Как найти длину высоты проведенной к гипотенузе

Высота прямоугольного треугольника, проведенная к гипотенузе

Как и в любом треугольнике прямоугольный треугольник имеет три высоты. Две из них совпадают с катетами, а вот третья высота, проведенная к гипотенузе, постоянно будоражит наши умы.

Поэтому представляю вашему вниманию основные формулы для ее нахождения.

Начну с самой важной.

1. Высота, проведенная к гипотенузе равна корню квадратному из произведения проекций катетов на эту гипотенузу.

2. Высоту, проведенную к гипотенузе, можно найти, разделив удвоенную площадь прямоугольного треугольника на гипотенузу.

Такая формула получается из классический формулы нахождения площади треугольника: половина произведения основания на высоту, проведенную к этому основанию.

3. Высота, проведенная к гипотенузе, равна произведению катетов, деленному на гипотенузу.

Эта формула получится из второй если заменить площадь на половину произведения катетов.

Т.к. АВ — гипотенуза, то ее можно выразить через катеты АС и ВС, используя теорему Пифагора. Тогда формула примет другой вид:

4. Высота, проведенная к гипотенузе, равна произведению катетов, деленному на диаметр описанной вокруг треугольника окружности (или на удвоенный радиус).

Так получается потому, что центр описанной окружности лежит в середине гипотенузы, значит, гипотенуза равна 2R или d.

5. Высоту, проведенную к гипотенузе, можно найти, используя геометрические определения синуса, тангенса и котангенса.

Надеюсь, что данная статья оказалась полезной!)

Готовься к экзамену вместе с нами! Заходи на нашу страницу в ВК.

Высота в прямоугольном треугольнике

Вспомним определение. Высота треугольника — это перпендикуляр, опущенный из его вершины на противоположную сторону.

В прямоугольном треугольнике катеты являются высотами друг к другу. Главный интерес представляет высота, проведённая к гипотенузе.

Один из типов экзаменационных задач в банке заданий ФИПИ — такие, где в прямоугольном треугольнике высота проведена из вершины прямого угла. Посмотрим, что получается:

angle BAC =angle BCH;

angle ABC =angle ACH;

sin Adisplaystyle = frac{a}{c}=frac{h}{b}=frac{BH}{a};

cos Adisplaystyle = frac{b}{c}=frac{h}{a}=frac{AH}{b};

displaystyle S_{ABC}= frac{ab}{2}=frac{ch}{2}.

Высота проведена к гипотенузе AB. Она делит треугольник ABC на два прямоугольных треугольника — AC mkern -3mu H и C mkern -3mu H mkern -3mu B. Смотрим внимательно на рисунок и находим на нем равные углы. Это и есть ключ к задачам по геометрии, в которых высота опущена на гипотенузу.

Мы помним, что сумма двух острых углов прямоугольного треугольника равна 90^{circ}. Значит, angle AC mkern -3mu H=90^{circ}-angle C mkern -3mu AH, то есть угол AC mkern -3mu H равен углу ABC. Аналогично, угол C mkern -3mu AB равен углу H mkern -3mu C mkern -3mu B.

Иными словами, каждый из трех углов треугольника ABC равен одному из углов треугольника AC mkern -3mu H (и треугольника BC mkern -3mu H). Треугольники ABC, AC mkern -3mu H и BC mkern -3mu H называются подобными. Давайте нарисуем их рядом друг с другом.

Подобные треугольники

Они отличаются только размерами. Стороны подобных треугольников пропорциональны. Что это значит?

Возьмем треугольники AC mkern -3mu H и ABC. Стороны треугольника ABC длиннее, чем стороны треугольника AC mkern -3mu H в k раз:

genfrac{}{}{}{0}{displaystyle AC}{displaystyle A mkern -3mu H} =genfrac{}{}{}{0}{displaystyle BC}{displaystyle C mkern -3mu H} = genfrac{}{}{}{0}{displaystyle AB}{displaystyle AC}.

Мы доказали свойство высоты прямоугольного треугольника. Его можно сформулировать как теорему.

Теорема 1. Высота прямоугольного треугольника, проведенная из вершины прямого угла на гипотенузу, делит треугольника на три подобных друг другу треугольника:

triangle AHC approx triangle CHB approx triangle ACB.

При решении задач нам пригодится равенство углов треугольников ABC, AC mkern -3mu H и BC mkern -3mu H, а также пропорциональность их сторон. Обратите также внимание, что площадь треугольника ABC можно записать двумя разными способами: как половину произведения катетов и как половину произведения гипотенузы на проведенную к ней высоту. В геометрии это называется «метод площадей» и часто применяется в решении задач.

Задача 1.

В треугольнике ABC угол C равен 90^{circ}, CH — высота, BC = 3, cos A = genfrac{}{}{}{0}{displaystyle sqrt{35}}{displaystyle 6}. Найдите AH.

Решение:

Рассмотрим треугольник ABC. В нем известны косинус угла A и противолежащий катет BC. Зная синус угла A, мы могли бы найти гипотенузу AB. Так давайте найдем sin A:

sin{}^2A + cos{}^2A = 1.

Эта формула – основное тригонометрическое тождество. Конечно, вы его знаете:

sin{}^2 A + genfrac{}{}{}{0}{displaystyle 35}{displaystyle 36} = 1;

sin{}^2 A = genfrac{}{}{}{0}{displaystyle 1}{displaystyle 36};

sin A= genfrac{}{}{}{0}{displaystyle 1}{displaystyle 6} (поскольку значение синуса острого угла положительно).

Тогда:

AB=BC: sin A = 3: genfrac{}{}{}{0}{displaystyle 1}{displaystyle 6}=3 cdot 6=18.

Рассмотрим прямоугольный треугольник BC mkern -3mu H, angle H = 90^{circ}. Поскольку angle H mkern -3mu C mkern -3mu B = angle A,

sin H mkern -3mu C mkern -3mu B = H mkern -3mu B : BC.

Отсюда H mkern -3mu B=BC cdot sin HC mkern -3mu B = 3 cdot genfrac{}{}{}{0}{displaystyle 1}{displaystyle 6}=0,5.

A mkern -3mu H = A mkern -3mu B - H mkern -3mu B=18-0,5=17,5.

Ответ: 16.

Задача 2.

В треугольнике ABC угол C равен 90{}^{circ}, AB = 13, tg A = genfrac{}{}{}{0}{displaystyle 1}{displaystyle 5}. К гипотенузе проведена высота CH. Найдите AH.

Решение:

Это чуть более сложная задача. Ведь вам неизвестны катеты a и b.

Запишем теорему Пифагора: a^2 + b^2 = 13^2. (1)

Нам известно также, что:

tg A = genfrac{}{}{}{0}{displaystyle a}{displaystyle b} = genfrac{}{}{}{0}{displaystyle 1}{displaystyle 5}. (2)

Решая уравнения (1) и (2), найдем:

a = sqrt{6,5}:b=5sqrt{6,5}.

Запишем площадь треугольника AВС двумя способами:

S = genfrac{}{}{}{0}{displaystyle 1}{displaystyle 2} ab = genfrac{}{}{}{0}{displaystyle 1}{displaystyle 2} ch

и найдем длину CH = 2,5.

Найти высоту, проведенную из вершины прямого угла, можно было и другим способом. Мы выбрали самый короткий путь — составили и решили систему уравнений, как в алгебре.

Теорема 2. В прямоугольном треугольнике высота, проведенная из вершины прямого угла, равна произведению катетов, деленному на гипотенузу.

Доказательство:

Из прямоугольного треугольника ABC с прямым углом C и гипотенузой AB:

sindisplaystyle (angle BAC)=frac{a}{c}.

Из прямоугольного треугольника AНС с прямым углом Н и гипотенузой AС:

sindisplaystyle (angle BAC)=frac{h}{b}.

Мы разными способами вычислили синус одного и того же угла. Приравняем полученные выражения:

displaystyle frac{h}{b}=frac{a}{c}.

Найдем высоту:

displaystyle h= frac{ab}{c}.

Что и требовалось доказать.

Задача 3. Катеты прямоугольного треугольника равны 15 и 20.
Найдите высоту, проведенную к гипотенузе.

Решение:

Воспользуемся теоремой 2 о высоте прямоугольного треугольника:

Катеты BС и AС нам известны: BC = 15, AC = 20. Найдем гипотенузу AB с помощью теоремы Пифагора:

{AB}^2={BC}^2+{AC}^2={15}^2+{20}^2={25}^2,    AB=25.

Найдем высоту, проведенную из вершины прямого угла:

displaystyle CH=frac{15cdot 20}{25}=12.

Ответ: 12.

Теорема 3. В прямоугольном треугольнике квадрат высоты, проведенной из вершины прямого угла, равен произведению проекций катетов на гипотенузу.

CH^2=BHcdot AH.

Сейчас мы докажем эту полезную формулу.

Вспомним, что такое проекция точки на прямую. Например, из точки С опускаем СН — перпендикуляр к прямой AВ. Точка Н и будет проекцией точки С. Тогда AН – проекция катета AВ, а BН – проекция катета BС.

Обозначим: BH=c_a, AH=c_b.

Доказательство проведем двумя способами.

Первый способ доказательства:

Из прямоугольного треугольника BНС с прямым углом Н и гипотенузой BС:

tgdisplaystyle (angle CBH)=frac{h}{c_a}.

Из прямоугольного треугольника AНС с прямым углом Н и гипотенузой AС:

ctgdisplaystyle (angle CAH) = frac{c_b}{h}.

Заметим, что угол CBН – это угол CBA, а угол CAН – это угол BAC. Тогда:

tg(angle ABC)=ctg(angle BAC);

tg(angle CBH)=ctg(angle CAH);

displaystyle frac{h}{c_a}=frac{c_b}{h}.

Мы воспользовались тем, что тангенс и котангенс двух разных острых углов прямоугольного треугольника равны друг другу. Это следует из определения тангенса и котангенса.

Преобразуем получившееся выражение:

displaystyle h=frac{c_a cdot c_b}{h} Rightarrow h^2 = c_a c_b .

Что и требовалось доказать.

Второй способ доказательства:

Воспользуемся подобием треугольников, о которых говорится в теореме 1.

Рассмотрим пару прямоугольных треугольников AНC и BНC. Как было показано выше, эти треугольники подобны по двум углам, поэтому

displaystyle frac{h}{c_a}=frac{c_b}{h}.

Мы получили такое же соотношение, как и в первом способе доказательства.

Далее аналогично получим, что

h^2 = c_a c_b .

Что и требовалось доказать.

Задача 4. На гипотенузу AB прямоугольного треугольника ABC опущена высота CH, AH = 4, BH = 16. Найдите длину CH.

Решение:

Воспользуемся теоремой 3 о высоте прямоугольного треугольника:

CH^2=BHcdot AH.

Подставим данные задачи.

{CH}^2=4cdot 16=64, CH = 8.

Ответ: 8.

Разберем решения других задач ОГЭ и ЕГЭ по теме «Свойства высоты в прямоугольном треугольнике».

Задача 5. Катеты прямоугольного треугольника относятся как 3:4, а гипотенуза равна 50. Найти высоту, проведенную из вершины прямого угла и отрезки, на которые гипотенуза делится высотой.

Решение:

Рассмотрим прямоугольный треугольник ABС с гипотенузой AB. Проведем высоту CD=h.

Учитывая отношение катетов, обозначим их длины как: BC = 3x, AC = 4x.

Тогда по теореме Пифагора получим:

AB=sqrt{9x^2 +16 x^2} = sqrt{25 x^2}=5x.

По условию гипотенуза AB = 50. Следовательно, х = 10, BC = 30, AC = 40.

Далее можно действовать разными способами. Например, так.

displaystyle CD=frac{BCcdot AC}{AB}=frac{30cdot 40}{50}=24.

AD=ACcdot {cos A},; BD=BCcdot {cos B}, где по определению косинуса:

cos A displaystyle =frac{AC}{AB}=frac{4}{5},; cos Bdisplaystyle =frac{BC}{AB}=frac{3}{5}.

displaystyle AD=ACcdot frac{4}{5}=32,; BD=BCcdot frac{3}{5}=18.

Ответ: CD=24, ; AD=32,; BD=18.

Задача 6. В прямоугольном треугольнике ABC высота CD делит гипотенузу на отрезки AD = 3 см и BD = 2 см. Найти катеты треугольника.

Решение:

Найдем квадрат длины высоты с помощью теоремы 3:

{CD}^2=ADcdot BD=3cdot 2=6.

Из прямоугольного треугольника ADC по теореме Пифагора найдем

{AC}^2={AD}^2+{CD}^2=9+6=15,; AC= sqrt{15} см.

Из прямоугольного треугольника BDC по теореме Пифагора найдем

{BC}^2={BD}^2+{CD}^2=4+6=10,; BC= sqrt{10} см.

Ответ: sqrt{15} см и sqrt{10} см.

Задача 7. Точка D является основанием высоты, проведенной из вершины прямого угла C треугольника ABC к гипотенузе AB. Найдите AC, если AD=8, AB=32.

Указание:

Найдите отрезок BD = AB — AD, после чего задача сводится к предыдущей.

Длину высоты прямоугольного треугольника можно также найти, если известны гипотенуза и один из острых углов треугольника.

h = c sinalpha cosalpha = c sinbeta cosbeta.

Докажем эту формулу.

Рассмотрим прямоугольный треугольник ACD: CD=AC cos alpha.

В то же время из треугольника AВC: AC=AB sin alpha.

Таким образом, h = CD = AC cos⁡alpha = AB sinalpha cosalpha = c sinalpha cos⁡alpha.

Аналогично, из треугольника BCD получим: h = CD = BC cosbeta = AB sin⁡beta cosbeta = c sin beta cos⁡beta.

Задача 8. В прямоугольном треугольнике гипотенуза равна 10, а один из острых углов 15 градусов. Найти высоту, проведенную из вершины прямого угла.

Решение:

Воспользуемся доказанной выше формулой:

h = c sinalpha cosalpha = 10 sin {15}^circcos {15}^circ = 5sin {30}^circ = 2,5.

Ответ: 2,5.

Задача 9. Высота прямоугольного треугольника делит его гипотенузу на отрезки 6 см и 4 см. Найдите площадь этого треугольника.

Решение:

Гипотенуза прямоугольного треугольника равна сумме данных отрезков:

c=6+4=10 см.

Найдем высоту, проведенную из вершины прямого угла к гипотенузе: h=sqrt{6cdot 4}=2sqrt{6} см.

Площадь треугольника:

displaystyle S=frac{1}{2}ch=frac{1}{2}cdot 10cdot 2sqrt{6}=10sqrt{6} см{}^2.

Ответ: 10sqrt{6} см{}^2.

Если вам понравился наш материал — записывайтесь на курсы подготовки к ЕГЭ по математике онлайн

Спасибо за то, что пользуйтесь нашими публикациями.
Информация на странице «Высота в прямоугольном треугольнике» подготовлена нашими авторами специально, чтобы помочь вам в освоении предмета и подготовке к экзаменам.
Чтобы успешно сдать необходимые и поступить в высшее учебное заведение или колледж нужно использовать все инструменты: учеба, контрольные, олимпиады, онлайн-лекции, видеоуроки, сборники заданий.
Также вы можете воспользоваться другими статьями из разделов нашего сайта.

Публикация обновлена:
08.05.2023


В прямоугольном треугольнике катеты, являются высотами. Ортоцентр — точка пересечения высот, совпадает с вершиной прямого угла.

Формулы высоты прямого угла в прямоугольном треугольнике
H — высота из прямого угла

a, b — катеты

с — гипотенуза

c1 , c2 — отрезки полученные от деления гипотенузы, высотой

α, β — углы при гипотенузе

Формула длины высоты через стороны, (H):

Формула длины высоты через стороны

Формула длины высоты через гипотенузу и острые углы, (H):

Формула длины высоты через гипотенузу и острые углы

Формула длины высоты через катет и угол, (H):

Формула длины высоты через катет и угол

Формула длины высоты через составные отрезки гипотенузы , (H):

Формула длины высоты через составные отрезки гипотенузы



Подробности

Опубликовано: 09 октября 2011

Обновлено: 13 августа 2021

Все формулы высоты прямого угла в прямоугольном треугольнике

В прямоугольном треугольнике катеты, являются высотами. Ортоцентр — точка пересечения высот, совпадает с вершиной прямого угла.

H — высота из прямого угла

a, b — катеты

с — гипотенуза

c 1 , c 2 — отрезки полученные от деления гипотенузы, высотой

α , β — углы при гипотенузе

Формула длины высоты через стороны, ( H ):

Формула длины высоты через гипотенузу и острые углы, ( H ):

Формула длины высоты через катет и угол, ( H ):

Формула длины высоты через составные отрезки гипотенузы , ( H ):

Свойства высоты прямоугольного треугольника

В данной публикации мы рассмотрим основные свойства высоты в прямоугольном треугольнике, а также разберем примеры решения задач по этой теме.

Примечание: треугольник называется прямоугольным, если один из его углов является прямым (равняется 90°), а два остальных – острые ( Содержание скрыть

Свойства высоты в прямоугольном треугольнике

Свойство 1

В прямоугольном треугольнике две высоты (h1 и h2) совпадают с его катетами.

Третья высота (h3) опускается на гипотенузу из прямого угла.

Свойство 2

Ортоцентр (точка пересечения высот) прямоугольного треугольника находится в вершине прямого угла.

Свойство 3

Высота в прямоугольном треугольнике, проведенная к гипотенузе, делит его на два подобных прямоугольных треугольника, которые также подобны исходному.

Аналогичным образом доказывается, что ∠ABD = ∠DAC.

Свойство 4

В прямоугольном треугольнике высота, проведенная к гипотенузе, вычисляется следующим образом:

1. Через отрезки на гипотенузе, образованные в результате ее деления основанием высоты:

2. Через длины сторон треугольника:

Данная формула получена из Свойства синуса острого угла в прямоугольном треугольнике (синус угла равен отношению противолежащего катета к гипотенузе) :


Примечание: к прямоугольному треугольнику, также, применимы общие свойства высоты, представленные в нашей публикации – “Высота в треугольнике abc: определение, виды, свойства”.

Пример задачи

Задача 1
Гипотенуза прямоугольного треугольника поделена высотой, проведенной к ней, на отрезки 5 и 13 см. Найдите длину этой высоты.

Решение
Воспользуемся первой формулой, представленной в Свойстве 4:

Задача 2
Катеты прямоугольного треугольника равны 9 и 12 см. Найдите длину высоты, проведенной к гипотенузе.

Решение
Для начала найдем длину гипотенузы по теореме Пифагора (пусть катеты треугольника – это “a” и “b”, а гипотенуза – “c”):
c 2 = a 2 + b 2 = 9 2 + 12 2 = 225.
Следовательно, с = 15 см.

Теперь можно применить вторую формулу из Свойства 4, рассмотренного выше:

Высота в прямоугольном треугольнике

Вспомним, что высота треугольника — это перпендикуляр, опущенный из его вершины на противоположную сторону.

В прямоугольном треугольнике катеты являются высотами друг к другу. Главный интерес представляет высота, проведённая к гипотенузе.

Один из типов экзаменационных задач банке заданий ФИПИ — такие, где в прямоугольном треугольнике высота проведена из вершины прямого угла. Посмотрим, что получается:

Высота проведена к гипотенузе . Она делит треугольник на два прямоугольных треугольника — и . Смотрим внимательно на рисунок и находим на нем равные углы. Это и есть ключ к задачам по геометрии, в которых высота опущена на гипотенузу.

Мы помним, что сумма двух острых углов прямоугольного треугольника равна . Значит, , то есть угол равен углу . Аналогично, угол равен углу .

Иными словами, каждый из трех углов треугольника равен одному из углов треугольника (и треугольника ). Треугольники и называются подобными. Давайте нарисуем их рядом друг с другом.

Они отличаются только размерами. Стороны подобных треугольников пропорциональны. Что это значит?

Возьмем треугольники и . Стороны треугольника длиннее, чем стороны треугольника в раз:

При решении задач нам пригодится равенство углов треугольников и , а также пропорциональность их сторон. Обратите также внимание, что площадь треугольника можно записать двумя разными способами: как половину произведения катетов и как половину произведения гипотенузы на проведенную к ней высоту.

Ты нашел то, что искал? Поделись с друзьями!

1. В треугольнике угол равен , — высота, , . Найдите .

Рассмотрим треугольник . В нем известны косинус угла и противолежащий катет . Зная синус угла , мы могли бы найти гипотенузу . Так давайте найдем :

(поскольку значение синуса острого угла положительно). Тогда:

Рассмотрим прямоугольный треугольник , . Поскольку

2. В треугольнике угол равен , , . Найдите высоту .

Сделайте чертеж и рассмотрите прямоугольный треугольник .

3. В треугольнике угол равен , , . К гипотенузе проведена высота . Найдите .

Это чуть более сложная задача. Ведь вам неизвестны катеты и .

Зато можно записать теорему Пифагора: .

Нам известно также, что:

Решая эту систему из двух уравнений, найдем:

Запишем площадь треугольника АВС двумя способами:

Найти высоту, проведенную из вершины прямого угла, можно было и другим способом. Мы выбрали самый короткий путь — составили и решили систему уравнений.

источники:

Свойства высоты прямоугольного треугольника

http://ege-study.ru/ru/ege/materialy/matematika/vysota-v-pryamougolnom-treugolnike-i-ee-svojstva/

В данной публикации мы рассмотрим формулы, с помощью которых можно найти высоту в различных видах треугольников, а также разберем примеры решения задач для закрепления материала.

  • Нахождение высоты треугольника

    • Высота в разностороннем треугольнике

    • Высота в равнобедренном треугольнике

    • Высота в прямоугольном треугольнике

    • Высота в равностороннем треугольнике

  • Примеры задач

Нахождение высоты треугольника

Напомним, высота треугольника – это отрезок, проведенный перпендикулярно из вершины фигуры к противоположной стороне.

Высота в разностороннем треугольнике

Высоту треугольника abc, проведенного к стороне a, можно найти по формулам ниже:

Высота в разностороннем треугольнике ABC

1. Через площадь и длину стороны

Формула для нахождения высоты треугольника через его площадь и длину стороны

где S – площадь треугольника.

2. Через длины всех сторон

Формула для нахождения высоты треугольника через длины его сторон

где p – это полупериметр треугольника, который рассчитывается так:

Формула для расчета полупериметра треугольника

3. Через длину прилежащей стороны и синус угла

Формула для нахождения высоты треугольника через длину стороны и синуса угла

4. Через стороны и радиус описанной окружности

Формула для нахождения высоты треугольника через длины сторон и радиус описанной окружности

Описанная вокруг разностороннего треугольника окружность

где R – радиус описанной окружности.

Высота в равнобедренном треугольнике

Длина высоты ha, опущенной на основание a равнобедренного треугольника, рассчитывается по формуле:

Формула для нахождения высоты к основанию в равнобедренном треугольнике

Опущенная на основание равнобедренного треугольника высота

Высота в прямоугольном треугольнике

Проведенная к гипотенузе высота в прямоугольном треугольнике

Высота, проведенная к гипотенузе, может быть найдена:

1. Через длины отрезков, образованных на гипотенузе

Формула для нахождения высоты к гипотенузе в прямоугольном треугольнике

2. Через стороны треугольника

Формула для нахождения высоты к гипотенузе в прямоугольном треугольнике через длины его сторон

Примечание: две остальные высоты в прямоугольном треугольнике являются его катетами.

Высота в равностороннем треугольнике

Для равностороннего треугольника со стороной a формула расчета высоты выглядит следующим образом:

Формула для нахождения высоты в равностороннем треугольнике

Высота в равностороннем треугольнике

Примеры задач

Задача 1
Найдите высоту треугольника, проведенную из вершины B к стороне AC, если известно, что AB = 7 см, а угол BAC = 45°.

Решение
В данном случае нам поможет формула для нахождения высоты через сторону и синус прилежащего угла:

Нахождение высоты треугольника через длину стороны и синус прилежащего угла (пример)

Задача 2
Найдите длину основания равнобедренного треугольника, если высота, проведенная к нему, равняется 3 см, а боковые стороны – 5 см.

Решение
Вывести формулу для нахождения длины основания можно из формулы расчета высоты в равнобедренном треугольнике:

Нахождение основания равнобедренного треугольника через высоту и боковую сторону (пример)

Понравилась статья? Поделить с друзьями:
  • Как найти sпп куба
  • Как найти проданную фотографию
  • Как найти своих родственников жди меня
  • Как исправить регистрацию служб
  • Как правильно составить смету по отделочным работам