Как найти длину вектора по диагоналям ромба

Сумма векторов. Длина вектора. Задачи!

Сумма векторов. Длина вектора. Дорогие друзья, в составе типов задний экзамена присутствует группа задач с векторами. Задания довольно широкого спектра (важно знать теоретические основы). Большинство решается устно. Вопросы связаны с нахождением длины вектора, суммы (разности) векторов, скалярного произведения. Так же много заданий, при решении которых необходимо осуществить действия с координатами векторов.

Теория касающаяся темы векторов несложная, и её необходимо хорошо усвоить. В этой статье разберём задачи связанные с нахождением длины вектора, также суммы (разности) векторов. Некоторые теоретические моменты:

Вектор — это направленный отрезок.

Все векторы, имеющие одинаковое направление и равные по длине являются равными.

*Все представленные выше четыре вектора равны!

То есть, если мы будем при помощи параллельного переноса перемещать данный нам вектор, то всегда получим вектор равный исходному. Таким образом, равных векторов может быть бесчисленное множество.

Вектор может быть обозначен латинскими заглавными буквами, например:

При данной форме записи сначала записывается буква обозначающая начало вектора, затем буква обозначающая конец вектора.

Ещё вектор обозначается одной буквой латинского алфавита (прописной):

Возможно также обозначение без стрелок:

Суммой двух векторов АВ и ВС будет являться вектор АС .

Записывается как АВ + ВС = АС .

Это правило называется – правилом треугольника.

То есть, если мы имеем два вектора – назовём их условно (1) и (2), и конец вектора (1) совпадает с началом вектора (2), то суммой этих векторов будет вектор, начало которого совпадает с началом вектора (1), а конец совпадает с концом вектора (2).

Вывод: если мы имеем на плоскости два вектора, то всегда сможем найти их сумму. При помощи параллельного переноса можно переместить любой из данных векторов и соединить его начало с концом другого. Например:

Перенесём вектор b, или по-другому – построим равный ему:

Как находится сумма нескольких векторов? По тому же принципу:

Это правило является следствием изложенного выше.

Для векторов с общим началом их сумма изображается диагональю параллелограмма, построенного на этих векторах.

Построим вектор равный вектору b так, чтобы его начало совпадало с концом вектора a, и мы можем построить вектор, который будет являться их суммой:

Ещё немного важной информации, необходимой для решения задач.

Вектор, равный по длине исходному, но противоположно направленный, обозначается также но имеет противоположный знак:

Эта информация крайне полезна для решения задач, в которых стоит вопрос о нахождении разности векторов. Как видите, разность векторов это та же сумма в изменнёном виде.

Пусть даны два вектора, найдём их разность:

Мы построили вектор противоположный вектору b, и нашли разность.

Чтобы найти координаты вектора, нужно из координат конца вычесть соответствующие координаты начала:

То есть, координаты вектора представляют собой пару чисел.

И координаты векторов имеют вид:

Модулем вектора называется его длина, определяется по формуле:

Формула для определения длины вектора, если известны координаты его начала и конца:

Две стороны прямоугольника ABCD равны 6 и 8. Диагонали пересекаются в точке О. Найдите длину разности векторов АО и ВО .

Найдём вектор, который будет являться результатом АО – ВО:

АО – ВО = АО +(– ВО )= АВ

То есть разность векторов АО и ВО будет являться вектор АВ. А его длина равна восьми.

Диагонали ромба ABCD равны 12 и 16. Найдите длину вектора АВ + AD .

Найдём вектор, который будет являться суммой векторов AD и AB . Вектор BC равен вектору AD . Значит AB + AD = AB + BC = AC

Длина вектора AC это длина диагонали ромба АС, она равна 16.

Диагонали ромба ABCD пересекаются в точке O и равны 12 и 16. Найдите длину вектора АО + ВО .

Найдём вектор, который будет являться суммой векторов АО и ВО . Вектор ВО равен вектору OD, з начит

Длина вектора AD это длина стороны ромба. Задача сводится к нахождению гипотенузы в прямоугольном треугольнике AOD. Вычислим катеты:

По теореме Пифагора:

Диагонали ромба ABCD пересекаются в точке O и равны 12 и 16. Найдите длину вектора АО – ВО .

Найдём вектор, который будет являться результатом АО – ВО :

Длина вектора АВ это длина стороны ромба. Задача сводится к нахождению гипотенузы АВ в прямоугольном треугольнике AOB. вычислим катеты:

По теореме Пифагора:

Стороны правильного треугольника ABC равны 3.

Найдите длину вектора АВ – АС .

Найдём результат разности векторов:

Длина вектора СВ равна трём, так как в условии сказано, что треугольник равносторонний и его стороны равны 3.

27663. Найдите длину вектора а (6;8).

27664. Найдите квадрат длины вектора АВ .

27707. Две стороны прямоугольника ABCD равны 6 и 8. Найдите длину вектора АС .

27708. Две стороны прямоугольника ABCD равны 6 и 8. Найдите длину суммы векторов AB и AD .

27709. Две стороны прямоугольника ABCD равны 6 и 8. Найдите длину разности векторов AB и AD .

27711. Две стороны прямоугольника ABCD равны 6 и 8. Диагонали пересекаются в точке O. Найдите длину суммы векторов АО и ВО .

27713. Диагонали ромба ABCD равны 12 и 16. Найдите длину вектора АВ .

27715. Диагонали ромба ABCD равны 12 и 16.

Найдите длину вектора АВ – AD .

27716. Диагонали ромба ABCD равны 12 и 16.

Найдите длину вектора АВ – АС .

Стороны правильного треугольника ABC равны 2√3. Найдите длину вектора АВ + АС .

В будущем мы продолжим рассматривать задачи с векторами, не пропустите! Задания будут связаны с координатами векторов, скалярным произведением.

На этом всё. Успеха вам!

С уважением, Александр

Вступительный экзамен по математике. Преподаватели приглашают первого абитуриента:
— Сколько будет два плюс два?
— Три! — Нет! — Пять! — Нет! — Шесть!
— Неправильно! Да… дурак, но ищущий… берем!
Заходит второй абитуриент:
— Сколько будет два плюс два?
— Три! — Нет! — Три! — Нет! — Три!
— Неправильно! Да… дурак, но настырный… берем!
Заходит третий абитуриент:
— Сколько будет два плюс два?
— Четыре, конечно!
— Да… умный. Но мест уже нет!

Векторы. Действия с векторами. Задание 4 (2015)

Векторы. Действия с векторами. В этой статье мы поговорим о том, что такое вектор, как находить его длину, и как умножать вектор на число, а также как находить сумму, разность и скалярное произведение двух векторов.

Как обычно, немного самой необходимой теории.

Вектор — это направленный отрезок, то есть такой отрезок, у которого есть начало и конец:

Здесь точка А — начало вектора, а точка В — его конец.

У вектора есть два параметра: его длина и направление.

Длина вектора — это длина отрезка, соединяющего начало и конец вектора. Длина вектора обозначается

Два вектора называются равными , если они имеют одинаковую длину и сонаправлены.

Два вектора называются сонаправленными , если они лежат на параллельных прямых и направлены в одну сторону: вектора и сонаправлены:

Два вектора называются противоположно направленными, если они лежат на параллельных прямых и направлены в противоположные стороны: вектора и , а также и направлены в противоположные стороны:

Вектора, лежащие на параллельных прямых называются коллинеарными : вектора , и — коллинеарны.

Произведением вектора на число называется вектор, сонаправленный вектору , если 0″ title=»k>0″/>, и направленный в противоположную сторону, если , и длина которого равна длине вектора , умноженной на :

=k:

Чтобы сложить два вектора и , нужно начало вектора соединить с концом вектора . Вектор суммы соединяет начало вектора с концом вектора :

Это правило сложения векторов называется правилом треугольника .

Чтобы сложить два вектора по правилу параллелограмма , нужно отложить вектора от одной точки и достроить до параллелограмма. Вектор суммы соединяет точку начала векторов с противоположным углом параллелограмма:

Разность двух векторов определяется через сумму: разностью векторов и называется такой вектор , который в сумме с вектором даст вектор :

:

Отсюда вытекает правило нахождения разности двух векторов : чтобы из вектора вычесть вектор , нужно отложить эти вектора от одной точки. Вектор разности соединяет конец вектора с концом вектора ( то есть конец вычитаемого с концом уменьшаемого):

Чтобы найти угол между вектором и вектором , нужно отложить эти вектора от одной точки. Угол, образованный лучами, на которых лежат вектора, называется углом между векторами:

Скалярным произведением двух векторов называется число, равное произведению длин этих векторов на косинус угла между ними:

Предлагаю вам решить задачи из Открытого банка заданий для подготовки к ЕГЭ по математике , а затем сверить све решение с ВИДЕОУРОКАМИ:

1 . Задание 4 (№ 27709)

Две стороны прямоугольника ABCD равны 6 и 8. Найдите длину разности векторов и .

2 . Задание 4 (№ 27710)

Две стороны прямоугольника ABCD равны 6 и 8. Найдите скалярное произведение векторов и . (чертеж из предыдущей задачи).

3 . Задание 4 (№ 27711)

Две стороны прямоугольника ABCD равны 6 и 8. Диагонали пересекаются в точке O. Найдите длину суммы векторов и .

4 . Задание 4 (№ 27712)

Две стороны прямоугольника ABCD равны 6 и 8. Диагонали пересекаются в точке O. Найдите длину разности векторов и . (чертеж из предыдущей задачи).

5 . Задание 4 (№ 27713)

Диагонали ромба ABCD равны 12 и 16. Найдите длину вектора .

6 . Задание 4 (№ 27714)

Диагонали ромба ABCD равны 12 и 16. Найдите длину вектора + .

7 .Задание 4 (№ 27715)

Диагонали ромба ABCD равны 12 и 16. Найдите длину вектора — .(чертеж из предыдущей задачи).

8 .Задание 4 (№ 27716)

Диагонали ромба ABCD равны 12 и 16. Найдите длину вектора — .

9 . Задание 4 (№ 27717)

Диагонали ромба ABCD пересекаются в точке O и равны 12 и 16. Найдите длину вектора + .

10 . Задание 4 (№ 27718)

Диагонали ромба ABCD пересекаются в точке O и равны 12 и 16. Найдите длину вектора — .(чертеж из предыдущей задачи).

11 .Задание 4 (№ 27719)

Диагонали ромба ABCD пересекаются в точке O и равны 12 и 16. Найдите скалярное произведение векторов и .(чертеж из предыдущей задачи).

12 . Задание 4 (№ 27720)

Стороны правильного треугольника ABC равны Найдите длину вектора +.

13 . Задание 4 (№ 27721)

Стороны правильного треугольника ABC равны 3. Найдите длину вектора -.(чертеж из предыдущей задачи).

14 . Задание 4 (№ 27722)

Стороны правильного треугольника ABC равны 3. Найдите скалярное произведение векторов и . (чертеж из предыдущей задачи).

Диагонали ромба ABCD пересекаются в точке O и равны 15 и 8. Найдите длину вектора AO−BO

Ваш ответ

решение вопроса

Похожие вопросы

  • Все категории
  • экономические 43,280
  • гуманитарные 33,618
  • юридические 17,900
  • школьный раздел 606,971
  • разное 16,829

Популярное на сайте:

Как быстро выучить стихотворение наизусть? Запоминание стихов является стандартным заданием во многих школах.

Как научится читать по диагонали? Скорость чтения зависит от скорости восприятия каждого отдельного слова в тексте.

Как быстро и эффективно исправить почерк? Люди часто предполагают, что каллиграфия и почерк являются синонимами, но это не так.

Как научится говорить грамотно и правильно? Общение на хорошем, уверенном и естественном русском языке является достижимой целью.

источники:

http://ege-ok.ru/2012/05/25/vektoryi-deystviya-s-vektorami

http://www.soloby.ru/497716/%D0%B4%D0%B8%D0%B0%D0%B3%D0%BE%D0%BD%D0%B0%D0%BB%D0%B8-%D1%80%D0%BE%D0%BC%D0%B1%D0%B0-%D0%BF%D0%B5%D1%80%D0%B5%D1%81%D0%B5%D0%BA%D0%B0%D1%8E%D1%82%D1%81%D1%8F-%D1%82%D0%BE%D1%87%D0%BA%D0%B5-%D1%80%D0%B0%D0%B2%D0%BD%D1%8B-%D0%BD%D0%B0%D0%B9%D0%B4%D0%B8%D1%82%D0%B5-%D0%B2%D0%B5%D0%BA%D1%82%D0%BE%D1%80%D0%B0

Маркер СМИ

© 2007 — 2023 Сообщество учителей-предметников «Учительский портал»
Свидетельство о регистрации СМИ: Эл № ФС77-64383 выдано 31.12.2015 г. Роскомнадзором.
Территория распространения: Российская Федерация, зарубежные страны.
Учредитель / главный редактор: Никитенко Е.И.


Сайт является информационным посредником и предоставляет возможность пользователям размещать свои материалы на его страницах.
Публикуя материалы на сайте, пользователи берут на себя всю ответственность за содержание этих материалов и разрешение любых спорных вопросов с третьими лицами.
При этом администрация сайта готова оказать всяческую поддержку в решении любых вопросов, связанных с работой и содержанием сайта.
Если вы обнаружили, что на сайте незаконно используются материалы, сообщите администратору через форму обратной связи — материалы будут удалены.

Все материалы, размещенные на сайте, созданы пользователями сайта и представлены исключительно в ознакомительных целях. Использование материалов сайта возможно только с разрешения администрации портала.


Фотографии предоставлены

2*2*√19*3*57=4*57=228

Ответх< или=8

Объяснение:х меньше или равно 8

1.переведем минуты в часы 40 мин.=40/60=2/3 ч.

                                                  50 мин.= 50/60= 5/6 ч.

пусть S₁ — путь который ежик идет в гору  в гости,

а S₂ -путь который он идет с горы  в гости

тогда по пути в гости S₁/2 -время которое он затратит идя в гору, а S₂/4 с горы , по пути домой эти расстояния  он будет преодолевать в обратном  порядке

составим систему из двух уравнений :

S₁/2  +S₂/4 = 2/3

S₂/2 + S₁/4 =5/6

избавимся от знаменателей почленно домножив оба уравнения на 12,

6S₁  +3S₂ = 8

6S₂ + 3S₁ = 10

сложим  почленно оба уравнения  и выразим одну переменную через другую :

9S₁ +9S₂ =18  ⇒ S₁ +S₂ = 2   S₁ =2- S₂  подставим это  значение в одно из уравнений

6S₂ + 3*(2- S₂) = 10

6S₂+6-3S₂ =10

3S₂=4

S₂= 4/3 =1. 1/3 км

S₁= 2 — 1. 1/3 = 2/3 км

Проверка:

6 *2/3 + 3 * 4/3 = 4+4=8

6* 4/3 +  3*2/3 = 8+2=10

в гору ежик шел 2/3 км. с горы 1. 1/3 км  значит общий путь равен

S =S₁+ S₂= 2/3 +4/3 =6/3 =2 км

Ответ : расстояние между домами Кроша и Ежика 2 км

sqrt{66-5x} =-x
\
66-5x geq 0
\
-x geq 0
\
66-5x=x^2
\
x^2+5x-66=0
\
D=25+264=289
\
x_1= frac{-5-17}{2}=-11
\
 x_2 neq  frac{-5+17}{2}=6>0
<em><u>Ответ: -11</u></em>

Вот у меня другой ответ получился

    Сумма векторов. Длина вектора. Дорогие друзья, в составе типов задний экзамена присутствует группа задач с векторами. Задания довольно широкого спектра (важно знать теоретические основы). Большинство решается устно. Вопросы связаны с нахождением длины вектора, суммы (разности) векторов, скалярного произведения. Так же много заданий, при решении которых необходимо осуществить действия с координатами векторов.

Теория касающаяся темы векторов несложная, и её необходимо хорошо усвоить. В этой статье разберём задачи связанные с нахождением длины вектора, также суммы (разности) векторов. Некоторые теоретические моменты:

Понятие вектора

Вектор — это направленный отрезок.

Вектор

Все векторы, имеющие одинаковое направление и равные по длине являются равными.

*Все представленные выше четыре вектора равны!  

То есть, если мы будем при помощи параллельного переноса перемещать данный нам вектор, то всегда получим вектор равный исходному. Таким  образом, равных векторов может быть бесчисленное множество.

Обозначение векторов

Вектор может быть обозначен латинскими заглавными буквами, например:

При данной форме записи сначала записывается буква обозначающая начало вектора, затем буква обозначающая конец вектора.

Ещё вектор обозначается одной буквой латинского алфавита (прописной):

Возможно также обозначение без стрелок:

Сумма векторов

1

Суммой двух векторов АВ и ВС будет являться вектор АС.

Записывается как АВ+ВС=АС.

Это правило называется – правилом треугольника.

То есть, если мы имеем два вектора – назовём их условно (1) и (2), и конец вектора (1) совпадает с началом вектора (2), то  суммой этих векторов будет вектор, начало которого совпадает с началом вектора (1), а конец совпадает с концом вектора (2).

Вывод: если мы имеем на плоскости два вектора, то всегда сможем найти их сумму. При помощи параллельного переноса можно переместить любой из данных векторов и соединить его начало с концом другого. Например:

Перенесём вектор b, или по-другому – построим равный ему:

Как находится сумма нескольких векторов? По тому же принципу:

Сумма векторов

* * *

Правило параллелограмма

Это правило является следствием изложенного выше.

Для векторов с общим началом их сумма изображается диагональю параллелограмма, построенного на этих векторах.

Построим вектор равный вектору b так, чтобы его начало совпадало с концом вектора a, и мы можем построить вектор, который будет являться их суммой:

Ещё немного важной информации, необходимой для решения задач.

Вектор, равный по длине исходному, но противоположно направленный, обозначается также но имеет противоположный знак:

Эта информация крайне полезна для решения задач, в которых стоит вопрос о нахождении разности векторов. Как видите, разность векторов это та же сумма  в изменнёном виде.

Пусть даны два вектора, найдём их разность:

Мы построили  вектор противоположный вектору b, и нашли  разность.

Координаты вектора

Чтобы найти координаты вектора, нужно из координат конца вычесть соответствующие координаты начала:

То есть,  координаты вектора представляют собой пару чисел.

Если

И координаты векторов имеют вид:

То   c1= a1+ b1     c2= a2+ b2

Если

То   c1= a1– b1      c2= a2– b2

Модуль вектора

Модулем вектора называется его длина, определяется по формуле:

Формула для определения длины вектора, если известны координаты его начала и конца:

Длина вектора

Рассмотрим задачи:

Две стороны прямоугольника ABCD равны 6 и 8. Диагонали пересекаются в точке О. Найдите длину разности векторов АО и ВО.

2

Найдём вектор, который будет являться результатом АОВО:

АОВО=АО+(–ВО)=АВ

То есть разность векторов  АО и ВО будет являться вектор АВ. А его длина равна восьми.

Ответ: 8

Диагонали ромба ABCD равны 12 и 16. Найдите длину вектора АВ+AD.

100

Найдём вектор, который будет являться суммой векторов AD и AB. Вектор BC равен вектору AD. Значит AB+AD=AB+BC=AC

Длина вектора AC это длина диагонали ромба АС, она равна 16.

Ответ: 16

Диагонали ромба ABCD пересекаются в точке O и равны 12 и 16. Найдите длину вектора АО+ВО.

101

Найдём вектор, который будет являться суммой векторов АО и ВО. Вектор ВО равен вектору OD, значит

102

Длина вектора AD это длина стороны ромба. Задача сводится к нахождению гипотенузы в прямоугольном треугольнике AOD. Вычислим катеты:

103

По теореме Пифагора:

104

Ответ: 10

Диагонали ромба ABCD пересекаются в точке O и равны 12 и 16. Найдите длину вектора АОВО.

101

Найдём вектор, который будет являться результатом АОВО:

110

Длина вектора АВ это длина стороны ромба. Задача сводится к нахождению гипотенузы АВ в прямоугольном  треугольнике AOB. вычислим катеты:

111

По теореме Пифагора:

112

Ответ: 10

Стороны правильного треугольника ABC равны 3.

Найдите длину вектора АВАС.

120

Найдём результат разности векторов:

121

Длина вектора СВ равна трём, так как в условии сказано, что треугольник равносторонний и его стороны равны 3.

Ответ: 3

27663. Найдите длину вектора а(6;8).

131

Посмотреть решение

27664. Найдите квадрат длины вектора АВ.

132

Посмотреть решение

27707. Две стороны прямоугольника ABCD равны 6 и 8. Найдите длину вектора АС.

133

Посмотреть решение

27708. Две стороны прямоугольника ABCD равны 6 и 8. Найдите длину суммы векторов AB и AD.

134

Посмотреть решение

27709. Две стороны прямоугольника ABCD равны 6 и 8. Найдите длину разности векторов AB и AD.

134

Посмотреть решение

27711. Две стороны прямоугольника ABCD равны 6 и 8. Диагонали пересекаются в точке O. Найдите длину суммы векторов АО и ВО.

135

Посмотреть решение

27713. Диагонали ромба ABCD равны 12 и 16. Найдите длину вектора АВ.

136

Посмотреть решение

27715. Диагонали ромба ABCD равны 12 и 16.

Найдите длину вектора АВAD.

137

Посмотреть решение

27716. Диагонали ромба ABCD равны 12 и 16.

Найдите длину вектора АВАС.

139

Посмотреть решение

Стороны правильного треугольника ABC равны 2√3. Найдите длину вектора АВ+АС.

120

Посмотреть решение

В будущем мы продолжим рассматривать задачи с векторами, не пропустите!  Задания будут связаны с координатами векторов, скалярным произведением.

На этом всё. Успеха вам!

С уважением, Александр

Вступительный экзамен по математике. Преподаватели приглашают первого абитуриента:
— Сколько будет два плюс два?
— Три! — Нет! — Пять! — Нет! — Шесть!
— Неправильно! Да… дурак, но ищущий… берем!
Заходит второй абитуриент:
— Сколько будет два плюс два?
— Три! — Нет! — Три! — Нет! — Три!
— Неправильно! Да… дурак, но настырный… берем!
Заходит третий абитуриент:
— Сколько будет два плюс два?
— Четыре, конечно!
— Да… умный. Но мест уже нет!

P.S: Буду благодарен, если расскажете о статье в социальных сетях.

Обучайтесь и развивайтесь всесторонне вместе с нами, делитесь знаниями и накопленным опытом, расширяйте границы знаний и ваших умений.

поделиться знаниями или
запомнить страничку

  • Все категории
  • экономические
    43,663
  • гуманитарные
    33,654
  • юридические
    17,917
  • школьный раздел
    611,987
  • разное
    16,906

Популярное на сайте:

Как быстро выучить стихотворение наизусть? Запоминание стихов является стандартным заданием во многих школах. 

Как научится читать по диагонали? Скорость чтения зависит от скорости восприятия каждого отдельного слова в тексте. 

Как быстро и эффективно исправить почерк?  Люди часто предполагают, что каллиграфия и почерк являются синонимами, но это не так.

Как научится говорить грамотно и правильно? Общение на хорошем, уверенном и естественном русском языке является достижимой целью. 

Понравилась статья? Поделить с друзьями:
  • Как найти много кристаллов
  • Как составить программу реализации проекта
  • Как найти в документе повторяющиеся слова
  • Как найти удаленную фотографию в телефоне редми
  • Найти по картинке платье как фото