Как найти длину записи

Автор оригинала: Team Python Pool.

Что такое длина строки Python?

Длина строки Python – это функция, с помощью которой мы находим длину строки. В python есть встроенная функция len (), поэтому эта функция len() находит длину заданной строки, массива, списка, кортежа, словаря и т. Д.

С помощью функции len() мы можем оптимизировать производительность программы. Количество элементов, хранящихся в объекте, никогда не вычисляется, sole() помогает указать количество элементов.

Синтаксис

Параметры

Возвращаемое значение

Он вернет значение interger, то есть длину данной строки.

Различные Типы Возвращаемых Значений

  1. Строка
  2. Пустой
  3. Коллекция
  4. Ошибка Типа
  5. Словарь

1. Строка:

Он используется для возврата количества символов, присутствующих в строке, включая знаки препинания, пробел и все типы специальных символов. Однако это помогло бы, если бы вы были осторожны при использовании len нулевой переменной.

2. Пусто:

В этом случае обратный вызов имеет нулевые символы, но он всегда отсутствует.

3. Коллекции:

Встроенная функция len() возвращает количество элементов в коллекции.

4. Ошибка Типа:

Функция Len всегда зависит от типа передаваемой ей переменной. Не-тип len() не имеет никакой встроенной поддержки.

5. Словарь:

При этом каждая пара считается одной единицей. Однако ключи и значения не являются независимыми в словаре.

Способы найти длину строки в Python

Способы определения длины строкиСпособы определения длины строки

1. Использование встроенной функции len()

# Python code to demonstrate string length  
# using len 

print(len(str))

выход:

Объяснение:

В этом коде мы взяли str в качестве переменной, в которой мы сохранили строку с именем ‘Latracal’, а затем применили len (), в котором мы поместили str между ними. таким образом, выход пришел 8 как слово ‘ href=”https://latracal.com/”>Latracal’ содержит 8 символов. href=”https://latracal.com/”>Latracal’ содержит 8 символов.

2. Использование цикла for для поиска длины строки в python

Строка может быть легко и непосредственно повторена в цикле for. Поддерживая подсчет количества итераций, вы получите длину строки.

# Python code to demonstrate string length  
# using for loop 
  
# Returns length of string 
def findLength(str): 
       
    for i in str: 
        counter
    return counter 
  
  
print(findLength(str))

выход:

Объяснение:

В этом коде мы использовали цикл for для поиска длины строки. Во-первых, мы взяли переменную str, которую мы дали ‘Latracal’ в качестве строки. Во-вторых, мы вызвали функцию findLength, в которой у нас счетчик равен 0, После чего цикл for был записан от 0 до строки, и значение счетчика за раз увеличивается на 1. Наконец, мы напечатали значение счетчика.

3. Использование во время цикла и нарезки

Мы срезаем строку, делая ее короче на 1 с регулярными интервалами времени с каждой итерацией, пока строка не станет пустой строкой. Это когда цикл while останавливается. Поддерживая подсчет количества итераций, вы получите длину строки.

# Python code to demonstrate string length  
# using while loop. 
  
# Returns length of string 
def findLength(str): 
   
    while str[count:]: 
        + 1
    return count 
  
print(findLength(str))

выход:

Объяснение:

В этом коде мы использовали цикл for для поиска длины строки. Во-первых, мы взяли переменную str, в которой мы дали “LatracalSolutions” в качестве строки. Во-вторых, мы вызвали функцию findLength, в которой мы установили значение count равным 0. В-третьих, затем применяется цикл while, в котором мы срезаем значение str на единицу на каждой итерации, пока строка не станет пустой. И, наконец, вернул значение счетчика.

4. Использование строковых методов join и count

Метод соединения строк принимает итерацию и возвращает строку, которая является конкатенацией строк итерации. Разделитель, присутствующий в промежутке между элементами, является исходной строкой, на которой вызывается метод. Используя метод join и count, соединенная строка в исходной строке также приведет к длине строки.

# Python code to demonstrate string length  
# using join and count 
  
# Returns length of string 
def findLength(str): 
    if not str: 
        return 0
    else: 
       
        return ((some_random_str).join(str)).count(some_random_str) + 1
  
print(findLength(str))

выход:

Объяснение:

В этом коде мы использовали цикл for для поиска длины строки. Во-первых, мы взяли переменную str, в которой мы дали “LatracalSolutions” в качестве строки. Во-вторых, тогда мы вызвали функцию findLength, в которой мы применили функцию if и else, в которой if содержит условия, что если строка пуста, то она должна возвращать 0; в противном случае будет работать часть else. Мы взяли некоторую случайную строку “py”, в которой основная строка будет соединяться итерацией, а значение счетчика будет увеличиваться до тех пор, пока строка не станет пустой. После этого вывод печатается.

5. Использование метода getsizeof() для Поиска Длины Строки В Python

Этот метод используется для определения размера хранилища объекта, занимающего некоторое пространство в памяти.

Примечание: Этот метод применим только для обычных ascii-букв. Если у вас есть специальный символ, он не будет работать, так как он использует размер строки в байтах. Так что будьте осторожны при его использовании!

import sys
print(sys.getsizeof(s) - sys.getsizeof(""))

Выход:

Объяснение:

Здесь мы использовали модуль sys, встроенный в python. затем мы должны взять строку и с помощью модуля sys с методом getsizeof() напечатать длину строки.

Пример поиска длины строки в Python

# Python code to demonstrate string length
# testing len() 
print("The length of the string  is :", len(str1))

Выход:

The length of the string  is : 46

Должен Читать

  • Длина списка Python | Как найти длину списка в Python
  • Как проверить, пуст ли список в Python С примерами
  • Индекс списка Python вне диапазона: Ошибка и разрешение
  • 6 Уникальных способов сортировки списка списков в Python
  • Преобразование Python float в строку С использованием 10 различных методов

Резюме: Длина строки Python

Мы видели все 5 различных способов определения длины строки, но в заключение отметим, что только один из них является практичным. Встроенное ключевое слово len () – это лучший способ найти длину строки в любом формате.

  • Python len()-это встроенная функция. Вы можете использовать len (), чтобы найти длину данной строки, массива, списка, кортежа, словаря и т. Д.
  • Возвращаемое значение: Он вернет целочисленное значение, то есть длину данной строки.

Однако, если у вас есть какие-либо сомнения или вопросы, дайте мне знать в разделе комментариев ниже. Я постараюсь помочь вам как можно скорее.

Счастливого Пифонирования!

Теги: python, питон, поиск, строка, пайтон, длина

В некоторых случаях при работе со строками в Python нам необходимо определить длину строки. Сделать это можно несколькими способами, а какими — мы сейчас и узнаем.

Python_Pro_970x90-20219-1c8674.png

Итак, в языке программирования Python строки относят к категории неизменяемых последовательностей, что необходимо помнить при вызове методов и функций. Теперь давайте представим, что у нас есть строка, и нам требуется найти её длину:


Сделать это можно несколькими способами.

Определяем длину строки в Python: способ № 1

Начнём с общеизвестного и наиболее популярного — использования функции len(). Эта встроенная функция возвращает количество символов в исследуемой нами строке, определяя таким образом её длину. Тут всё элементарно, и вы можете проверить код ниже на любом онлайн-компиляторе:

# Находим длину строки в Python с помощью функции len()
str = 'otus'
print(len(str)) 

Итогом работы функции станет следующий вывод в терминал:


Ищем длину строки в «Питоне»: способ № 2

Чтобы подсчитать количество символов в строке Python, мы можем воспользоваться циклом for и счётчиком. Тут тоже всё просто, т. к. определение длины происходит путём подсчёта числа итераций.

# Python-код возвращает длину строки
def findLen(str):
    counter = 0    
    for i in str:
        counter += 1
    return counter
str = "otus"
print(findLen(str))

Соответственно, наш вывод в консоли тоже будет равен 4.

Поиск длины строки в Python: способ № 3

Теперь давайте воспользуемся циклом while. Мы «нарежем» строку, укорачивая её на каждой итерации, в результате чего получим пустую строку и остановку цикла. А подсчёт количества итераций снова позволит нам вывести в терминал искомую длину.

# Python-код, возвращающий длину строки
def findLen(str):
    counter = 0
    while str[counter:]:
        counter += 1
    return counter

str = "otus"
print(findLen(str))

Находим длину строки в Python: способ № 4

Теперь воспользуемся строковым методом объединения. Он принимает итеративный элемент, возвращая строку, являющуюся объединением строк в итерируемом нами элементе. Разделитель между элементами — исходная строка, для которой и вызывается метод. Применение метода объединения с последующим подсчётом объединённой строки в исходной строке тоже позволит нам получить длину строки на «Питоне».

# Python-код, возвращающий длину строки
def findLen(str):
    if not str:
        return 0
    else:
        some_random_str = 'py'
        return ((some_random_str).join(str)).count(some_random_str) + 1
str = "otus"
print(findLen(str))

Как и во всех примерах выше, в консоль выведется количество символов в строе ‘otus’, равное 4. Вот и всё!

Материал написан на основе статьи — «Find length of a string in python (4 ways)».

Хотите знать про Python гораздо больше? Записывайтесь на наш курс для продвинутых разработчиков:

Python_Pro_970x550-20219-0846c7.png

Как посчитать длину текста и не привлекать внимание санитаров

Время на прочтение
10 мин

Количество просмотров 30K

Привет! Меня зовут Ивасюта Алексей, я фронтенд-разработчик в Авито в кластере Seller Experience. В этой статье я расскажу, как правильно рассчитать длину текста в Java Script. Эта статья будет одинаково полезна как начинающим разработчикам, так и весьма опытным. Благодаря ей вы поймете устройство Unicode и особенности его работы в JS.

Немного предыстории

На нашей платформе можно размещать объявления и давать им описание в виде текста. Обычно для таких полей есть ограничение на максимальное количество вводимых символов. Если пользователь напечатал больше знаков, чем положено, сработает валидация и объявление нельзя будет разместить. 

В целом, достаточно тривиальная практика. Жили мы, не тужили, разрешали вводить в поля только кириллицу, латиницу и цифры — и все работало прекрасно. Однажды мы подумали: «Почему бы не разрешить пользователям добавлять в описание эмодзи?». Сделали правочки, разрешили ввод новых символов и продолжили жить дальше. Но тут началось интересное: некоторые пользователи стали жаловаться, что они вводят символов меньше лимита, но валидацию описание все равно не проходит. Путем нехитрых проверок удалось найти интересные вещи. Давайте посмотрим на код:

'Фотоаппарат'.length
// 11
'Фотоаппарат📷'.length
// 13

Длина слова «Фотоаппарат» равна 11. Если в конец добавить эмодзи, то длина становится равной 13. Может показаться, что это какой-то баг языка, но нет — всё правильно. И вот тут нам с вами придется нырнуть на самое дно Unicode.

Щепотка теории по Unicode

Unicode — это достаточно старый формат кодирования символов, который максимально широко распространился на данный момент. Он решает сложную задачу перекодирования текста, которая раньше стояла перед всеми разработчиками.

Особенность этого стандарта заключается в том, что за каждым символом, который добавлен в него объединением Unicode Consortium, навсегда закрепляется уникальный идентификатор. При помощи него любая программа на любой машине с любой локализацией может определить, какой символ представлен в тексте. Эти идентификаторы называются кодовыми точками. Значению кодовой точки соответствует всегда один и тот же символ.

В Unicode кодовую точку принято записывать в шестнадцатеричном виде и использовать не менее 4 цифр с ведущими нулями при необходимости. Например, число 0 в шестнадцатеричной системе счисления также имеет значение 0 и будет записано в виде U+0000 (U+ — префикс, обозначающий Unicode-символ). Это пустой символ или же аналог null/nil в Unicode. Обычно этот символ используется для обозначения конца null-терминированных строк в языке С (Си-строки). 

null-терминированные строки

В языке С обработка строки произвольной длины происходит до того момента, пока не встретится нулевой символ.

Четыре разряда в шестнадцатеричной системе позволяют закодировать 164 комбинаций (или 216) — это 65 536 значений, каждое из которых является кодовой точкой. Значения находятся в диапазоне U+0000 — U+FFFF в шестнадцатеричной системе счисления. Этот диапазон значений называется «Базовой многоязычной плоскостью» или BMP. Она включает в себя символы из алфавитов самых распространенных языков мира, математические операторы, геометрические фигуры, специальные символы и многое другое. Важно заметить, что некоторые точки являются зарезервированными, некоторые из них не имеют графического представления, как например U+200D, а некоторые вообще не используются.

После того, как мы изучили теорию, давайте посмотрим на несколько примеров и пощупаем Unicode на практике.

Для получения значения кодовой точки в JS есть метод String.prototype.codePointAt(). Если мы вызовем метод на строке с заглавной кириллической буквой «А», то получим значение кодовой точки в десятичной системе счисления.

'А'.codePointAt(0) // 1040

Теперь переведем полученное значение в шестнадцатеричную систему счисления.

'А'.codePointAt(0).toString(16) // '410'

В JS шестнадцатиразрядные числа можно записывать в формате 0x0000. Таким образом наше число можно записать в виде 0x410.

0x410 // 1040
typeof 0x410 === 'number' // true

Для получения Unicode-символа по значению кодовой точки JS предоставляет статический метод String.fromCodePoint(). Давайте получим нашу букву обратно.

String.fromCodePoint(0x410) // 'А'

Для записи символов Unicode можно использовать формат u0000. Если число меньше четырех знаков, то недостающие заполняются нулями слева. Таким образом нашу букву также можно представить в виде строки.

'u0410' // 'А'

Теперь мы можем даже составить целое слово. Вставьте эту строку в консоль и посмотрите на результат.

'u041fu0440u0438u0432u0435u0442'

Нормализация и комбинируемые символы

Перейдем к неочевидному поведению строк в Java Script. Возьмем для примера такой экзотический символ, как «Слог Хангыль ggag» из слогового письма Хангыля и посчитаем его длину.

'깍'.length // 3

Ого! Символ один, а длина строки почему-то равна трем. На самом деле, этот символ состоит из трех кодовых точек U+1101, U+1161 и U+11A8. Вместе эти знаки в Хангыльском письме образуют иероглиф , который сам является отдельным символом и имеет кодовую точку U+AE4D. 

Здесь мы приходим к двум важным выводам:

  1. Длина строки в JS считается по количеству кодовых точек, из которых она состоит.

  2. При подсчете длины строки надо учитывать количество графем, а не кодовых точек.

Так, у нас появилось новое понятие. Графема — это минимальная единица письменности. В нашем случае, три кодовые точки образуют одну графему, которая отображается в виде иероглифа  .

В Unicode для таких случаев описаны алгоритмы нормализации, когда комбинируемые символы могут быть заменены на один составной. JS предоставляет метод String.prototype.normalize, который позволяет проводить нормализацию строк по описанным в Unicode алгоритмам. После выполнения нормализации три кодовые точки будут заменены на одну — U+AE4D.

'깍'.normalize()
    .codePointAt(0)
    .toString(16) // 'ae4d'

'깍'.normalize('NFC').length // 1

Можно комбинировать различные символы в Unicode, но для результата комбинации может не быть предусмотрено отдельной кодовой точки.

'ко̅д'.normalize().length // 4

Длина строки в этом случае равна 4, а видим мы всего три графемы. Символ о̅ состоит из обычной кириллической буквы «о» и Unicode-символа комбинируемого надчеркивания U+0305. 

'коu0305д' // ко̅д

В таких случаях при учете длины строки нужно исключать из расчета комбинируемые символы. Они не создают отдельных графем, а просто видоизменяют отображение рядом стоящих. Для этого можем воспользоваться экранированием свойств Unicode в регулярках JS.

const regexSymbolWithCombiningMarks = /(P{Mark})(p{Mark}+)/ug;

const countTextLength = (text) => {
    const normalizedText = text
        .normalize('NFC')
        .replace(regexSymbolWithCombiningMarks, function(_, symbol) {
            return symbol;
        });

    return normalizedText.length;
};

countTextLength('ко̅д') // 3
countTextLength('깍') // 1

Селекторы начертания

В Unicode есть диапазон кодовых точек U+FE00 — U+FE0F для селекторов начертания. Это невидимые символы, которые изменяют начертание предшествующих им. Самый интересный — U+FE0F. Этот селектор указывает, что предыдущий символ должен отображаться в виде эмодзи, если предыдущий символ по умолчанию имеет текстовое представление. Например, кодовая точка U+2764 по умолчанию будет отображаться как закрашенное жирное сердечко . Если мы добавим к нему селектор начертания U+FE0F, то отображаться он уже будет в виде эмодзи сердечка ❤️.

'❤ufe0f' // ❤️

Отображение в консоли браузера

В консоли браузера и здесь в примере кода вы все равно увидите отображение в виде закрашенного черного сердечка, но если скопировать полученный символ в мессенджер, то там будет эмодзи.

То же самое можно проделать со снеговиком.

'☃ufe0f' // ☃️

Селекторы начертания не создают отдельных графем, а лишь изменяют отображение предшествующих. Они не должны учитываться при подсчете длины текста. В вычислениях их можно убрать, например, регуляркой.

'❤ufe0E'.replace(/[u{FE00}-u{FE0F}]/ug, '').length // 1

Суррогаты

Однажды IT-сообществу захотелось добавить в Unicode больше символов, а диапазон в 65К кодовых точек стал тесноват. Ребята из Unicode Consortium призадумались и решили заложить в стандарт больше возможностей для дальнейшего расширения. 

Так как надо было сохранить совместимость с уже существующими значениями и сильно увеличить количество допустимых, диапазон кодовых точек расширили до U+10FFFF. В Unicode появилось еще 16 плоскостей по 65 536 символов в каждой. Таким образом, количество возможных значений увеличилось до 1 114 112. Сейчас в Unicode есть эмодзи, кости для маджонга, алхимические символы, символы «Канона великого сокровенного» и куча всего другого. 

Теперь нам надо немного вспомнить азы программирования. Для кодирования каждого символа необходимо n бит. Число 1 в двоичной системе счисления будет иметь вид 1, а для его кодирования нужен 1 бит. Число 65535 будет иметь вид 1111111111111111. У него 16 разрядов, соответственно, для хранения нужно 16 бит, то есть 2 байта.

Существует кодировка UTF-8, которая использует 8 бит на кодирование каждого символа. При помощи нее можно закодировать 256 различных знаков (28). Строки в этой кодировке занимают очень мало места: текст в 10 000 знаков будет занимать 10 000 байт или 9,77 КБ. Это позволяет оптимизировать использование памяти.

Есть кодировка UTF-32, которая использует 32 бита на кодирование каждого символа. Здесь больше 4 миллиардов комбинаций. Как можно догадаться, любой символ из любой плоскости Unicode может быть с легкостью закодирован, но строки в ней занимают много памяти. Так текст в 10 000 знаков уже будет занимать больше 32 КБ.

Самое интересное происходит в системах, которые используют шестнадцатибитную кодировку представления. JavaScript использует именно кодировку UTF-16, которая позволяет выделять на хранение каждого символа 2 байта. Для хранения кодовой точки из BMP этого достаточно, но для точек из других плоскостей нужно больше бит. 

Число 10000 в шестнадцатеричной системе преобразуется в 10000000000000000 в двоичной. У числа 17 разрядов, а значит для кодирование уже нужно 17 бит. Уместить 17 бит в 2 байта никак нельзя. 

Чтобы кодировать символы из астральных плоскостей в 16-битных кодировках были придуманы суррогатные пары. Суррогаты — это зарезервированный диапазон значений в базовой плоскости Unicode, который делится на две части:

  • U+D800 – U+DBFF — верхние суррогаты;

  • U+DC00 – U+DFFF — нижние суррогаты.

В каждый диапазон входит 210 символов. То есть всего возможно 220 комбинаций — это 1 048 576 значений. Добавим сюда 65 536 значений из BMP и получим 1 114 112 значений. Таким образом мы можем закодировать кодовые точки из всех плоскостей Unicode.

Точки из BMP кодируются «как есть». Если же надо закодировать кодовую точку из астральной плоскости, то для нее вычисляется пара суррогатов по формуле:

const highSurrogate = Math.floor((codepoint - 0x10000) / 0x400) + 0xD800;
const lowSurrogate = (codepoint - 0x10000) % 0x400 + 0xDC00;

Для обратного преобразования из суррогатной пары в кодовую точку используется следующая формула:

const codePoint = (highSurrogate - 0xD800) * 0x400 + lowSurrogate - 0xDC00 + 0x10000;

Таким образом, ухмыляющийся смайлик U+1F600 будет преобразован в суррогатную пару U+D83D + U+DE00.

'😀' === 'u{d83d}u{de00}'
// true

Именно поэтому длина этого эмодзи равна 2.

Формат записи кодовых точек

До этого момента вы видели запись кодовых точек в строках только в виде u0000. Такой формат записи является устаревшим и будет работать только для кодовых точек из BMP. Вместо него используйте запись вида u{0000}. Такой формат работает для кодовых точек из любой плоскости.

'😀'.length === 2
// true

Чтобы учитывать эмодзи при подсчёте, в JavaScript есть итератор строк, который учитывает суррогатные пары и итерирует их, как одну графему. Это значит, что длину строки с учетом эмодзи можно подсчитать итерируясь по строке и запоминая количество итераций.

const countGraphemes = (text) => {
    let count = 0;
    for(const _ of text) {
        count++;
    }
    return count;
}
countGraphemes('текст 😀') // 7

То же самое можно сделать разбив строку на массив.

Array.from('текст 😀').length // 7

// или

[...'текст 😀'].length // 7

Модификаторы цвета

В Unicode есть пять модификаторов цвета кожи по шкале Фитцпатрика в диапазоне  U+1F3FB —U+1F3FF.

При помощи этих модификаторов можно персонифицировать «базовые» эмодзи.

'👩u{1f3fb}'
// '👩🏻'

'👧u{1f3fc}'
// '👧🏼'

'🧒u{1f3fd}'
// '🧒🏽'

'👶u{1f3fe}'
// '👶🏾'

'👨u{1f3ff}'
// '👨🏿'

Как вы уже могли догадаться, модификаторы цвета при подсчете длины текста учитывать не надо.

Объединитель нулевой ширины

Давайте подсчитаем длину эмодзи семьи из трех человек.

'👨‍👩‍👦'.length
// 8

Весьма неожиданный результат. Давайте теперь разобьем строку на массив символов.

[...'👨‍👩‍👦']
// ['👨', '‍', '👩', '‍', '👦']

Теперь мы видим настоящую магию: эмодзи семьи из трех человек на самом деле состоит из трех базовых эмодзи, которые соединены объединителем нулевой ширины или ZWJ. Этот символ не имеет графического отображения и представлен кодовой точкой U+200D. А при помощи такой хитрой конструкции мы можем собрать новый эмодзи из базовых.

['👨', 'u{200d}', '👧', 'u{200d}', '👦'].reduce((prev, curr) => prev + curr)
// '👨‍👧‍👦'

Мы получили эмодзи отца-одиночки с двумя детьми.

В этом случае уже сложнее подсчитать правильную длину текста с учетом составных эмодзи, поэтому придется разбивать строку на массив и итерироваться по нему. При этом комбинации, которые состоят из нескольких символов, соединенных ZWJ, необходимо считать за одну графему.

Собираем все вместе

const regex = /[u{FE00}-u{FE0F}]|[u{1F3FB}-u{1F3FF}]/ug;
// u{FE00}-u{FE0F} -- селекторы начертания
// u{1F3FB}-u{1F3FF} - модификаторы цвета

const regexSymbolWithCombiningMarks = /(P{Mark})(p{Mark}+)/ug; // Поиск комбинируемых символов
const joiner = '200d'; // Объединитель нулевой ширины («Zero Width Joiner», ZWJ)
//  Проверяет, является ли символ ZWJ
const isJoiner = (char) => char.charCodeAt(0).toString(16) === joiner;

const countGraphemes = (text) => {
   const normalizedText = text
       // нормализуем строку
       .normalize('NFC')   
       // удаляем селекторы начертания и модификаторы цвета
       .replace(regex, '')
       // удаляем комбинируемые символы
       .replace(regexSymbolWithCombiningMarks, function(_, symbol) {
           return symbol;
       });
   // Разделяем строку на токены. Кодовые точки из суррогатных пар будут корректно 
   // выделены в одну графему.
   const tokens = Array.from(normalizedText);
   let length = 0;
   let isComplexChar = false; // Обработка комплексных символов, склеенных через ZWJ
   
   // Итеррируемся по массиву токенов и комбинации, склеенные через ZWJ 
   // считаем за одиу графему
   for (let i = 0; i < tokens.length; i++) {
       const char = tokens[i];
       const nextChar = tokens[i + 1];

       if (!nextChar) {
           length += 1;
           continue;
       }

       if (isJoiner(nextChar)) {
           isComplexChar = true;
           continue;
       }

       if (!isJoiner(char) && isComplexChar) {
           isComplexChar = false;
       }

       if (!isComplexChar) {
           length += 1;
       }
   }

   return length;
}

countGraphemes('test😄') // 5
countGraphemes('👦🏾👨‍👩‍👧‍👦') // 2
countGraphemes('깍') // 1

//  и так далее

Конечно, это не самая оптимальная реализация и приведенный выше код необходим лишь для примера и наглядности. К тому же, мы все еще не учитываем множество особенностей Unicode. Этот алгоритм будет работать для подавляющего большинства обычных приложений, но по настоящему честный подсчет для всех возможных языков и начертаний он сделать не сможет. 

Intl.Segmenter

Как вы видите, алгоритм подсчета количества графем получается не самым простым. Здесь требуется учитывать множество деталей и быть глубоко погруженным в тему. И вот наконец-то настает очередь Intl.Segmenter специальный класс, который включает сегментацию текста с учетом языковых стандартов. Это позволяет получать значимые элементы из строки, например, графемы, слова или предложения.

const segmenter = new Intl.Segmenter();
const text = '👨‍👨‍👦‍👦깍ко̅д👨🏿‍';

const iterator = segmenter.segment(text)[Symbol.iterator]();
let count = 0;
for (const symbol of iterator) {
  	count++;
}
console.log(count) // 6

Вот так легко и непринуждённо мы смогли в несколько строчек проделать ту же работу. По умолчанию сегментер бьет текст на графемы, но ему можно дополнительно задать локаль и степень сегментации, например, по словам.

const segmenter = new Intl.Segmenter('fr', { granularity: 'word' });

У меня для вас только одна плохая новость: Intl.Segmenter не поддерживается в Firefox, поэтому кроссбраузерное решение сделать на нем не получится. Пока что вам остается искать рабочий полифил для него и подключать в нужном месте при выполнении кода. Также нужно убедиться в работоспособности сегментации через полифил.

Что в результате

Честный подсчет длины введенного пользователем текста — дело непростое из-за особенностей Unicode и 16-битной кодировки. Если вы хотите сделать по-настоящему интернациональное приложение, например, мессенджер, вам придется учитывать все эти сценарии. Эту проблему призван решить Intl.Segmenter, поэтому с нетерпением ждем его поддержки в Firefox.

Полезные ссылки

Таблица символов Unicode 

Подробнее о графемах 

Алгоритмы нормализации Unicode 

Документация Intl.Segmenter на MDN 

Подробнее про Intl.Segmenter

Экранирование свойств Unicode 

Well, 11 years later, I run into this issue with a college assignment. The solution I found, worked without having to alter the function signatures that the assignment was asking for.

In my case, I had to make a function that returns the item index if the item existed or depending on if the itemPrefix (e.g. ‘B’ for Banana) already exists or not in the character array itemPrefixes to avoid passing duplicate prefixes.

So, I had to use a for loop (or while loop). The problem was that the assignment had given me specific signatures for each function and for that specific function it didn’t allow me to pass the count variable that was on the main() function as an argument.

I had to improvise.

Both the ways mentioned above didn’t work. strlen() didn’t work as intended since there was not a '' end character that strings have. The sizeof() method also didn’t work, because it returned the size of the pointer of the character array that was passed in as an argument instead of the number of elements.

So, this is the function I came up with. A simple while loop that checks whether the current character is NULL (or 0).

void charArrLength(char array[]) {
    int arrLength = 0;
    
    while (array[arrLength] != 0) {
        arrLength++; //increment by 1
    } 
    
    printf("Character array has %d elements", arrLength);
}

For this to work though, in the main() function, you need to declare your character array as a character pointer and then allocate the memory that you need based on the number of items that you ultimately wish to have inside your array.

void charArrLength(char array[]) {
    int arrLength = 0; 
    
    while (array[arrLength] != 0) {
        arrLength++; 
    } 
    
    printf("Character array has %d elements", arrLength); //should give 33
} 

int main() { 
    char *array; //declare array as a pointer
    int arraySize = 33; //can be anything 
    
    array = (char*) malloc(arraySize * sizeof(char)); 
    
    charArrLength(array);

    free(array); //free the previously allocated memory
}

Below you will see how I utilised this function in my assignment.

First, here is the above function tailored to my needs.

int isItemExists(char itemPrefixes[], char itemPrefix) {
    int count = 0; //declare count variable and set to 0
    int itemIndex = -1; //declare item index variable and set it to -1 as default

    while (itemPrefixes[count] != 0) {
        count++;
    }

    for (int i = 0; i < count; i++) {
        if (itemPrefix == itemPrefixes[i]) {
            itemIndex = i; //if item exists, set item index to i
        }
    }

    return itemIndex;
}

Then, how I declared the itemPrefixes array in main() function and how I allocated the needed memory based on n (the number of items the user would like to add to itemPrefixes array).

char *itemPrefixes;
    
int n = 0; //number of items to be added variable

printf("> Enter how many items to add: ");
scanf("%d", &n);

//allocate n * size of char data type bytes of memory
itemPrefixes = (char*) malloc(n * sizeof(char));

And finally, here is how that function was used after all.

do {
    printf("nn> Enter prefix for item %d: ", i + 1);
    scanf(" %c", &itemPrefix);
    
    //prompt the user if that itemPrefix already exists
    if (isItemExists(itemPrefixes, itemPrefix) != -1) {
        printf("nItem prefix already exists! Try another one.n");
    }
} while (isItemExists(itemPrefixes, itemPrefix) != -1);

Also, in the end of the code I free the previously allocated memory.

free(itemPrefixes);

To clear this out, again, this could be much easier if the conditions were different. The assignment was strict about not passing n as an argument. Nevertheless, I hope I help someone else that might be looking for this in the future!

Just for the sake of it, if anybody sees this and has something simpler to suggest, feel free to tell me.

Перейти к контенту

В этом уроке мы собираемся обсудить, как определить длину строки в Python. Длина или размер строки в основном требуется при перемещении по ней или при выполнении с ней некоторых операций.

Итак, теперь давайте посмотрим на различные методы, с помощью которых мы можем найти длину заданной строки в Python.

Содержание

  1. Методы определения длины строки
  2. 1. Использование метода len()
  3. 2. Определение собственной функции для поиска длины строки

Методы определения длины строки

Мы можем использовать любой из приведенных ниже методов, чтобы найти длину строки в Python. Мы собираемся обсудить каждую из них по очереди.

1. Использование метода len()

Рассматривая первый и самый простой метод, len() напрямую возвращает длину переданного строкового объекта, в котором он вызывается. Метод len() также работает с другими повторяемыми объектами, такими как списки. Приведенный ниже код иллюстрирует, как мы можем использовать эту функцию, а также как она работает.

#Given string whose length is to be found
str1="Python is great!"
print("The given String is:",str1)

#calling our len() method to calculate
#the length of str1
print("Length =",len(str1))

Вывод:

Использование метода len()

Где:

  • str1 – заданная строка;
  • Затем мы напрямую вызываем метод len() со строкой и печатаем возвращаемое им значение. Как мы видим, метод дает нам правильную длину для данной строки, str1.

Теперь, переходя к следующей технике, мы можем определить нашу собственную функцию (str_len() в нашем случае) для вычисления длины строки в Python.

Давайте посмотрим, как мы можем это сделать:

#function that calculates length of the passed string
def str_len(str1):
    c=0    #counter initialised as 0
    for i in str1:
        c=c+1   #counter increased for each element
    return c

#Given string whose length is to be found
str1="JournalDev"
print("The given String is:",str1)

#calling our str_len() function to calculate
#the length of str1
print("Length =",str_len(str1))

Вывод:

Определение собственной функции для поиска длины строки

В приведенном выше коде:

  • Мы определяем функцию str_len(), которая принимает строку и возвращает ее длину.
  • Внутри функции мы инициализируем счетчик c = 0, который фактически подсчитывает количество элементов в переданной строке. Мы перебираем строку и продолжаем увеличивать счетчик. Следовательно, к концу цикла for c содержит длину строки. Затем мы возвращаем c.
  • Чтобы проверить, работает ли наша функция должным образом, мы вычисляем и печатаем длину строки str1. Из вывода видно, что функция возвращает значение 9, которое является желаемым выводом.

( 1 оценка, среднее 5 из 5 )

Помогаю в изучении Питона на примерах. Автор практических задач с детальным разбором их решений.

Понравилась статья? Поделить с друзьями:
  • Как найти кадмий в no mans sky
  • Как найти пароли в яндексе на андроиде
  • Акт инвентаризации как правильно составить образец
  • Как найти элементы рассуждения
  • Как исправить складки на коже