Как найти длину ультразвуковой волны через частоту

Звуковая волна – период, длина, частота и скорость распространения


Калькуляторы онлайн перевода длины звуковой, инфразвуковой или ультразвуковой
волны в частоту и наоборот. Таблица соответствия
нот полного звукоряда частотам.

Звуковая волна – это механические колебания, которые в результате колебаний молекул вещества распространяются в какой-либо
среде (в газе, жидкости или твёрдом теле) и, достигнув органов слуха человека, воспринимаются им как звук. Источник, создающий
возмущение (колебания воздуха), называется источником звука.
Как уже было сказано, для распространения звука необходима какая-либо упругая среда. Поэтому в вакууме ори, не ори – тебя никто не
услышит, по причине того, что звуковые волны распространяться не смогут, так как там нечему колебаться.., да и слушать там, по большому
счёту, тоже некому.

Длина, скорость и частота электромагнитной волны

Так же, как и в случае с электромагнитными волнами, соотношение, связывающее длину звуковой волны с частотой колебаний,
в общем случае выглядит следующим образом:
λ (м) = V (м/сек) / F (Гц), где V (м/сек) — это скорость распространения
звука в среде.

Период колебаний также не претерпел никаких изменений и по-прежнему равен:

T(сек) = 1 / F (Гц) = λ (м) / V (м/сек).

Частота колебаний звукового сигнала F (Гц) – это параметр стабильный, практически не зависящий от среды распространения.

А вот скорость звука V (м/сек), а соответственно и длина звуковой волны – это величины, которые зависят
не только от плотности вещества, но и от его упругости, а в случае с жидкостями и газами ещё – и от температуры, и атмосферного
давления.

Зависимость скорости звуковой волны от свойств упругой среды легко прослеживается по следующей формуле:
V (м/сек) = √Eупр (паскаль) / ρ (кг/м3)
,
где Eупр представляет собой модуль объёмной упругости среды, а ρ – плотность среды.
Модуль упругости, так же как и плотность – это справочные величины, прописанные для конкретных материалов.

В качестве примера, ниже приведена таблица величины скорости распространения звука в различных средах:

    Среда         Скорость звука, м/сек    
    Воздух при 0°      331
Воздух при 30° 350
Вода 1450
Медь 3800
Дерево 4800
Железо 4900
Сталь 5600

Для газов параметры модуля объёмной упругости и плотности имеют ярко выраженную зависимость от температуры и атмосферного давления.
Если углубиться, то скорость звука в газах можно вычислить по следующей формуле:

V (м/сек) = √γ*Ратм / ρ ,
где

γ = cp/сv – это отношение удельной теплоёмкости при постоянном давлении
к удельной теплоёмкости при постоянном объёме, а Pатм – атмосферное давление,
которое связано с температурой газообразной среды.

Поэтому, чтобы никого сильно не грузить, приведу и приближённую зависимость скорости звука (при нормальном
атмосферном давлении) от температуры среды:
V (м/сек) = (331 + 0,6 * T°), где 331 м/сек – это скорость звука при 0°С,
а T° – температура в градусах Цельсия.

Теперь можно совместить формулы и получить простое соотношение, связывающее длину звуковой волны с частотой колебаний с учётом
температуры среды:

λ (м) = (331 + 0,6 * T°) / F (Гц).

Всё это без лишнего напряга несложно посчитать при помощи листа бумаги или деревянных счёт, ну а для пущего упрощения жизни человека,
приведу и пару он-лайн считалок для перевода одного из параметров в другой.
Калькуляторы предполагают расчёты длины и частоты звуковой волны для воздушной среды при нормальном атмосферном
давлении (760 мм ртутного столба).

Онлайн калькулятор расчёта длины звуковой волны по частоте

   Частота звуковых колебаний f  

     


   Температура Т(°С) (по умолчанию 20°)  
     

  

   Длина волны   
     

Онлайн калькулятор расчёта частоты по длине звуковой волны

   Длина волны λ при заданной Т  

     


   Температура Т(°С) (по умолчанию 20°)  
     

  

   Частота колебаний   
     

Полный диапазон звуковых частот условно находится в пределах:
16…20 000 Гц.
Ниже ( 0,001…16Гц ) – инфразвук.
Выше ( 20…100кГц ) – низкочастотный ультразвук,
ещё выше (100кГц…1МГц) – высокочастотный ультразвук.

А для интересующихся приведу таблицу соответствия нот стандартного музыкального звукоряда частотам.

Частота (Гц)
Октава Нота
До До — диез Ре Ми — бемоль Ми Фа Фа — диез Си Си- диез Ля Соль-бемоль Соль
C C# D Eb E F F# G G# A Bb B
0 16.35 17.32 18.35 19.45 20.60 21.83 23.12 24.50 25.96 27.50 29.14 30.87
1 32.70 34.65 36.71 38.89 41.20 43.65 46.25 49.00 51.91 55.00 58.27 61.74
2 65.41 69.30 73.42 77.78 82.41 87.31 92.50 98.00 103.8 110.0 116.5 123.5
3 130.8 138.6 146.8 155.6 164.8 174.6 185.0 196.0 207.7 220.0 233.1 246.9
4 261.6 277.2 293.7 311.1 329.6 349.2 370.0 392.0 415.3 440.0 466.2 493.9
5 523.3 554.4 587.3 622.3 659.3 698.5 740.0 784.0 830.6 880.0 932.3 987.8
6 1047 1109 1175 1245 1319 1397 1480 1568 1661 1760 1865 1976
7 2093 2217 2349 2489 2637 2794 2960 3136 3322 3520 3729 3951
8 4186 4435 4699 4978 5274 5588 5920 6272 6645 7040 7459 7902

Random converter

  • Калькуляторы
  • Акустика — звук

Калькулятор звуковой частоты и длины волны

Этот калькулятор определяет длину волны звуковых колебаний (только звуковых!), если известны их частота и скорость распространения звука в среде. Он также может рассчитать частоту, если известны длина волны и скорость или скорость звука, если известны частота и длина волны.

Пример: Рассчитать длину звуковой волны, распространяющейся в морской воде от гидроакустического преобразователя с частотой 50 кГц, если известно, что скорость звука в соленой воде равна 1530 м/с.

Частота

f

Длина волны

λ

Скорость звука

v

или Среда

Поделиться ссылкой на этот калькулятор, включая входные параметры

Для расчета выберите среду или введите скорость звука, затем введите частоту и нажмите кнопку Рассчитать для расчета длины волны. Можно также ввести длину волны и рассчитать частоту.

Определения и формулы

Звук — это волновой процесс. Если струна скрипки или арфы колеблется, в окружающем ее воздуха образуются зоны сжатия и разрежения, которые и представляют собой звук. Эти зоны сжатия и разрежения перемещаются по воздуху в форме продольных волн, которые имеют ту же частоту, что и источник звука. В продольных волнах молекулы воздуха движутся параллельно движению волны. Воздух сжимается в том же направлении, в котором распространяются звуковые волны. Эти волны передают энергию голоса или колеблющейся струны. Отметим, что воздух не перемещается, когда звуковая волна проходит через него. Перемещаются только колебания, то есть зоны сжатия и разрежения. Более громкие звуки получаются при более сильных сжатиях и разрежениях.

Спектр звуковых колебаний. 1 — землетрясения, молнии и обнаружение ядерных взрывов; 2 — акустический диапазон; 3 — Слух животных; 4, Ультразвуковая очистка; 5. Терапевтическое применение ультразвука; 6 — Неразрушающий контроль и медицинская ультразвуковая диагностика; 7 — Акустическая микроскопия; 8 — Инфразвук; 9 — Слышимый диапазон; 10 — Ультразвук

Спектр звуковых колебаний. 1 — землетрясения, молнии и обнаружение ядерных взрывов; 2 — акустический диапазон; 3 — Слух животных; 4, Ультразвуковая очистка; 5. Терапевтическое применение ультразвука; 6 — Неразрушающий контроль и медицинская ультразвуковая диагностика; 7 — Акустическая микроскопия; 8 — Инфразвук; 9 — Слышимый диапазон; 10 — Ультразвук

Количество этих колебаний в секунду называется частотой и измеряется в герцах. Период колебаний — это длительность одного цикла колебаний, измеренная в секундах. Длина волны — это расстояние между двумя соседними повторяющимися зонами волнового процесса. Если предположить, что скорость распространения волны в среде постоянная, то длина волны обратно пропорциональна частоте.

При 20 °C звук распространяется в сухом воздухе со скоростью около 343 метра в секунду или 1 километр приблизительно за 3 секунды. Звук распространяется быстрее в жидкостях и еще быстрее в твердых телах. Например, в воде звук распространяется в 4,3 раза быстрее, чем в воздухе, в стекле — в 13 раз и в алмазе в 35 раз быстрее, чем в воздухе.

Хотя звуковые волны и морские волны движутся намного медленнее электромагнитных волн, уравнение, описывающее их движение будет одинаковым для всех трех типов волн:

Formula

или

Formula

где

f — частота волны,

v — скорость распространения волны и

λ — длина волны

Продольные и поперечные волны

В различных средах звук распространяется в виде различных видов волн. В жидкостях и газах звук распространяется в виде продольных волн. В твердых телах звук может распространяться как в виде продольных, так и в виде поперечных волн.

Для лучшего понимания обоих типов волн удобно воспользоваться механическим аналогом, которым послужит пружина Слинки. Эта пружина представляет собой модель среды (жидкости или газа). Если ее растянуть, а затем сжимать, а затем отпускать один конец, сжатие в форме волны перемещается вперед, передавая таким образом энергию с одного конца пружины в другой. Если звук распространяется в жидкости или газе, он идет от источника в форме периодических сжатий и разрежений газа или жидкости, которые перемещаются от источника звука.

Мы можем сравнить витки пружины с молекулами воздуха или воды, которые сталкиваются друг с другом. Поскольку направление движения этих сжатий и разрежений параллельно направлению движения самой волны, такие волны называются продольными.

Если начать двигать один конец пружины перпендикулярно ее оси, то создается поперечная волна. Она называется поперечной, потому что движение витков пружины перпендикулярно направлению движения волны по пружине. В такой волне энергия передается вдоль пружины, а ее витки движутся в направлении, перпендикулярном передаче энергии.

Отметим, что в нашем эксперименте пружина представляет собой среду, в которой распространяется волна, и эта среда не движется вместе с волной. Она только колеблется. Это поведение волны легко наблюдать в твердом теле, однако это справедливо также для воздуха, воды и вообще любой жидкости или газа. То есть, колебания переносятся молекулами жидкости или газа, в то время как среднее положение молекул среды не изменяется с течением времени. Это справедливо для любых типов волн.

Примеры

Возьмем на клавиатуре несколько нот и покажем их частоту и длину волны. Предположим, что звук движется в воздухе со скоростью 340 м/с. Тогда можно рассчитать длину волны нот:

Научное и традиционное название ноты Частота, Гц Период, мс Длина волны, см
A3, ля малой октавы 220 4,55 156
A4, ля первой октавы 440 2,27 78
A5, ля второй октавы 880 1,14 39
A6, ля третьей октавы 1760 0,57 19,5

Акустика — звук

На этих страницах размещены конвертеры единиц измерения, позволяющие быстро и точно перевести значения из одних единиц в другие, а также из одной системы единиц в другую. Конвертеры пригодятся инженерам, переводчикам и всем, кто работает с разными единицами измерения.

Мы работаем над обеспечением точности конвертеров и калькуляторов TranslatorsCafe.com, однако мы не можем гарантировать, что они не содержат ошибок и неточностей. Вся информация предоставляется «как есть», без каких-либо гарантий. Условия.

Если вы заметили неточность в расчётах или ошибку в тексте, или вам необходим другой конвертер для перевода из одной единицы измерения в другую, которого нет на нашем сайте — напишите нам!

Канал Конвертера единиц TranslatorsCafe.com на YouTube

Определения

Звук — это волновой процесс. Если струна скрипки или арфы колеблется, в окружающем ее воздуха
образуются зоны
сжатия и разрежения, которые и представляют собой звук. Эти зоны сжатия и разрежения перемещаются по воздуху в
форме продольных волн, которые имеют ту же частоту, что и источник звука. В продольных волнах молекулы воздуха
движутся параллельно движению волны.

Воздух сжимается в том же направлении, в котором распространяются звуковые волны. Эти волны передают энергию
голоса или колеблющейся струны. Отметим, что воздух не перемещается, когда звуковая волна проходит через него.
Перемещаются только колебания, то есть зоны сжатия и разрежения. Более громкие звуки получаются при более
сильных сжатиях и разрежениях.

Спектр звуковых колебаний. 1 — землетрясения, молнии и обнаружение ядерных взрывов; 2 — акустический
диапазон; 3 — Слух животных; 4, Ультразвуковая очистка; 5. Терапевтическое применение ультразвука; 6 —
Неразрушающий контроль и медицинская ультразвуковая диагностика; 7 — Акустическая микроскопия; 8 —
Инфразвук; 9 — Слышимый диапазон; 10 — Ультразвук

Количество этих колебаний в секунду называется частотой и измеряется в герцах. Период колебаний — это
длительность одного цикла колебаний, измеренная в секундах. Длина волны — это расстояние между двумя соседними
повторяющимися зонами волнового процесса. Если предположить, что скорость распространения волны в среде
постоянная, то длина волны обратно пропорциональна частоте.

При 20 °C звук распространяется в сухом воздухе со скоростью около 343 метра в секунду или 1 километр
приблизительно за 3 секунды. Звук распространяется быстрее в жидкостях и еще быстрее в твердых телах.
Например, в воде звук распространяется в 4,3 раза быстрее, чем в воздухе, в стекле — в 13 раз и в алмазе в 35
раз быстрее, чем в воздухе.

Хотя звуковые волны и морские волны движутся намного медленнее электромагнитных волн, уравнение, описывающее
их движение будет одинаковым для всех трех типов волн:

или

где f — частота волны, v — скорость распространения волны и λ — длина волны

Описание

Данный калькулятор определяет длину волны звуковых колебаний (только звуковых!), если известны их
частота и
скорость распространения звука в среде. Он также может рассчитать частоту, если известны длина волны и
скорость или скорость звука, если известны частота и длина волны.

Пример: Рассчитать длину звуковой волны, распространяющейся в морской воде от гидроакустического
преобразователя с частотой 50 кГц, если известно, что скорость звука в соленой воде равна 1530 м/с.

Найдите длину ультразвуковой волны в воздухе при частоте 20 кГц. Скорость звука 343 м/с

Найдите длину ультразвуковой волны в воздухе при частоте 20 кГц. Скорость звука 343 м/с

Дано:
$nu=20000;text{Гц}$
$v=343;text{м/с}$
Найти: $lambda$

Длина волны — это путь, который проходит волна за время, равное одному периоду колебаний. Период колебаний — величина, обратная частоте колебаний.
$$lambda=vT$$   $$T=frac{1}{nu}$$        $$lambda=frac{v}{nu}$$
$$lambda=frac{343}{20000}=0,01715;text{м}$$

Ответ: длина ультразвуковой волны с частотой 20 кГц в воздухе составляет приблизительно 17,2 мм

Условие задачи:

Какова длина волны ультразвукового сигнала, посланного корабельным гидролокатором, излучающим колебания с частотой (nu), если, отразившись от айсберга, находящегося на расстоянии (L) от корабля, сигнал был принят на корабле через интервал времени (t)?

Задача №9.6.23 из «Сборника задач для подготовки к вступительным экзаменам по физике УГНТУ»

Дано:

(nu), (L), (t), (lambda-?)

Решение задачи:

Расстояние (L), на котором айсберг находится от корабля, можно найти по формуле:

[L = upsilon tau ;;;;(1)]

В этой формуле (tau) – время, которое волна двигалась от айсберга до корабля (или наоборот). Его можно найти следующим образом:

[tau = frac{1}{2}t;;;;(2)]

Подставим выражение (2) в формулу (1):

[L = frac{1}{2}upsilon t;;;;(3)]

Скорость распространения ультразвуковых колебаний (upsilon) можно определить через длину волны (lambda) и частоту колебаний (nu) следующим образом:

[upsilon = lambda nu;;;;(4)]

Подставим выражение (4) в формулу (3), тогда получим:

[L = frac{1}{2}lambda nu t]

Осталось только выразить длину волны (lambda):

[lambda = frac{{2L}}{{nu t}}]

Ответ: (lambda = frac{{2L}}{{nu t}}).

Если Вы не поняли решение и у Вас есть какой-то вопрос или Вы нашли ошибку, то смело оставляйте ниже комментарий.

Смотрите также задачи:

9.6.22 Сигнал ультразвукового эхолота возвратился на корабль через 0,4 с после излучения
9.6.24 Толщина стального листа контролируется генератором, излучающим ультразвуковые
9.7.1 Собственные колебания тока в контуре протекают по закону I=0,01*cos(1000*pi*t) (А)

Понравилась статья? Поделить с друзьями:
  • Как найти трек по отрывку mp3
  • Как исправить иероглифы в клубе романтики
  • Как в экселе найти ячейку по условию
  • Как найти расстояние по геометрии 7 класс
  • Мой статус в ватсапе как исправить