Как найти длину вектора имея его координату

Что такое векторы и какими они бывают

Как обычно, мы начнем с самого важного: с определения.

Вектор — направленный отрезок прямой, то есть отрезок, для которого указано, какая из его граничных точек является началом, а какая — концом.

Вектор обозначают знаком →, например

. Как вы заметили, вектор можно выразить одной латинской буквой, а можно — сочетанием двух букв, которыми мы назовем точками начала и конца вектора.

Векторы

Нулевой вектор — вектор, начало которого совпадает с его концом. Обозначается он так:

.

Как вы уже знаете, векторы бывают коллинеарными и неколлинеарными, сонаправленными и противоположно направленными. Теперь давайте подумаем, что объединяет все виды векторов без исключения. Правильно, у всех есть длина! О том, что это такое, мы и поговорим дальше.

Получай лайфхаки, статьи, видео и чек-листы по обучению на почту

Альтернативный текст для изображения

Узнай, какие профессии будущего тебе подойдут

Пройди тест — и мы покажем, кем ты можешь стать, а ещё пришлём подробный гайд, как реализовать себя уже сейчас

Узнай, какие профессии будущего тебе подойдут

Длина вектора

Длиной или модулем вектора называется длина направленного отрезка, определяющего вектор.

Иногда в математике длину вектора называют модулем. Это легко запомнить, так как длина вектора обозначается с помощью знака | |. Например:

. Альтернативное название длины вектора дает нам отличную подсказку: она не может быть отрицательной, в какую бы сторону вектор ни был направлен. А вот нулевой — пожалуйста!

Длина нулевого вектора всегда равна нулю.

Здесь вам может стать интересно, зачем нам нужно знать, как найти длину вектора, и это очень хороший вопрос. Причин может быть множество, но мы выделим несколько главных:

  1. Чтобы определить равенство векторов, необходимо знать их длины. Векторы являются равными, если равны их длины, и сами векторы — сонаправленные.

  2. Вычислив модуль вектора, мы можем рассчитать другие величины.

  3. Например, в физике сила — это векторная величина, т. е. имеет направление. Если вычислить модуль силы, мы можем рассчитать массу тела, его ускорение и т. д.

  4. В геометрии с помощью длины векторов мы можем определить угол между ними, их скалярное произведение.

Достаточно весомые аргументы для нахождения этой величины, правда? Самое время перейти от слов к делу: давайте научимся вычислять длину вектора через свои координаты!

Как можно найти длину вектора по его координатам

Используя прямоугольную систему координат, нарисуем вектор АВ (х, у) из точки (0; 0). Тогда его можно будет считать радиус-вектором для векторов АВ1 и АА1.

Вектор AB в прямоугольной системе координат

Давайте обозначим длину вектора |АВ1| = у, длину вектора |АА1| = х. Треугольники АА1В и АВ1В являются прямоугольными, где АВ — гипотенуза. Теперь вспомните, как можно найти длину гипотенузы, зная длины катетов. Верно, через теорему Пифагора! Составим выражение для АВ:

Это значит, чтобы найти длину вектора

нужно взять квадратный корень из суммы квадратов его координат. В общем виде эту формулу для длины вектора записывают так — длина вектора

:

Если мы будем рассматривать векторы в трехмерном пространстве, формулу нахождения длины вектора

можно рассчитать так:

Давайте разберемся, как работают эти формулы для нахождения длины вектора, на примерах. Вы можете решать задания самостоятельно, а потом свериться с нами: так будет еще эффективнее!

Пример № 1

Найдите модуль вектора

.

Решение:

Ответ:

Пример № 2

Проведите вычисление длины вектора

по его координатам {-2; 0; 5}.

Решение:

Ответ:

Пример № 3

Определите координату х вектора

, если его координата по у равна 6, а длина вектора 10.

Решение:

,

,

,

.

,

,

,

.

Ответ:

.

Уверены, что у вас все блестяще получилось!

Как найти длину вектора по двум точкам

Давайте подумаем, как решать задачи, если нам не даны координаты вектора. Для этого нужно понять, как найти длину вектора по двум точкам — координатам начала и конца. Вспомним: координаты вектора

с точкой А (х_а; у_а) и В (х_в; у_в) можно рассчитать так:

(х_в – х_а; у_в – у_а). А значит, длину вектора мы определим, если подставим эти выражения в формулу для ее нахождения:

Пример № 4

Найти длину вектора

, если В (4; 6), С (-2; 0).

Решение:

Ответ:

Как найти длину вектора по теореме косинусов

Пришло время разобраться, как длина вектора связана с теоремой косинусов. К сожалению, не во всех задачах дано нужное количество информации, чтобы определить длину вектора — тут-то нам и поможет теорема. Вспомним ее!

Квадрат стороны треугольника равен сумме квадратов двух других его сторон минус удвоенное произведение этих сторон на косинус угла между ними.

Итак, чтобы определить длину стороны треугольника, нужно сложить квадраты двух других сторон, вычесть удвоенное произведение длин сторон на косинус угла между ними и взять корень из полученного числа. Так мы получим формулу нахождения длины вектора через теорему косинусов.

Формулы нахождения длины вектора через теорему косинусов

Предположим, что нам необходимо узнать длину вектора

или

. Тогда, чтобы воспользоваться теоремой косинусов, нам нужно найти длину векторов

и

и угол между ними.

Пример № 5

Длины векторов

и

равны 5 и 12 соответственно, а угол между ними равен π/3. Проведите вычисление длины вектора

.

Решение:

Векторы AB, AC и BC

Ответ:

Сегодня мы обсудили с вами все основные моменты, которые касаются длины вектора: изучили теорию и дополнили ее базовыми задачами. Дело осталось за малым — выучить весь материал и практиковаться! В этом вам помогут курсы по профильной математике в школе Skysmart. Уникальная платформа, учителя-профессионалы, индивидуальная программа — уроки просто созданы для того, чтобы стать уверенными в математике. Ждем вас на занятиях и до новых встреч!

Длина вектора

Как найти?

Длина вектора $ overline{a}$ обозначается как $ |overline{a}| $. Как найти длину вектора по его координатам? Для этого существует две формулы в зависимости от расположения вектора: на плоскости $ overline{a}=(a_x;a_y) $ или в пространстве $ overline{a} = (a_x; a_y; a_z) $.

Формула длины вектора на плоскости:

$$ |overline{a}| = sqrt{a_x ^2 + a_y ^2} $$

Формула длины вектора в пространстве:

$$ |overline{a}| = sqrt{a_x ^2 + a_y ^2 + a_z ^2 } $$

Если даны координаты точек начала и конца вектора $ A(a_x; a_y) $ и $ B(b_x; b_y) $, то найти длину можно по формулам:

$$ |overline{AB}| = sqrt{(a_x-b_x)^2 + (a_y-b_y) ^2} $$

$$ |overline{AB}| = sqrt{(a_x-b_x)^2 + (a_y-b_y)^2+ (a_z-b_z)^2} $$

Примеры решений

Пример 1
Найти длину вектора по его координатам $ overline{a} = (4;-3) $
Решение

Разберем вектор. Первая координата $ a_x = 4 $, а вторая координата $ a_y=-3 $. Так как даны две координаты, то делаем вывод, что задача плоская. Необходимо применить первую формулу. Подставляем в неё значения из условия задачи:

$$|overline{a}| = sqrt{4^2+(-3)^2} = sqrt{16+9} = sqrt{25} = 5 $$

Если не получается решить свою задачу, то присылайте её к нам. Мы предоставим подробное решение онлайн. Вы сможете ознакомиться с ходом вычисления и почерпнуть информацию. Это поможет своевременно получить зачёт у преподавателя!

Ответ
Длина вектора $|overline{a}| = 5 $
Пример 2
Найти длину вектора по координатам $ overline{a}=(4;2;4) $
Решение

Сразу замечаем, что дана пространственная задача. А именно $ a_x=4, a_y=2, a_z=4 $. Для нахождения длины вектора используем вторую формулу. Подставляем неизвестные в неё:

$|overline{a}|=sqrt{4^2+2^2+4^2}=sqrt{36}=6 $

Ответ
Длина вектора $|overline{a}|=6 $
Пример 3
Найти длину вектора, если известны координаты его начала и конца. $ A=(2;1), B=(-1;3) $
Решение

Задача дана плоская судя по наличию только двух координат у векторов. Но даны на этот раз начало и конец вектора. Поэтому сначала находим координаты вектора $ overline{AB} $, а только потом его длину по формуле координат:

$ overline{AB}=(b_x-a_x;b_y-a_y)=(-1-2;3-1)=(-3;2) $

Теперь когда координаты вектора $ overline{AB} $ стали известны можно использовать привычную формулу:

$|overline{AB}|=sqrt{(-3)^2+2^2}=sqrt{9+4}=sqrt{13} $

Ответ
$|overline{AB}|=sqrt{13} $

В статье мы ответили на вопрос:»Как найти длину вектора?» с помощью формул. А также рассмотрели практические примеры решения задач на плоскости и в пространстве. Следует заметить, что существуют аналогичные формулы для пространств больше, чем трёхмерные.

Как найти длину вектора

ФОРМУЛА

Чтобы найти длину вектора, определяемого его координатами, вам нужно извлечь квадратный корень из суммы квадратов его координат. Если вектор определен на плоскости и имеет координаты (
overline{a}=left(a_{x} ; a_{y}right)
), его длина рассчитывается по формуле:

(
|overline{a}|=sqrt{a_{x}^{2}+a_{y}^{2}}
)

Если вектор задан в пространстве координатами (
overline{a}=left(a_{x} ; a_{y} ; a_{z}right)
) , то его длина вычисляется по формуле

(
|overline{a}|=sqrt{a_{x}^{2}+a_{y}^{2}+a_{z}^{2}}
)

ПРИМЕРЫ РАСЧЕТА ВЕКТОРНОЙ ДЛИНЫ

ПРИМЕР

  • Задание: Найти длину вектора (
    overline{a}=(-3 ; 4)
    )
  • Решение: Чтобы найти длину вектора, определенного на плоскости, мы используем формулу

    (
    |overline{a}|=sqrt{a_{x}^{2}+a_{y}^{2}}
    )

    Подставляя в него координаты заданного вектора, получаем:

    (
    |overline{a}|=sqrt{(-3)^{2}+4^{2}}=sqrt{9+16}=sqrt{25}=5
    )

  • Ответ: (
    |overline{a}|=5
    )

    ПРИМЕР

  • Задание: В пространстве заданы точки (
    A(3 ;-2 ;-1)quad{и}quad B(1 ; 2 ;-5)
    ). Найти длину вектора (
    overline{A B}
    )
  • Решение: Сначала мы находим координаты вектора (
    overline{A B}
    ). Для этого из координат конца мы вычисляем соответствующие координаты начала, получаем:

    (
    overline{A B}=(1-3 ; 2-(-2) ;-5-(-1))=(-2 ; 4 ;-4)
    )

    Находя длину вектора (
    overline{A B}
    ) мы используем формулу:

    (
    |overline{a}|=sqrt{a_{x}^{2}+a_{y}^{2}+a_{z}^{2}}
    )

    Подставляя в эту формулу координаты вектора, получим

    (
    |overline{A B}|=sqrt{(-2)^{2}+4^{2}+(-4)^{2}}=sqrt{4+16+16}=sqrt{36}=6
    )

  • Ответ: (
    |overline{A B}|=6
    )
  • Основные понятия вектора

    Для того чтобы приступить к разбору формул нахождения длины вектора, необходимо разобраться в основных понятиях и определениях векторов.

    Понятие вектора получило широкое распространение в 19 веке, в математических науках, особенно в таком её разделе, как «Комплексные числа».

    Определение

    Вектор — это отрезок с определённой длиной и направлением.

    Графическое изображение вектора — отрезок который имеет указание направления в виде стрелки.

    Вектор, который будет иметь начальную точку Х и конец в точке А, правильно обозначать ХА, с верхним подчёркиванием или стрелочкой, а также допустимо прописывать одной прописной буквой.

    Длину вектора (модуль), определяет числовое значение длины отрезка, имеющего направление. Обозначается длинна двумя вертикальными отрезками |ХА|.

    • Понятие нулевого вектора. Такое название получил вектор, у которого и начало, и конец находятся в одной точке. Обозначение он имеет в виде цифры ноль с верхним подчёркивание, а длина равна нулю.
    • Коллинеарные вектора. Одна прямая может содержать несколько векторов, такие векторы получили название коллинеарных. Также коллинеарными считаются векторы на параллельных прямых.

    Векторы

    • Сонаправленные. Два коллинеарных вектора считаются сонаправленными, если имеют одно направление.
    • Противоположно направленные. Вектора, с направлениями в разные стороны, и являются коллинеарными, называют противоположно направленными.
    • Компланарные вектора. Такими векторами называют, те что лежат в одной плоскости
      Так как, всегда можно отыскать плоскость, которая будет параллельной двум векторам, то любые два вектора всегда копланарные.

    Компланарные вектора

    Так как, всегда можно отыскать плоскость, которая будет параллельной двум векторам, то любые два вектора всегда копланарные.

    Вектора могут находится не только на плоскости, но и в пространстве, от этого расположения будет зависеть какую формулу необходимо использовать для нахождения их длины или модуля. Стоит также отметить, что вектора могут быть равными, при этом они должны иметь одно направление, одинаковые длины и быть коллинеарными. Существует понятие единичного вектора, таким он будет являться если равен единице измерения.

    Как найти длину вектора

    Модуль вектора а будем обозначать Модуль вектора а.

    Для того чтобы найти модуль вектора или его длину, на плоскости по координатам, необходимо рассмотреть вектор используя прямоугольную декартову систему координат Оxy.  Допустим в данной системе будет задан, так вектор Вектор a имеющий координаты (aₓ ; aᵧ). Получим формулу, которая поможет  найти длину вектора Вектор a, через известные нам координаты aₓ и aᵧ.

    На взятой системе координат, от её начала отложим вектор
    Вектор OA В соответствии с проекцией точки А возьмём и определим Aₓ и Aᵧ на оси координат. Рассмотрим полученный прямоугольник ОAₓ и АAᵧ с диагональю ОА.

    Вектор на декартовой системе координат

    Далее используя теорему Пифагора мы получим равенство АО² = ОAₓ² и OAᵧ², отсюда следует

    Формула длин вектора

    Теперь в соответствии с определением вектора относительно прямоугольной оси координат выходит, что ОAₓ² = aₓ² и также для OAᵧ² = aᵧ² , а так как на построенном прямоугольнике мы видим, что ОА равна длине вектора Вектор OA получаем 

    Формула модуль вектора ОА

    Из вышесказанного выходит, что для того чтобы найти длину вектора с точками (aₓ ; aᵧ), выводим следующую формулу:

    Формула для модуля вектора а

    Когда вектор Модуль вектора а дан в формате разложения по координатным векторам Формула для вектора а , то вычислить его можно по той же формуле Формула для вектора а, в таком варианте коэффициент aₓ и aᵧ будут выражать в роли координат Модуль вектора а , в данной системе координат.

    Пример

    Чтобы рассчитать длину Модуль вектора а = (3, √x), расположенного в прямоугольной системе координат.

    Необходимо:

    Чтобы найти модуль вектора используем ранее приведённую формулу

    Формула для вектора а

    Формула для модуля вектора а

    Ответ: Ответ

    Существуют также формулы вычисления длины вектора в пространстве, они выводятся аналогично тем, что в системе координат на плоскости. Если взять вектор Вектор a=(aₓ ; aᵧ ; az )

    Вектор в пространстве

    В таком случае ( AO^2=OA_x^2+OA_y^2+OA_z^2 ) (из рисунка видно, что АО — диагональ прямоугольного параллелепипеда), поэтому

    Формула расчета

    из определения получаются равенства ОAₓ=aₓ; OAᵧ=aᵧ; OAz=az , а значение длины ОА совпадает с длиной вектора, которую необходимо найти. Из этого следует:

    Это изображение имеет пустой атрибут alt; его имя файла - dlina-vektora-osnovnye-formuly-formula-13.png

    Пример

    Необходимо узнать длину вектора ( left|vec{a}right|=2*vec{i}+3*vec{j}+4*vec{k} ), в котором ( vec{i}, vec{j}, vec{k} ), орты.

    Решение

    Получается, что дан вектор ( left|vec{a}right| ) с координатами (2; 3; 4)

    Применив выведенную ранее формулу получим

    Уравнение

    Ответ: Ответ

    Длина вектора через координаты точек начала и конца

    Ранее мы рассмотрели формулы, которые позволят находить длину вектора используя при этом координаты. Рассматривались примеры в трёхмерном пространстве на плоскости. Используя данные формулы можно найти длину вектора, если известны координаты точек его начала и конца.

    Возьмём точки с обозначенными координатами начала A(aₓ ; aᵧ) и конца В(bₓ ; bᵧ), из чего следует, что вектор Вектор AB имеет координаты (bₓ-aₓ ; bᵧ-aᵧ), поэтому его длину мы выразим в формуле

    Это изображение имеет пустой атрибут alt; его имя файла - dlina-vektora-osnovnye-formuly-formula-18.png

    При этом формула вычисления длины вектора Вектор AB для трёхмерного пространства, с координатами Координата и Координата ), будет следующей:

    Это изображение имеет пустой атрибут alt; его имя файла - dlina-vektora-osnovnye-formuly-formula-21.png

    Пример

    Для прямой системы координат, найти длину вектора ( overrightarrow{AB}) , где A(1,√3) B(-3,1)

    Решение

    Применив формулу, для нахождения длины вектора, с известными координатами точек начала и конца, в плоской системе координат, выходит:

    Уравнение

    Существует второй вариант решения, где формулы применяются по очереди:

    Уравнение

    Уравнение

    Ответ: Уравнение

    Пример

    Найти, решения, при подстановке которых, длина вектора будет равна корню из тридцати, при координатах точек А (0,1,2) и В (5,2,(λ^2))

    Решение

    В первую очередь представим длину вектора в виде формулы.

    ( left|vec{AB}right|=sqrt{left ( b_x-a_x right )^2+ left ( b_y-a_y right )^2 + left ( b_z-a_z right )^2})

    (=sqrt{left ( 5-0 right )^2+ left ( 2-1 right )^2 + left ( lambda^2 -2right )^2} = sqrt{26 + left ( lambda^2 -2right )^2})

    Теперь приравняем полученное выражение к корню из тридцати и найдём неизвестное значение, решив полученное уравнение.

    (
    sqrt{26+left(lambda^2-2right)^2}=sqrt{30}
    )

    (
    26+left(lambda^2-2right)^2=30
    )

    (
    left(lambda^2-2right)^2=4
    )

    (
    lambda^2-2=2
    )
    или
    (
    lambda^2-2=-2
    )
    (
    lambda_1=-2, lambda_2=2, lambda_3=0.
    )

    Ответ: (
    lambda_1=-2, lambda_2=2, lambda_3=0.
    )

    Длина вектора по теореме косинусов

    Так как бывают случаи, когда не известны координаты точек вектора, необходимо искать другие варианты, при помощи которых можно найти длину вектора. Таким способов может стать применение теоремы косинусов.

    К примеру, нам известны длины двух векторов (overrightarrow{AB})  и (overrightarrow{AC}) , а также угол между ними, или его косинус. При этом необходимо найти длину вектора ( overrightarrow{BC} ) , в таком варианте задания необходимо воспользоваться теоремой косинусов, представив треугольник АВС. В данном треугольнике мы будем искать сторону ВС, она и будет равна длине искомого вектора. Подробнее рассмотрим на примере.

    Пример

    Даны длины двух векторов ( overrightarrow{AK}) и ( overrightarrow{AM}) 2 и 4 соответственно, а угол между ними равен ( frac{pi}{3} ) . необходимо найти длину ( overrightarrow{KM}).

    Решение

    В нашем примере длины векторов и длины сторон треугольника АМК совпадают. Две из сторон нам известны это АК и АМ, а также известен угол треугольника, находящийся между этими сторонами. Используя теорему косинусов получим:

    (
    KM^2=AK^2+AM^2-2cdot AKcdot AMcdotcosfrac{pi}{3})

    (=2^2+4^2-2cdot2cdot4cdotcosfrac{pi}{3})

    (=4+16-16cosfrac{pi}{3})

    (=20-8=12
    )

    Получается (KM=sqrt{12}
    )

    Ответ: (
    left|overrightarrow{KM}right|=sqrt{12}
    )

    Теперь мы видим, что для нахождения длины вектора существует несколько формул, которыми можно воспользоваться в зависимости от известных параметров.

    Первая формула это ( left|overrightarrow{a}right|=sqrt{a_x^2+a_y^2}. ), для плоскости
    ( left|overrightarrow{a}right|=sqrt{a_x^2+a_y^2+a_z^2} )

    длина вектора формула для трёхмерного пространства;

    ( left|vec{AB}right|=sqrt{left ( b_x-a_x right )^2+ left ( b_y-a_y right )^2 + left ( b_z-a_z right )^2})

    длина вектора формула по известным координатам начала и конца вектора находящегося пространстве; ( left|vec{AB}right|=sqrt{left ( b_z-a_z right )^2+ left ( b_y-a_y right )^2}) если известны координаты начала и конца вектора на плоскости.

    Существует также формула длины вектора перемещения: ( left|vec{S}right|=sqrt{ s_x^2+s_y^2}) чаще такая формула применима в физике, для того чтобы узнать длину пути материальной точки.

    В случае если известен угол, между двумя векторами, можно использовать теорему Пифагора.

    Применение векторов в других сферах

    Понятие и вычисление вектора важно не только в математике, но и других науках:

    • в физике. Для визуального изображения таких понятий как скорость, сила, ускорение и т.д. А также векторы помогают моделировать физические процессы;
    • в химии. Для изображения химических процессор. При помощи векторов изображают движение электронов и других частиц;
    • в биологии.  Биологические процессы, также имеют графическое изображение при помощи векторов. К примеру перенос паразитов;
    • географии. Вектором обозначается движение воздушных масс, или течение реки;

    Векторы используются не только в науках, но и различных отраслях и профессиях. В судоходстве и аэрофлоте, архитектуре и конструировании, а также многих других областях. Для того чтобы найти длину вектора, мы можем использовать одну из формул, в зависимости от того, что нам о нём известно, и в каком пространстве или плоскости находится неизвестный вектор. 

    Нахождение длины вектора, примеры и решения

    Длина вектора — основные формулы

    Длину вектора a → будем обозначать a → . Данное обозначение аналогично модулю числа, поэтому длину вектора также называют модулем вектора.

    Для нахождения длины вектора на плоскости по его координатам, требуется рассмотреть прямоугольную декартову систему координат O x y . Пусть в ней задан некоторый вектор a → с координатами a x ; a y . Введем формулу для нахождения длины (модуля) вектора a → через координаты a x и a y .

    От начала координат отложим вектор O A → = a → . Определим соответственные проекции точки A на координатные оси как A x и A y . Теперь рассмотрим прямоугольник O A x A A y с диагональю O A .

    Из теоремы Пифагора следует равенство O A 2 = O A x 2 + O A y 2 , откуда O A = O A x 2 + O A y 2 . Из уже известного определения координат вектора в прямоугольной декартовой системе координат получаем, что O A x 2 = a x 2 и O A y 2 = a y 2 , а по построению длина O A равна длине вектора O A → , значит, O A → = O A x 2 + O A y 2 .

    Отсюда получается, что формула для нахождения длины вектора a → = a x ; a y имеет соответствующий вид: a → = a x 2 + a y 2 .

    Если вектор a → дан в виде разложения по координатным векторам a → = a x · i → + a y · j → , то вычислить его длину можно по той же формуле a → = a x 2 + a y 2 , в данном случае коэффициенты a x и a y выступают в роли координат вектора a → в заданной системе координат.

    Вычислить длину вектора a → = 7 ; e , заданного в прямоугольной системе координат.

    Чтобы найти длину вектора, будем использовать формулу нахождения длины вектора по координатам a → = a x 2 + a y 2 : a → = 7 2 + e 2 = 49 + e

    Формула для нахождения длины вектора a → = a x ; a y ; a z по его координатам в декартовой системе координат Oxyz в пространстве, выводится аналогично формуле для случая на плоскости (см. рисунок ниже)

    В данном случае O A 2 = O A x 2 + O A y 2 + O A z 2 (так как ОА – диагональ прямоугольного параллелепипеда), отсюда O A = O A x 2 + O A y 2 + O A z 2 . Из определения координат вектора можем записать следующие равенства O A x = a x ; O A y = a y ; O A z = a z ; , а длина ОА равна длине вектора, которую мы ищем, следовательно, O A → = O A x 2 + O A y 2 + O A z 2 .

    Отсюда следует, что длина вектора a → = a x ; a y ; a z равна a → = a x 2 + a y 2 + a z 2 .

    Вычислить длину вектора a → = 4 · i → — 3 · j → + 5 · k → , где i → , j → , k → — орты прямоугольной системы координат.

    Дано разложение вектора a → = 4 · i → — 3 · j → + 5 · k → , его координаты равны a → = 4 , — 3 , 5 . Используя выше выведенную формулу получим a → = a x 2 + a y 2 + a z 2 = 4 2 + ( — 3 ) 2 + 5 2 = 5 2 .

    Длина вектора через координаты точек его начала и конца

    Выше были выведены формулы, позволяющие находить длины вектора по его координатам. Мы рассмотрели случаи на плоскости и в трехмерном пространстве. Воспользуемся ими для нахождения координат вектора по координатам точек его начала и конца.

    Итак, даны точки с заданными координатами A ( a x ; a y ) и B ( b x ; b y ) , отсюда вектор A B → имеет координаты ( b x — a x ; b y — a y ) значит, его длина может быть определена по формуле: A B → = ( b x — a x ) 2 + ( b y — a y ) 2

    А если даны точки с заданными координатами A ( a x ; a y ; a z ) и B ( b x ; b y ; b z ) в трехмерном пространстве, то длину вектора A B → можно вычислить по формуле

    A B → = ( b x — a x ) 2 + ( b y — a y ) 2 + ( b z — a z ) 2

    Найти длину вектора A B → , если в прямоугольной системе координат A 1 , 3 , B — 3 , 1 .

    Используя формулу нахождения длины вектора по координатам точек начала и конца на плоскости, получим A B → = ( b x — a x ) 2 + ( b y — a y ) 2 : A B → = ( — 3 — 1 ) 2 + ( 1 — 3 ) 2 = 20 — 2 3 .

    Второй вариант решения подразумевает под собой применение данных формул по очереди: A B → = ( — 3 — 1 ; 1 — 3 ) = ( — 4 ; 1 — 3 ) ; A B → = ( — 4 ) 2 + ( 1 — 3 ) 2 = 20 — 2 3 . —

    Ответ: A B → = 20 — 2 3 .

    Определить, при каких значениях длина вектора A B → равна 30 , если A ( 0 , 1 , 2 ) ; B ( 5 , 2 , λ 2 ) .

    Для начала распишем длину вектора A B → по формуле: A B → = ( b x — a x ) 2 + ( b y — a y ) 2 + ( b z — a z ) 2 = ( 5 — 0 ) 2 + ( 2 — 1 ) 2 + ( λ 2 — 2 ) 2 = 26 + ( λ 2 — 2 ) 2

    Затем полученное выражение приравняем к 30 , отсюда найдем искомые λ :

    26 + ( λ 2 — 2 ) 2 = 30 26 + ( λ 2 — 2 ) 2 = 30 ( λ 2 — 2 ) 2 = 4 λ 2 — 2 = 2 и л и λ 2 — 2 = — 2 λ 1 = — 2 , λ 2 = 2 , λ 3 = 0 .

    Ответ: λ 1 = — 2 , λ 2 = 2 , λ 3 = 0 .

    Нахождение длины вектора по теореме косинусов

    Увы, но в задачах не всегда бывают известны координаты вектора, поэтому рассмотрим другие способы нахождения длины вектора.

    Пусть заданы длины двух векторов A B → , A C → и угол между ними (или косинус угла), а требуется найти длину вектора B C → или C B → . В таком случае, следует воспользоваться теоремой косинусов в треугольнике △ A B C , вычислить длину стороны B C , которая и равна искомой длине вектора.

    Рассмотрим такой случай на следующем примере.

    Длины векторов A B → и A C → равны 3 и 7 соответственно, а угол между ними равен π 3 . Вычислить длину вектора B C → .

    Длина вектора B C → в данном случае равна длине стороны B C треугольника △ A B C . Длины сторон A B и A C треугольника известны из условия (они равны длинам соответствующих векторов), также известен угол между ними, поэтому мы можем воспользоваться теоремой косинусов: B C 2 = A B 2 + A C 2 — 2 · A B · A C · cos ∠ ( A B , → A C → ) = 3 2 + 7 2 — 2 · 3 · 7 · cos π 3 = 37 ⇒ B C = 37 Таким образом, B C → = 37 .

    Итак, для нахождения длины вектора по координатам существуют следующие формулы a → = a x 2 + a y 2 или a → = a x 2 + a y 2 + a z 2 , по координатам точек начала и конца вектора A B → = ( b x — a x ) 2 + ( b y — a y ) 2 или A B → = ( b x — a x ) 2 + ( b y — a y ) 2 + ( b z — a z ) 2 , в некоторых случаях следует использовать теорему косинусов.

    Длина вектора — основные формулы

    Время чтения: 16 минут

    Основные понятия вектора

    Для того чтобы приступить к разбору формул нахождения длины вектора, необходимо разобраться в основных понятиях и определениях векторов.

    Понятие вектора получило широкое распространение в 19 веке, в математических науках, особенно в таком её разделе, как «Комплексные числа».

    Вектор — это отрезок с определённой длиной и направлением.

    Графическое изображение вектора — отрезок который имеет указание направления в виде стрелки.

    Вектор, который будет иметь начальную точку Х и конец в точке А, правильно обозначать ХА, с верхним подчёркиванием или стрелочкой, а также допустимо прописывать одной прописной буквой.

    Длину вектора (модуль), определяет числовое значение длины отрезка, имеющего направление. Обозначается длинна двумя вертикальными отрезками |ХА|.

    • Понятие нулевого вектора. Такое название получил вектор, у которого и начало, и конец находятся в одной точке. Обозначение он имеет в виде цифры ноль с верхним подчёркивание, а длина равна нулю.
    • Коллинеарные вектора. Одна прямая может содержать несколько векторов, такие векторы получили название коллинеарных. Также коллинеарными считаются векторы на параллельных прямых.

    • Сонаправленные. Два коллинеарных вектора считаются сонаправленными, если имеют одно направление.
    • Противоположно направленные. Вектора, с направлениями в разные стороны, и являются коллинеарными, называют противоположно направленными.
    • Компланарные вектора. Такими векторами называют, те что лежат в одной плоскости
      Так как, всегда можно отыскать плоскость, которая будет параллельной двум векторам, то любые два вектора всегда копланарные.

    Так как, всегда можно отыскать плоскость, которая будет параллельной двум векторам, то любые два вектора всегда копланарные.

    Вектора могут находится не только на плоскости, но и в пространстве, от этого расположения будет зависеть какую формулу необходимо использовать для нахождения их длины или модуля. Стоит также отметить, что вектора могут быть равными, при этом они должны иметь одно направление, одинаковые длины и быть коллинеарными. Существует понятие единичного вектора, таким он будет являться если равен единице измерения.

    Как найти длину вектора

    Модуль вектора а будем обозначать .

    Для того чтобы найти модуль вектора или его длину, на плоскости по координатам, необходимо рассмотреть вектор используя прямоугольную декартову систему координат Оxy. Допустим в данной системе будет задан, так вектор имеющий координаты (aₓ ; aᵧ). Получим формулу, которая поможет найти длину вектора , через известные нам координаты aₓ и aᵧ.

    На взятой системе координат, от её начала отложим вектор
    В соответствии с проекцией точки А возьмём и определим Aₓ и Aᵧ на оси координат. Рассмотрим полученный прямоугольник ОAₓ и АAᵧ с диагональю ОА.

    Далее используя теорему Пифагора мы получим равенство АО² = ОAₓ² и OAᵧ², отсюда следует

    Теперь в соответствии с определением вектора относительно прямоугольной оси координат выходит, что ОAₓ² = aₓ² и также для OAᵧ² = aᵧ² , а так как на построенном прямоугольнике мы видим, что ОА равна длине вектора получаем

    Из вышесказанного выходит, что для того чтобы найти длину вектора с точками (aₓ ; aᵧ), выводим следующую формулу:

    Когда вектор дан в формате разложения по координатным векторам , то вычислить его можно по той же формуле , в таком варианте коэффициент aₓ и aᵧ будут выражать в роли координат , в данной системе координат.

    Чтобы рассчитать длину = (3, √x), расположенного в прямоугольной системе координат.

    Чтобы найти модуль вектора используем ранее приведённую формулу

    Ответ:

    Существуют также формулы вычисления длины вектора в пространстве, они выводятся аналогично тем, что в системе координат на плоскости. Если взять вектор =(aₓ ; aᵧ ; a )

    В таком случае ( AO^2=OA_x^2+OA_y^2+OA_z^2 ) (из рисунка видно, что АО — диагональ прямоугольного параллелепипеда), поэтому

    из определения получаются равенства ОAₓ=aₓ; OAᵧ=aᵧ; OA=a , а значение длины ОА совпадает с длиной вектора, которую необходимо найти. Из этого следует:

    Ответ:

    Длина вектора через координаты точек начала и конца

    Ранее мы рассмотрели формулы, которые позволят находить длину вектора используя при этом координаты. Рассматривались примеры в трёхмерном пространстве на плоскости. Используя данные формулы можно найти длину вектора, если известны координаты точек его начала и конца.

    Возьмём точки с обозначенными координатами начала A(aₓ ; aᵧ) и конца В(bₓ ; bᵧ), из чего следует, что вектор имеет координаты (bₓ-aₓ ; bᵧ-aᵧ), поэтому его длину мы выразим в формуле

    При этом формула вычисления длины вектора для трёхмерного пространства, с координатами и ), будет следующей:

    Для прямой системы координат, найти длину вектора ( overrightarrow) , где A(1,√3) B(-3,1)

    Решение
    Применив формулу, для нахождения длины вектора, с известными координатами точек начала и конца, в плоской системе координат, выходит:


    Существует второй вариант решения, где формулы применяются по очереди:


    Ответ:

    Найти, решения, при подстановке которых, длина вектора будет равна корню из тридцати, при координатах точек А (0,1,2) и В (5,2,(λ^2))

    В первую очередь представим длину вектора в виде формулы.
    ( left|vecright|=sqrt<left ( b_x-a_x right )^2+ left ( b_y-a_y right )^2 + left ( b_z-a_z right )^2>)
    (=sqrt <left ( 5-0 right )^2+ left ( 2-1 right )^2 + left ( lambda^2 -2right )^2>= sqrt<26 + left ( lambda^2 -2right )^2>)
    Теперь приравняем полученное выражение к корню из тридцати и найдём неизвестное значение, решив полученное уравнение.
    ( sqrt<26+left(lambda^2-2right)^2>=sqrt <30>)
    ( 26+left(lambda^2-2right)^2=30 )
    ( left(lambda^2-2right)^2=4 )
    ( lambda^2-2=2 ) или ( lambda^2-2=-2 ) ( lambda_1=-2, lambda_2=2, lambda_3=0. )
    Ответ: ( lambda_1=-2, lambda_2=2, lambda_3=0. )

    Длина вектора по теореме косинусов

    Так как бывают случаи, когда не известны координаты точек вектора, необходимо искать другие варианты, при помощи которых можно найти длину вектора. Таким способов может стать применение теоремы косинусов.

    К примеру, нам известны длины двух векторов (overrightarrow) и (overrightarrow) , а также угол между ними, или его косинус. При этом необходимо найти длину вектора ( overrightarrow ) , в таком варианте задания необходимо воспользоваться теоремой косинусов, представив треугольник АВС. В данном треугольнике мы будем искать сторону ВС, она и будет равна длине искомого вектора. Подробнее рассмотрим на примере.

    Даны длины двух векторов ( overrightarrow) и ( overrightarrow) 2 и 4 соответственно, а угол между ними равен ( frac<pi> <3>) . необходимо найти длину ( overrightarrow).

    В нашем примере длины векторов и длины сторон треугольника АМК совпадают. Две из сторон нам известны это АК и АМ, а также известен угол треугольника, находящийся между этими сторонами. Используя теорему косинусов получим:
    ( KM^2=AK^2+AM^2-2cdot AKcdot AMcdotcosfrac<pi><3>)
    (=2^2+4^2-2cdot2cdot4cdotcosfrac<pi><3>)
    (=4+16-16cosfrac<pi><3>)
    (=20-8=12 )
    Получается (KM=sqrt <12>)
    Ответ: ( left|overrightarrowright|=sqrt <12>)

    Теперь мы видим, что для нахождения длины вектора существует несколько формул, которыми можно воспользоваться в зависимости от известных параметров.

    длина вектора формула для трёхмерного пространства;

    длина вектора формула по известным координатам начала и конца вектора находящегося пространстве; ( left|vecright|=sqrt<left ( b_z-a_z right )^2+ left ( b_y-a_y right )^2>) если известны координаты начала и конца вектора на плоскости.

    Существует также формула длины вектора перемещения: ( left|vecright|=sqrt< s_x^2+s_y^2>) чаще такая формула применима в физике, для того чтобы узнать длину пути материальной точки.

    В случае если известен угол, между двумя векторами, можно использовать теорему Пифагора.

    Применение векторов в других сферах

    Понятие и вычисление вектора важно не только в математике, но и других науках:

    • в физике. Для визуального изображения таких понятий как скорость, сила, ускорение и т.д. А также векторы помогают моделировать физические процессы;
    • в химии. Для изображения химических процессор. При помощи векторов изображают движение электронов и других частиц;
    • в биологии. Биологические процессы, также имеют графическое изображение при помощи векторов. К примеру перенос паразитов;
    • географии. Вектором обозначается движение воздушных масс, или течение реки;

    Векторы используются не только в науках, но и различных отраслях и профессиях. В судоходстве и аэрофлоте, архитектуре и конструировании, а также многих других областях. Для того чтобы найти длину вектора, мы можем использовать одну из формул, в зависимости от того, что нам о нём известно, и в каком пространстве или плоскости находится неизвестный вектор.

    Модуль вектора. Длина вектора.

    Определение длины вектора

    Для обозначения длины вектора используются две вертикальные линии слева и справа | AB |.

    Формулы длины вектора

    Формула длины вектора для плоских задач

    В случае плоской задачи модуль вектора a = < ax ; ay > можно найти воспользовавшись следующей формулой:

    Формула длины вектора для пространственных задач

    В случае пространственной задачи модуль вектора a = < ax ; ay ; az > можно найти воспользовавшись следующей формулой:

    Формула длины n -мерного вектора

    В случае n -мерного пространства модуль вектора a = < a 1 ; a 2; . ; an > можно найти воспользовавшись следующей формулой:

    | a | = ( n ai 2 ) 1/2
    Σ
    i =1

    Примеры задач на вычисление длины вектора

    Примеры вычисления длины вектора для плоских задачи

    Решение: | a | = √ 2 2 + 4 2 = √ 4 + 16 = √ 20 = 2√ 5 .

    Решение: | a | = √ 3 2 + (-4) 2 = √ 9 + 16 = √ 25 = 5.

    Примеры вычисления длины вектора для пространственных задачи

    Решение: | a | = √ 2 2 + 4 2 + 4 2 = √ 4 + 16 + 16 = √ 36 = 6.

    Решение: | a | = √ (-1) 2 + 0 2 + (-3) 2 = √ 1 + 0 + 9 = √ 10 .

    Примеры вычисления длины вектора для пространств с размерностью большей 3

    Решение: | a | = √ 1 2 + (-3) 2 + 3 2 + (-1) 2 = √ 1 + 9 + 9 + 1 = √ 20 = 2√ 5

    Решение: | a | = √ 2 2 + 4 2 + 4 2 + 6 2 + 2 2 = √ 4 + 16 + 16 + 36 + 4 = √ 76 = 2√ 19 .

    Любые нецензурные комментарии будут удалены, а их авторы занесены в черный список!

    Добро пожаловать на OnlineMSchool.
    Меня зовут Довжик Михаил Викторович. Я владелец и автор этого сайта, мною написан весь теоретический материал, а также разработаны онлайн упражнения и калькуляторы, которыми Вы можете воспользоваться для изучения математики.

    источники:

    http://www.napishem.ru/spravochnik/matematika/dlina-vektora-osnovnye-formuly.html

    http://ru.onlinemschool.com/math/library/vector/length/

    Понравилась статья? Поделить с друзьями:
  • Как построить криволинейную трапецию найти площадь
  • Как найти какого региона номер телефона
  • Как в телефоне найти резервную копию контактов
  • Как составить акт результатов инвентаризации
  • Как найти запчасти к телефону