы очень важно практически для каждого человека.

Простейшие механизмы. Рычаг

Можно ли поднять земной шар?

Выдающийся древнегреческий учёный Архимед более (2000) лет назад ответил примерно так:

Дайте мне точку опоры, и я подниму земной шар.

Простейшим механизмом, при помощи которого можно поднять тяжёлые предметы, является рычаг.

Рычаг состоит из перекладины, рычага и опоры.

Точка опоры перекладину рычага делит на два плеча рычага.

Точка опоры может быть расположена между плечами рычага ((1)) или по одну сторону от плеч рычага ((2)).

РЫЧАГ.png

Рис. (1). Изображение рычага в двух вариантах расположения точки опоры

Рычаг находится в равновесии, если произведение силы на плечо по обе стороны опоры одинаково:

Из условия равновесия рычага следует, что если рычаг находится в равновесии, тогда приложенные силы обратно пропорциональны длине плеч рычага:

РЫЧАГ2.png

Рис. (2). Изображение рычага в равновесном состоянии

Используя рычаг, можно поднимать тяжёлые предметы, прикладывая небольшое усилие.

Величина экономии силы одинакова с соотношением длин более длинного и более короткого плеча рычага.

В обиходе часто используют рычаги. Например, ножницы, плоскогубцы, лопата, тачка являются примером использования рычагов.

Плоскогубцы Asset 10.png

Рис. (3). Изображение плоскогубцев

Источники:

Рис. 1. Изображение рычага в двух вариантах расположения точки опоры. © ЯКласс.

Рис. 2. Изображение рычага в равновесном состоянии. © ЯКласс.

Рис. 3. Изображение плоскогубцев. © ЯКласс.

В «данной задаче» плечи рычага найти невозможно. Но если к «данной задаче» добавить фразу «рычаг находится в равновесии» или «находящегося в равновесии», то задача моментально решается, просто в уме. Я не знаю, кто поленился дописать эту фразу, автор вопроса или автор задачи, но этот пример ясно показывает, что из условия задачи нельзя выкидывать ни одного слова.


Ну, а теперь, само решение. Пусть одно плечо рычага х см, тогда длина другого (17-х) см. Равновесие рычага устанавливается при равенстве моментов. Правда возникает неопределённость, к какому плечу какая сила приложена? Но она разрешается в процессе решения. Моменты сил равны 24*х и 27*(17-х) или 27*х и 24*(17-х) и уравнения равновесию либо 24*х=27*(17-х) — уравнение 1, либо 27*х=24*(17-х) — уравнение 2.

Решаем первое уравнение: 24*х=27*(17-х), х=9 см. Итак одно плечо (для меньшей силы) 9 см, тогда плечо для другой (для большей силы) 17-9=8 см.

Решаем второе уравнение: 27*х=24*(17-х), х=8 см. Итак плечо для большей силы — 9 см, а для меньшей силы — 17-8=9 см. Оба способа привели к одному и тому же решению.

Понравилась статья? Поделить с друзьями:
  • Как найти фокусное расстояние окуляра формула
  • Как составить договор обмена товаров
  • Как составить плановую калькуляцию затрат
  • Как найти значение ординаты точки пересечения графика
  • Как найти медведя барсука в донт старв