Как найти дополнение бинарного отношения

Бинарные отношения.

Пусть А и В – два произвольных
множества.

Определение 3. Бинарным
отношением

из множества А в
множество
В называется
всякое подмножество прямого произведения
А на В; если А=В, то говорят
о бинарном отношении на множестве
А
. Обозначение:

Пример 2.

Используют две формы записи принадлежности
некоторой упорядоченной пары заданному
бинарному отношению:

Инфиксная:

Префиксная:

По аналогии с бинарным отношением вводят
понятие n – арного
отношения 
произвольного подмножества упорядоченных
n – ок, выбранных из
прямого произведения данных n
множеств.

Пример 3.

M – множество;

2M – булеан
множества M;

бинарное отношение включения на

определяется так:

Определение 4. Множество
точек плоскости, координаты которых
(x,y),
образуют упорядоченные пары некоторого
бинарного отношения

называется графиком данного
бинарного отношения.

Пример 4.

1).


2

0

График

2).

График

Бинарные отношения – это множества, их
можно объединять, пересекать, дополнять
и т. д.

Пример 5.

1).


2

0


1

График

2).


0

1


2

График

Пусть

Определение 5. Областью
определения
бинарного отношения
(обозначение:),
называется подмножество множества А
такое, что

Пусть

Определение 6. Областью
значения
бинарного отношения
(обозначение:
),
называется подмножество множества В
такое, что

Пусть

Определение 7. Отношением,
обратным к отношению
,
называют подмножество прямого произведения
,
такое, что
.

Пример 6.

Определение 8. Дополнением
отношения

называют бинарное отношение, определяемое
как множество всех упорядоченных пар,
не входящих в
:

Пример 7.

Определение 9. Тождественным
отношением
I
называют подмножество А2
такое, что

Пример 8.

Определение 10. Универсальным
отношением
U
называют само прямое произведение
множеств

Композиция отношений.

Пусть

Определение 11. Композицией
отношений

называют бинарное отношение из множества
А во множество В, определяемое
так:

Пример 9.

Пусть

— это отношение, заданное на множестве
А, тогда бинарное отношение

называется

  1. .рефлексивным, если

  2. .антирефлексивным, если

  3. .симметричным, если

  4. .антисимметричным, если

  5. .транзитивным, если

  6. .полным если

Пример 10.

Является ли

рефлексивным, антирефлексивным,
симметричным, антисимметричным, полным?

1).

нерефлексивно;

например,

2).

неантирефлексивно;

,
так как уравнение

имеет решения:

3).

несимметрично;

например,

4).

не антисимметрично.

Пусть

.

Тогда

5).

не транзитивно:

например

но

6).

не полное, что очевидно.

Пример 11.

1).

 рефлексивно.

2). Пусть

тогда



т.к. х, у – целые числа 
 антисимметрично.

  1. Пусть

    тогда

Значит

 транзитивно.

  1. Если

    то или

    или

     полное отношение.

Теорема о свойствах бинарного отношения.

Пусть

 отношение на
множестве А(),
тогда справедливы следующие утверждения:

  1. -
    рефлексивно
    ;


  2.  симметрично;


  3.  транзитивно;


  4.  антирефлексивно;


  5.  антисимметрично;


  6.  полно.

Доказательство.

1.

Пусть

 рефлексивно,
;

1.

Пусть
,
тогда

– рефлексивно.

2.

Пусть

 симметрично,
.

Пусть
.

Пусть
.
Значит,
.

2.

Пусть
.
Тогда

– симметрично.

3.

Пусть

 транзитивно,

и

Пусть
:( )
и (;

3.

Пусть
.
Пусть ()и
(
транзитивно.

4.

Пусть

 антирефлексивно,
():;

4.

Пусть
:


 антирефлексивно.

5.

Пусть

 антисимметрично
():()
и
.
Если

и (),
то ()и
,
пересечение множеств

и

по парам, состоящих из разных элементов,
 пусто

эти множества в качестве общих могут
иметь только элементы вида
,
что и означает:
;

5.

Пусть

это означает, что в пересечение

могут входить только пары вида

если

и
,
то
.

6.

Пусть
-полно,
(,
):
()
или

Но
,обе
пары

и

принадлежат объединению:
;


  1. Пусть
    .
    Если
    ,
    то
    .

Либо
.

Либо

— полно.

ЛЕКЦИЯ 7.

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]

  • #
  • #
  • #
  • #
  • #
  • #
  • #
  • #
  • #
  • #
  • #

Операции над соответствиями на множествах

Поскольку соответствия можно считать множествами, то все операции над множествами (пересечение, объединение, разность, дополнение и т.д.) можно применить и к соответствиям. Заметим, что, говоря о дополнении соответствия из A в B, мы имеем в виду дополнение до универсального соответствия из A в B, т.е. до декартова произведения Atimes B. Естественно, что и равенство соответствий можно трактовать как равенство множеств.

В то же время на соответствия можно распространить операции, определяемые для отображений. Мы рассмотрим здесь две такие операции.

Композиция соответствии. Следуя аналогии с композицией отображнений, композицией (произведением) соответствий rhosubseteq Atimes B и sigmasubseteq Btimes C называют соответствие

rhocircsigma= bigl{(x,y)colon, (exists zin B)((x,z)inrho)land ((z,y)insigma)bigr}.

(1.3)

Поясним построение композиции двух соответствий. Обратимся сначала к отображениям (как частным случаям соответствий). Пусть заданы отображения (возможно, частичные): f из A в B и g из B в C. Композиция fcirc g определяется как отображение из A в C, задаваемое формулой y=g(f(x)). Тем самым задается график отображения fcirc g, т.е. множество упорядоченных пар (x,y), таких, что y=g(f(x)). При этом упорядоченная пара (x,y) будет принадлежать графику отображения fcirc g, если и только если найдется элемент zin b, такой, что z=f(x) и y=g(z). Таким образом, график композиции отображений f и g есть

fcirc g=bigl{(x,y)colon, (exists z)(z=f(x),, y=g(z))bigr}= bigl{(x,y)colon, y=g(f(x))bigr}.

(1.4)

Необходимо заметить, что запись gcirc f(x) означает g(f(x)), т.е. отображения в композиции пишутся в порядке, обратном тому, в каком они применяются. Мы же будем везде использовать запись fcirc g, полагая, что fcirc g(x)=g(f(x)) и порядок записи отображений в композиции совпадает с порядком их применения. Это обусловлено тем, что композиция отображений определяется нами как частный случай композиции соответствий, при записи которой естественным оказывается именно такой порядок.

Легко видеть, что (1.4) есть частный случай (1.3). Отметим, что при построении композиции отображений обычно предполагают, что пересечение области значений отображения f и области определения отображения g не пусто (R(f)cap D(g)ne varnothing), поскольку в противном случае композиция была бы пуста. Для отображений, не являющихся частичными, R(f)subseteq D(g), так как D(g)=B. Поэтому в данном случае пересечение R(f)cap D(g) всегда не пусто.

Полезно отметить также, что если f и g — биекции, то и композиция их тоже будет биекцией.

Вернемся к рассмотрению композиции соответствий rhocircsigma. Полагая, что область определения D(rho) соответствия rho не пуста, возьмем произвольный элемент xin D(rho). Пусть сечение rho(x)subseteq B соответствия rho не пусто и найдется такой элемент zinrho(x), что сечение sigma(z)subseteq C также не пусто. Тогда непустое множество {(x,t)colon, tinsigma(z)} будет подмножеством сечения соответствия rhocircsigma в точке x. Сечением соответствия rhocircsigma в точке x будет непустое в силу сделанных предположений множество всех таких упорядоченных пар (x,t)in Atimes C, что xin D(rho), а tinsigma(z) для некоторого zinrho(x). Говоря неформально, нужно перебрать все элементы z из сечения rho(x). Таким образом, различие в построении композиции соответствий и композиции отображений заключается в том, что «промежуточный» элемент z в общем случае не единственный и каждому такому элементу также ставится в соответствие не единственный элемент yin C.


Пример 1.8. Соответствие rho возьмем из примера 1.3. Соответствие sigma зададим как соответствие из множества программ {n_1,n_2 ,n_3, n_4, n_5} в множество заказчиков программного обеспечения {Z_1,Z_2,Z_3,Z_4}. Пусть

sigma=bigl{(n_1,Z_3),, (n_1,Z_4),, (n_2,Z_1),, (n_2,Z_1),, (n_3,Z_2),, (n_4,Z_4),, (n_5,Z_3)bigr}.

Рассмотрим процесс построения композиции соответствий rho и sigma. Начнем с элемента I. Имеем

rho(I)={n_1,n_3,n_5},quad sigma(n_1)={Z_3,Z_4},quad sigma(n_3)={Z_2},quad sigma(n_5)={Z_5}.

Отсюда получаем сечение композиции по элементу I:

sigma(n_1)cupsigma(n_3)cupsigma(n_5)= {Z_2,Z_3,Z_4}.

Рассуждая аналогично, получим (rhocircsigma)(P)={Z_1,Z_4} и (rhocircsigma)(C)={Z_1,Z_3}.

Построение графа композиции rhocircsigma проиллюстрировано на рис. 1.3.

Построение графа композиции соответствий

Отметим, что область определения композиции соответствий содержится в области определения первого соответствия, а область значений композиции соответствий — в области значений второго соответствия. Из приведенных рассуждений следует, что для того, чтобы композиция соответствий была отлична от пустого соответствия, необходимо и достаточно, чтобы пересечение области значений первого соответствия и области определения второго соответствия было не пусто.

К определению композиции соответствий можно подойти с более общих позиций. Пусть rho subseteq Atimes B и sigma subseteq Ctimes D. При этом на множества A,,B,,C и D априори не накладывается никаких органичений. Композиция rhocircsigma соответствий rho и sigma в этом случае также определяется соотношением (1.3). Чтобы такая композиция была отлична от пустого соответствия, необходимо и достаточно выполнение условия R(rho)cap D(sigma)ne varnothing. В частности, rhocircsigma=varnothing всякий раз, когда Bcap C=varnothing.


Пример 1.9. Рассмотрим соответствие tau={(1,a),(2,a),(3,d)} из множества A={1;2;3} в множество B={a,b,d} и соответствие varphi= {(b,e), (b,f), (c,f)} из множества C={b,c,d} в множество D={e,f}. В данном случае Bcap Cnevarnothing, но taucircvarphi=varnothing, поскольку

R(tau)={a,d},qquad D(varphi)={b,c},qquad R(tau)cap D(varphi)=varnothing.

Заметим, что композиция соответствий rho subseteq Atimes B и sigma subseteq Ctimes D не коммутативна, т.е. в общем случае rhocircsigmane sigmacircrho, поскольку rhocircsigma subseteq Atimes D, а sigmacircrho subseteq Ctimes B.


Композиция бинарного отношения на множестве

Бинарное отношение на множестве является частным случаем соответствия. Для двух бинарных отношении rho и sigma, заданных на множестве A, их композиция rhocircsigma (1.3) как соответствий является бинарным отношением на том же множестве A. В этом случае говорят о композиции бинарных отношений на множестве A.

Композицию rhocircrho бинарного отношения rho на некотором множестве с самим собой называют квадратом бинарного отношения rho и обозначают rho^2.

Рассмотрим пример построения композиции бинарных отношений на множестве и покажем, что в общем случае для двух бинарных отношений tau и varphi также имеет место неравенство taucircvarphine varphicirctau, хотя обе композиции, в отличие от аналогичных композиций двух произвольных соответствий, заданы на одном и том же множестве.


Построение композиции бинарных отношений

Пример 1.10. а. Зададим на множестве A={1,2,3,4} бинарные отношения tau,,varphi и найдем композицию taucircvarphi, если

tau=bigl{(x,y)colon, x+1<ybigr},quad varphi=bigl{(x,y)colon, |x-y|=2bigr}.

.

Имеем tau(1)={3;4},~ varphi(3)={1} и varphi(4)={2}. Следовательно, (taucircvarphi)(1)= varphi(3)cupvarphi(4)={1;2}. Далее tau(2)={4},~ varphi(4)={2} и (taucircvarphi)(2)={2}. Так как tau(3)= varphi(4)= varnothing, то в итоге получим taucircvarphi={(1;1),(1;2),(2;2)}. Построение композиции проиллюстрировано на рис. 1.4,а.

Найдем композицию varphicirctau. Поскольку varphi(1)={3}, а tau(3)=varnothing, то (varphicirctau)(1)=varnothing. Аналогично varphi(2)={4}, а tau(4)=varnothing, поэтому (varphicirc tau)(2)= varnothing. Далее varphi(3)={1},~ tau(1)={3;4}, поэтому (varphicirc tau)(3)= {3;4}, а varphi(4)={2},~ tau(2)={4} и (varphicirc tau)(4)= {4}. Построение композиции проиллюстрировано на рис. 1.4,б.

Легко видеть, что taucircvarphinevarphicirctau.

б. Пусть отношение rho на множестве действительных чисел определено как функция y=ax+b. Найдем квадрат этого отношения (линейной функции от одного переменного).

Согласно (1.4), это будет функция h, такая, что h(x)=a(ax+b)+c, то есть h(x)=a^2x+(ab+c). Это тоже линейная функция, но с другими коэффициентами.


Свойства композиции соответствий

Приведем некоторые свойства композиции соответствий:

1) rhocirc(sigmacirctau)= (rhocircsigma)circtau;
2) для любого соответствия rho имеет место rhocirc varnothing= varnothingcirc tau= varnothing;
3) rhocirc(sigmacuptau)= (rhocircsigma)cup (rhocirctau);
4) для любого бинарного отношения на множестве A имеет место равенство rhocirc operatorname{id}Acirc rho= rho.

Эти свойства нетрудно доказать методом двух включений. Рассмотрим в качестве примера доказательство свойства 3. Пусть некоторая упорядоченная пара (x,y) принадлежит композиции rhocirc(sigmacuptau). Тогда, согласно (1.3), найдется такой элемент z, что (x,z)inrho и (z,y)insigmacuptau. Последнее означает, что (z,y)insigma или (z,y)intau. Таким образом, для элемента z имеем (x,z)inrho и (z,y)insigma или (x,z)inrho и (z,y)intau. Первая альтернатива имеет место при (x,y)inrhocircsigma, а вторая — при (x,y)inrhocirctau, что означает (x,y)in rhocirc sigmacup rhocirc tau. Тем самым включение rhocirc (sigmacup tau)subseteq rhocirc sigmacup rhocirctau доказано.

Доказательство включения rhocirc sigmacup rhocirctau subseteq rhocirc (sigmacup tau) запишем коротко, используя логическую символику:

begin{aligned} (x,y)in rhocircsigmacup rhocirctau &Rightarrow (exists u)bigl(((x,u)inrho)land ((u,y)insigma)bigr)lor (exists v)bigl(((x,v)inrho)land ((v,y)intau)bigr) Rightarrow \[2pt] &Rightarrow (exists z)bigl(((x,z)inrho)land (((z,y)insigma)lor ((z,y)intau))bigr) Rightarrow\[2pt] &Rightarrow (exists z)bigl(((x,z)inrho)land ((z,y)insigmacuptau)bigr) Rightarrow\[2pt] &Rightarrow (x,y)in rhocirc (sigmacuptau). end{aligned}

В данном случае доказательства двух включений не совсем симметричны: элементы u и v во второй части доказательства не обязаны совпадать.

Замечание 1.4. В тождестве, выражающем свойство 3, нельзя вместо объединения поставить пересечение, так как в этом случае тождество нарушатся. Можно доказать, что сохранится лишь включение

rhocirc (sigmacap tau)subseteq rhocirc sigmacap rhocirctau,,

а обратное включение в общем случае не имеет места.

Анализ свойств 2 и 4 показывает, что роль пустого соответствия аналогична роли нуля при умножении чисел, а диагональ множества A играет роль, аналогичную роли единицы, на множестве всех бинарных отношений на A.


Обратное соответствие и его свойства

Соответствие, обратное к соответствию rho subseteq Atimes B, есть соответствие из B в A, обозначаемое rho^{-1} и равное, по определению, rho^{-1}= {(y,x)colon, (x,y)inrho}.

Для соответствия tau из примера 1.3

tau^{-1}= bigl{(n_1,I),, (n_2,P),, (n_2,C),, (n_3,I),, (n_4,P),, (n_5,I),, (n_5,C)bigr}.

Обратное соответствие обладает следующими легко проверяемыми свойствами:

1) (rho^{-1})^{-1}=rho;
2) (rhocircsigma)^{-1}=sigma^{-1}circrho^{-1}.

Для бинарного отношения rho на множестве A обратное соответствие есть бинарное отношение на том же множестве. В этом случае говорят о бинарном отношении rho^{-1} на множестве A, обратном к rho.

Заметим, что соответствия rhocircrho^{-1} и rho^{-1}circrho в общем случае не совпадают. Даже для бинарного отношения rho на множестве

Arhocircrho^{-1}ne rho^{-1}circrho, а также rhocirc rho^{-1}ne operatorname{id}A и rho^{-1}circ rhone operatorname{id}A.

Например, для бинарного отношения rho={(3;1), (4;1), (4;2)} на множестве A={1;2;3;4} графы самого отношения, обратного отношения rho^{-1}, композиций rhocircrho^{-1} и rho^{-1}circrho представлены на рис. 1.5.

Графы бинарного отношения, обратного отношения и композиций

Если fcolon Ato B — отображение, то оно является соответствием. Обратное к f соответствие из B в A в общем случае не является отображением. Действительно, соответствие f^{-1}, обратное к f, состоит из всех упорядоченных пар вида (f(x),x),, xin A. Поскольку в общем случае могут найтись такие два различных элемента x и x', что f(x)= f(x'), то соответствие f^{-1} в общем случае не будет функционально по второй компоненте и поэтому не будет отображением. Если отображение f инъективно, то обратное соответствие есть частичное отображение из B в A. Если отображение f биективно, то обратное соответствие является отображением из B в A, причем имеют место равенства

fcirc f^{-1}=operatorname{id}A,,qquad f^{-1}circ f= operatorname{id}B,.

Отображение f^{-1} в этом случае называют отображением, обратным к f.


Ограничение соответствия

Пусть rho subseteq Atimes B — соответствие из A в B и C subseteq A,~ D subseteq B. Ограничением соответствия rho на подмножества C и A (или (C,D)-ограничением соответствия rho) называется соответствие из C в D, обозначаемое rhobig|_{C,D}, такое, что

(x,y)in rhobig|_{C,D}~ Leftrightarrow~ bigl((x,y)inrhobigr)land (xin C)land (yin D).

Таким образом, (C,D)-ограничение соответствия rho есть «то же самое» соответствие rho, но из последнего берутся только упорядоченные пары, первая компонента которых принадлежит подмножеству C, а вторая — подмножеству D. Можно записать

rhobig|_{C,D}= rhocap (Ctimes D).

Так, «малый» арксинус, т.е. функция y=arcsin{x}, есть ограничение «большого» арксинуса y=operatorname{Arcsin}x, который является соответствием на подмножества [-1;1] и left[-frac{pi}{2};frac{pi}{2}right].

Рассмотрим некоторые важные частные случаи ограничений соответствий (в частности, бинарных отношений и отображений).

Всякое (C,D)-ограничение соответствия rho subseteq Atimes B будем называть сужением соответствия rho на подмножество C (коротко — C-сужением соответствия rho), а всякое (C,rho(C))-ограничение соответствия rho — строгим сужением соответствия rho на подмножество C (строгим C-сужением соответствия р). C-сужения соответствия rho будем обозначать rhobig|_{C}, а строгое сужение — rhobig|_{circ C} соответственно.

Полезно заметить, что для любого отображения fcolon Ato B строгое сужение fbig|_{circ A} есть сюръекция A на f(A). Если, сверх этого, f является инъекцией, то fbig|_{circ A} есть биекция A на f(A). Допуская некоторую вольность речи, можно сказать, что любое отображение сюръективно отображает свою область определения на свою область значений, в частности, любая инъекция устанавливает взаимно однозначное соответствие между областью определения и областью значений. Так, функция y=sin{x} сюръективно отображает множество mathbb{R} всех действительных чисел на отрезок [-1;1], а любая показательная функция биективно отображает mathbb{R} на подмножество всех положительных действительных чисел.

Для бинарного отношения rho subseteq A^2 и любого подмножества M subseteq A (M,M)-ограничение бинарного отношения называют ограничением бинарного отношения rho на подмножество M и обозначают rhobig|_{M}. Можно записать rhobig|_{M}=rhocap M^2.

Рассмотрим, например, отношение естественного порядка leqslant на множестве действительных чисел. Тогда отношение leqslantbig|_{mathbb{Z}}= bigl{(m,n)colon, m leqslant n;~ m,ninmathbb{Z}bigr} есть ограничение этого порядка на подмножество целых чисел. Но ни в коем случае нельзя путать это отношение с mathbb{Z}-сужением отношения leqslant! Это последнее состоит из всех таких упорядоченных пар (m,x), что minmathbb{Z},, xinmathbb{R} и mleqslant x, т.е. вторая компонента пары может быть произвольным действительным числом, не меньшим заданного целого m.

Математический форум (помощь с решением задач, обсуждение вопросов по математике).

Кнопка "Поделиться"

Если заметили ошибку, опечатку или есть предложения, напишите в комментариях.

Формальная теория моделирования использует алгебраические отношения, включая их в сигнатуры моделей алгебраических структур, которыми описывает реальные физические, технические и информационные объекты, процессы их функционирования. К числу последних я отношу, например, базы данных (реляционные базы данных (РеБД)). Не менее важной считаю область принятия решений, которая состоит из двух основных статистической и алгебраической, основанной целиком на теории отношений. Образовательный уровень специалистов в этой теории близок к нулю.

Откройте учебник по специализации и там увидите в лучшем случае об эквивалентностях, которые авторами трактуются весьма своеобразно. Одного защитившегося уже ДТН спрашиваю: Вы рассматриваете отношение эквивалентности на указывая ни носителя отношения, ни конкретного отношения, как оно у Вас выглядит в записи? Ответ: как выглядит — обыкновенно. Выясняется, что он обо всем этом имеет весьма смутное представление.

Публикаций по проектированию РеБД, кроме иностранных статей назвать затрудняюсь. В 90-х годах был оппонентом, писал отзыв на диссертацию, где рассматривались и иерархические, и сетевые, и реляционные БД. Но как-то год, полтора назад опять на отзыв пришла работа, автор пишет уже только о РеБД, о нормализации отношений БД, но теоретической новизны не показал. Во многих ВУЗах читается курс о базах данных, но не о том, как их создать, создать СУБД, а как правило, о том как эксплуатировать готовую (зарубежную) БД.

Преп. состав не готов научить специалистов IТ-шников создавать отечественные СУБД, ОS, языки программирования, я уж не говорю о БИС, СБИС, заказных БИС. Здесь, по-видимому, поезд ушел давно и надолго. Так что напрасно надуваются у некоторых щеки от гордости (читай снобизма) это видно по комментариям к чужим публикациям, покажите сами, что можете, а не балуйтесь никчемными переводами и перепевками чужого ради предмета гордости — «рейтинга» и «кармы». Сказывается не только отсутствие креатива, но простой образованности и воспитания.

Вторая предметная область неразрывно, связанная с отношениями, — принятие решений. Каждый из нас постоянно занят этим. Мы без решения осознанного или неосознанного пальцем не пошевелим. Мало кто понимает, а еще меньше пишет о решениях. В основе решения любого ЛПР (лица, принимающего решение) лежит предпочтение альтернатив. А моделью предпочтения как раз и является такой тип отношений, который назван «пространством отношений предпочтения». Но кто их изучает. Когда я пришел к «специалисту» по отношениям с вопросом о количестве отношений каждого типа, он не зная ответа, «убил» встречным вопросом, а зачем это Вам?

Понятие отношения

Думаю, что термин отношение знаком каждому читателю, но просьба дать определение поставит большинство в тупик. Причин для этого много. Они чаще всего в преподавателях, которые, если и использовали отношения в процессе преподавания, внимания на этом термине не заостряли, запоминающихся примеров, по-видимому, не приводили.

В моей памяти есть несколько на всю жизнь запомнившихся примеров. Об отображениях и об отношениях. Расскажу вначале об отображениях. Имеется два ведерка с краской. В одном белая в другом — черная. И есть коробка с кубиками (очень много). Грани имеют рельефные номера. Сколькими способами можно раскрасить грани кубиков в два цвета? Ответ неожиданный — столькими, сколько 6-разрядных двоичных чисел, или 26 = 64. Поясню подробнее ф: 2→6 отображаются 2 объекта в 6. Каждая строчка таблицы- дискретное отображение фi.

Построим таблицу с 6 колонками и краскам сопоставим число белая — нуль, черная — единица, а граням кубика колонки. Начинаем с того, что все 6 граней белые — это 6-мерный нулевой вектор. Вторая строчка одна грань черная, т. е. младший разряд заполнен 1. и так до исчерпания 6-разрядных двоичных чисел. Кубики ставим в общий длинный ряд. У каждого из них как бы появился номер от 0 до 63.

Теперь отображение наоборот. Пачка листов бумаги (много) и 6 красок (фломастеры).
Фломастерами разного цвета надо пометить обе стороны бумажных листов. Сколько листов потребуется. Ответ f: 6 → 2 или 62 =36. Речь идет о произвольных отображениях.

Перейдем к отношениям. Начнем с абстрактного множества — носителя отношения
А ={a1, a2, a3, …, an}.
О нем почитать можно здесь. Для лучшего понимания сократим множество до 3 элементов, т.е. А ={a1, a2, a3}. Теперь выполним декартово умножение А×А =А2,
А×А={(a1, a1),(a1, а2),(a1, a3),(a2, а1),(a2, a2),(a2, a3),(a3, a1),(a3, a2),(a3, a3)}.

Получили 9 упорядоченных пар элементов из А×А, в паре первый элемент из первого сомножителя, второй — из второго. Теперь попробуем получить все подмножества из декартова квадрата А×А. Вначале простенький пример.

Пример 1. Задано множество А ={a,b,c,d} из 4-х элементов. Выписать все его подмножества. В(А) ={Ø};{a};{b};{c};{d};{ab};{ac};{ad};{bc};{bd};{cd};{abc};{abd};{acd};{bcd};{abcd}; 24 = 16 подмножеств. Это булеан В(А) множества А и в него включено пустое подмножество.

Подмножества будут содержать из А×А разное количество элементов (пар): одну, две, три и так до всех 9 пар, включаем в этот список и пустое множество (Ø). Сколько же получилось подмножеств? Много, а именно 29= 512 элементов.

Определение. Любое подмножество декартова произведения (у нас квадрата) множества называется отношением. Заметим, в произведении используется одно и то же множество. Если множества разные, возникает не отношение, а соответствие.

Если декартово произведение из двух сомножителей, то отношение бинарное, если из 3-х -тернарное, из 4-х — тетрарное, из n — n-арное. Арность — число мест в отношении. Отношениям дают имена прописных букв R,H, P, S… Остановимся подробно на бинарных отношениях (БО), так как они играют очень важную роль в теории отношений. Собственно к бинарным отношениям могут быть сведены все остальные.

Символ отношения ставится слева от элементов R(x, y) или между ними x R y; х, у є А.
Определение Множество всех подмножеств множества А называется булеаном. Наш булеан состоит из 2|А×А| элементов, здесь|А×А| — мощность множества.

Отношения можно задавать в разном представлении над А={a1,a2,a3,a4}:

  • перечислением элементов; R1={(a1,a2),(a1,a3),(a2,a3)(a2,a4)(a3,a2)(a3,a4}
  • двоичным n = 16-разрядным вектором; <0110001101010000>;
  • матрицей;

Рисунок 1.2. а)Матрица 4×4 бинарного отношения б) нумерация клеток Матрицы

Здесь используются номера клеток, заполненные единицами на рис. 1б)
— Векторное представление. Двоичный вектор для представления бинарного отношения формируется из элементов {0,1} следующим образом:

Рассмотренный пример задания отношения в векторной форме будет иметь следующий вид:

— Представление графом. Поставим в соответствие элементам множества
А ={x1,x2,z3,…,xn} точки на плоскости, т.е. вершины графа G = [Q, R].

Проведем в графе дугу от (xi) к (xj) тогда и только тогда, когда пара (xi,xj) є R (при i = j дуга (xi,xi) превращается в петлю при вершине (xi). Пример (рис. 1а) представления бинарного отношения A[4×4] графом изображен на рис.2.2.

Рисунок 2.2. Представление отношения ориентированным графом

Каталог бинарных отношений (n = 3)

Большое видится на расстоянии. Чтобы почувствовать отношения их разнообразие, мощность мне пришлось вручную создать каталог бинарных отношений над множеством из 3-х элементов, который включил все (боле 500 отношений) отношения. После этого «дошло» или «зашло»об отношениях.

Очевидно, что в каталог войдут 23×3 = 29 отношений, и каждое из них снабдим набором присущих им свойств. Ниже (табл. 3) приводится полный список всех 512 отношений над множеством А, |A| = 3, из трех элементов. Приводятся также результаты подсчета количества отношений (табл. 2), представленных сочетаниями номеров клеток декартова квадрата 3×3, различных подклассов для различных значений мощности множества-носителя (n = 3). Для каждого отношения указаны его основные свойства и принадлежность типу (табл. 3). Сокращения, используемые в каталоге раскрываются таблицей 2
Таблица 2. Количественные характеристики каталога при разных n

Сущность производимых операций с отношениями и их технику удобно пояснять на примерах, которые особенно просты и понятны для бинарных отношений. В операциях могут участвовать, два и/или более отношений. Операции, выполняемые над отдельными отношениями – унарные операции. Например, операции обращения (получение обратного) отношения, взятие дополнения, сужение (ограничение) отношения. Как пользоваться каталогом поясним примером примером.

Пример 2. Рассмотрим строку Nпр =14 таблицы каталога. Она имеет вид

Первые 9 символов строки (справа от равенства) — это двоичный вектор, соответствующий сочетанию из 9 по 2, а именно, номер первой клетки (отсчет слева направо) номер 5-й клетки матрицы бинарного отношения, т.е. элементы а1а1= а2а2 =1. Это сочетание имеет порядковый номер Ncч = 4 и сквозной номер Nпр = 14 в списке всех отношений. В остальных позициях этой строки стоят либо нули, либо единицы. Нули свидетельствуют об отсутствии свойства, соответствующего названию колонки нуля, а единицы – наличие такого свойства у рассматриваемого отношения.

Свойства и количественные характеристики отношений

Рассмотрим наиболее важные свойства отношений, которые позволят в дальнейшем выделить типы (классы) отношений, применяющиеся в реляционных базах данных в теории выбора и принятия решений и других приложениях. Далее будем обозначать отношение символом [R,Ω]. R- имя отношения, Ω — множество-носитель отношения.

1. Рефлексивность. Отношение [R,Ω] называется рефлексивным, если каждый элемент множества находится в отношении R сам с собой (рис. 2.3). Граф рефлексивного БО имеет во всех вершинах петли (дуги), а матрица отношения содержит (Е) единичную главную диагональ.

Рисунок 2.3. Рефлексивное отношение

2. Антирефлексивность. Отношение [R,Ω] называется антирефлексивным, если ни один элемент из множества не находится в отношении R сам с собой (рис. 2.4). Антирефлексивные отношения называют строгими.

Рисунок 2.4. Антирефлексивное отношение

3. Частичная рефлексивность. Отношение [R,Ω] называется частично
рефлексивным, если один или более элементов из множества не находится в отношении R сам с собой (рис. 2.5).

4. Симметричность. Отношение [R,Ω] называется симметричным, если вместе с упорядоченной парой (х, у) отношение содержит и упорядоченную пару (у, х) (рис. 2.6).

5. Антисимметричность. Отношение [R,Ω] называется антисимметричным, если, если для всякой упорядоченной пары (х, у) є R упорядоченная пара
(у, х)єR, только в случае х = у. Для таких отношений R∩R-1 ⊆ E (рис. 2.7).

6. Асимметричность. Отношение [R,Ω] называется асимметричным, если оно антирефлексивно и для всякой упорядоченной пары (х, у) є R упорядоченная пара (у, х) ∉ R, для отношений R ∩ R-1 = Ø (рис. 2.8).

7. Транзитивность. Отношение [R,Ω] называется транзитивным, если для всяких упорядоченных пар (х, у),(у, z) є R, в отношении R найдется упорядоченная пара (х, z) є R или если R×R⊆R (рис. 2.9).

8. Цикличность. Отношение [R,Ω] называется циклическим, если для его элементов {x1, x2, z3,…, xn} найдется подмножество элементов {xi,xi+1,…xr,…,xj,xi}, для которого можно выписать последовательность xiRxi+1R…RxjRxi. Такая последовательность называется циклом или контуром (рис. 2.10).

9. Ацикличность. Отношения, в которых отсутствуют контуры называются, ациклическими. Для ациклических отношений выполняется соотношение Rk∩R = Ø для любого k > 1 (рис. 2.11).

10. Полнота (связность). Отношение [R,Ω] называется полным (связным), если для любых двух элементов (у, z) є Ω один из них находится в отношении с другим (рис 2.12). Линейность. Линейные отношения – это минимально полные отношения.

Рисунок 2.12. Линейное отношение

Итак, нами установлено, что отношения, как математические объекты, обладают определенными свойствами, определение которых приведены ранее. В следующем пункте рассмотрим существо и проявление некоторых свойств:

  1. Рефлексивность х є А (хRx).
  2. Антирефлексивность х є А ¬(хRx).
  3. Симметричность х, у є А (хRy→yRx).
  4. Антисимметричность (xRy & yRx→x = y).
  5. Транзитивность; х, у, z є А(хRy & yRz →xRz).
  6. Цикличность; х, у є А; .
  7. Полнота x,y є А (xRy, yRx);
  8. Связность (x ≠ y→ xRy, yRx).
  9. Линейность x,y є А (xRy, yRx).

Анализ пространства отношений представляет сложную задачу теории и, надо отметить, далек от завершения. К основным результатам следует отнести выделение подмножеств отношений, образующих полные пространства отношений со всеми вытекающими из этого следствиями.

Количественные соотношения таких дискретных пространств представляют большой как
теоретический, так и практический интерес. Ниже рассматриваются некоторые аспекты количественных характеристик, связанных со свойствами отношений разных типов.

Операции над отношениями

Как и большинстве систем счисления с отношениями выполняются операции:

  • унарные;
  • бинарные;
  • n-арные.

Ниже приведены таблицы булева ⊕ сложения и умножения & двух переменных x1 и x2, сложение по mod 2 и суммирование двоичных чисел:

Выше было введено понятие бинарного отношения, как подмножества упорядоченных пар декартова произведения множеств, а также были рассмотрены свойства отношений. Кроме того, были упомянуты бинарные отношения и матричное представление отношений. Рассмотрим теперь понятие отношения более подробно, кроме того, рассмотрим основные операции бинарных отношений, наиболее важные из всего их множества для отношений.

Для них должны выполняться следующие условия:

  • арность операндов в операции должна совпадать;
  • результатом операции должно быть отношение той же арности.

Для бинарных и n-арных отношений должно быть выполнено: область прибытия первого операнда должна совпадать с областью отправления второго операнда.

Унарные операции над отношениями

Обращение отношений. Обратным к отношению R называется отношение R-1, определяемое условием xR-1y<=>yRx. Более корректно эту операцию следовало бы назвать псевдообращением, так как р·р-1 ≠ Е = Δ.

Пусть отношение Р записано в форме перечисления входящих в него упорядоченных пар. Если в каждой паре поменять местами компоненты, то новые пары образуют отношение P-1, которое называют обратным к Р.

Обратное отношение к отношению P – такое отношение, которое образовано парами (ai aj), для которых (aj ai) є P-1. Для отношений в матричной форме обратные отношения получаются путем транспонирования матрицы Р.

9. Двойственное отношение (Pd) к отношению Р – отношение, образованное всеми теми парами, которые принадлежат универсальному отношению и не принадлежат обратному отношению (дополнение к обратному):

Pd = {(ai aj) | ((ai aj) єA×A) & (ai aj)∉

P

-1)} =(A×A) P-1.

Двойственное и обратное отношения в совокупности содержат все пары декартова произведения A×A и не имеют общих пар, они также как и отношения Р и

P

образуют разбиение A×A

Заметим, что ни для какого отношения Р не выполняется Р= Pd.

Сужение (РА1). Отношение [R1, A1] называется сужением отношения [R, A] на множество Ω1, если Ω1⊆ Ω и R1=R∩Ω1×Ω1. Отношение РА1 на множестве А1 ⊆ А – отношение РА1 на множестве А1, образованное всеми теми парами, которые принадлежат отношению Р и одновременно входят в состав декартова произведения А1 × А1. Другими словами, РА1 – пересечение отношений Р и А1×А1. Пусть А1 = {a1, a3, a4}, тогда для отношений Р и Q в матричной форме отношения сужения будут иметь вид:

Бинарные операции

Операции, требующие не менее двух отношений – n-арные (n-местные). В таких операциях могут участвовать отношения только одинаковой арности. Примеры таких операций: пересечение, объединение, разность, симметрическая разность отношений и некоторые другие. Если в операции используется более чем два отношения, то она выполняется последовательно для двух первых, а затем для итогового отношения и третьего и т.д.

Иначе говоря, эти операции определены для двух отношений. При операциях над отношениями предполагается, что области задания отношений (операндов и результата) совпадают, арности отношений совпадают, и результатом операции снова является отношение той же арности. В качестве примеров будем рассматривать операции над бинарными отношениями P и Q, заданными на дискретном множестве
А = {a1, a2, a3, a4} булевыми матрицами (нули в матрицу, как правило, не вписываются):

1. Пересечение (P ∩ Q) – отношение, образованное всеми теми парами элементов из А, которые входят в оба отношения, т.е. общие для P и Q,
P ∩ Q = {(ai aj) | ((ai aj) є P) & ((ai aj) є Q)}.

Матрица отношения P ∩ Q получается как булево пересечение матриц P и Q:

При отсутствии таких общих пар говорят, что пересечение отношений пусто, т.е. оно является нуль-отношением. Пересечением отношений R1 и R2 (R1∩R2 ) называется отношение, определяемое пересечением соответствующих подмножеств из А×А.

2. Объединение (PUQ). Объединением отношений R1 и R2 (R1UR2 ) называется отношение, определяемое объединением соответствующих подмножеств из А×А. Отношение, образованное всеми парами, составляющими или отношение P, или отношение Q, т.е. парами, принадлежащими хотя бы одному из отношений (связка ∨ — или объединительная)
P U Q = {(ai aj) | ((ai aj) є P) ∨ ( (ai aj) є Q)}.

Если в множестве А×А нет других пар, не вошедших в отношение PUQ, а пересечение их нулевое, то говорят, что отношения P и Q при объединении образуют полное отношение А×А, а их система – разбиение этого полного отношения. Объединение матриц отношений образуется как булева сумма матриц отношений:

3.Разность (PQ) – отношение, образованное теми парами из Р, которые не входят в отношение Q
PQ = {(ai aj) | ((ai aj) є P)&((ai aj)∉Q)}.

Разность для отношений в матричном представлении имеет вид

4. Умножение отношений. Упорядоченные пары, образующие отношения могут содержать одинаковые элементы, а могут и не содержать. Среди пар, имеющих в своем составе одинаковые элементы, выделим такие упорядоченные пары, которые назовем смежными (примыкающими) и которые имеют во второй паре 1-й элемент, а в первой паре 2-й элемент один и тот же. Определим произведение смежных пар как упорядоченную пару:
( ai ak)∙( ak aj) => (ai aj).

В терминах теории графов сказанное означает, что смежные пары образуют маршрут из точки (ai) в точку (aj) транзитом через точку (ak), состоящий из 2-х смежных дуг. Произведение этих дуг – третья дуга из точки (ai) в точку (aj), реализующая переход между крайними точками маршрута в том же направлении, минуя промежуточную точку (ak). Говорят, что дуга (ai aj) замыкает эти точки напрямую.

5. Симметрическая разность (P∆Q) – отношение, образованное теми парами, которые входят в объединение PUQ, но не входят в пересечение P∩Q. Другая форма определения объясняет название операции: P∆Q образовано теми упорядоченными парами, которые являются объединением разностей PQ и QP. Таким образом, выражение для симметрической разности записывается двумя разными способами:
P∆ Q = (PU Q)(P ∩ Q) = (PQ)U (QP).

Матрица симметрической разности имеет вид:

Из последней записи следует, что операция симметрической разности допускает перестановку операндов, т. е. коммутативна.

5. Композиция или произведение (P∙Q) – отношение, образованное всеми парами, для которых выполняется:
P∙Q = {(ai aj)|((ai ak) є P) & ((ak aj) є Q)}.

Другими словами, каждая упорядоченная пара в результирующем отношении есть результат умножения смежных пар, из которых 1-я пара принадлежит первому сомножителю-отношению, 2-я – второму сомножителю-отношению. Операция композиции не коммутативна.

Композиция (Р◦Q) на множестве М – отношение R, заданное на том же множестве М, которое содержит пару (x, y), когда существует Z є M такое, что (x, z) є P и (z, y) є Q.

При матричном представлении отношений матрица композиции отношений равна булеву произведению матриц исходных отношений:

Частный случай композиции отношений – квадрат отношения.

Можно показать, используя индукцию, что n-я степень отношения определяется рекуррентно по формуле:Pn=Pn-1◦Р, это означает, что пара (x,y) є Pn в том случае, когда в матрице Р существует цепочка элементов: такая, что (xi, xi+1)є P, 1<i<n–1.

Операция композиции обладает свойством ассоциативности (как произведение матриц).

Композиция отношений на множестве М – результат попарной композиции отношений при любой расстановке скобок. Область задания результата композиции при этом не меняется.

Композиция для булевых матриц отношений образуется в результате булева произведения матриц этих отношений.

Таблица 3. Каталог бинарных отношений (n = 3). Кликабельно

Литература

1. Авдошин С.М., Набебин А.А. Дискретная математика. Модулярная алгебра, криптография, кодирование. — М.: ДМК Пресс, 2017. -352 с.
2. Акимов О.Е. Дискретная математика.Логика, группы, графы- М.: Лаб.Баз. Зн., 2001. -352 с.
3. Андерсон Д.А. Дискретная математика и комбинаторика.- М.: Вильямс, 2003. -960 с.
4. Берлекэмп Э. Алгебраическая теория кодирования. -М.: Мир,1971.- 478 с.
5. Ваулин А.Е. Дискретная математика в задачах компьютерной безопасности. Ч 1- СПб.: ВКА им. А.Ф. Можайского, 2015. -219 с.
6. Ваулин А.Е. Дискретная математика в задачах компьютерной безопасности. Ч 2- СПб.: ВКА им. А.Ф. Можайского, 2017. -151 с.
7. Горенстейн Д. Конечные простые группы.Введение в их классификацию.-М.: Мир,1985.- 352 с.
8. Грэхем Р., Кнут Д., Пташник О. Конкретная математика.Основание информатики.-М.: Мир,1998.-703 с.
9. Дейт К. Введение в системы баз данных. -М.: Наука,1980. -463 с.
10. Елизаров В.П. Конечные кольца.- М.: Гелиос АРВ,2006. — 304 с.
Иванов Б.Н. Дискретная математика: алгоритмы и программы-М.: Лаб.Баз. Знаний., 2001. -280 с.
11. Ерусалимский Я.М. Дискретная математика: теория, задачи, приложения-М.: Вузовская книга, 2000.-280 с.
12. Корн Г., Корн Т. Справочник по математике для научных работников и инженеров.-М.: Наука, 1973.-832 с.
13. Лидл Р., Нидеррайтер Г. Конечные поля: В 2-х т. Т.1 -М.: Мир,1988. — 430 с.
14. Лидл Р., Нидеррайтер Г. Конечные поля: В 2-х т. Т.2 -М.: Мир,1988. — 392 с.
15. Ляпин Е.С., АйзенштатА.Я., Лесохин М.М., Упражнения по теории групп.-М.: Наука,1967.-264 с.
16. Мейер Д. Теория реляционных баз данных. -М.: Мир, 1987.- 608 с.
17. Муттер В.М. Основы помехоустойчивой телепередачи информации. -Л. Энергоатомиздат,1990.- 288 с.
18. Нагао М., Катаяма Т., Уэмура С. Структуры и базы данных. — М.: Мир, 1986. — 197 с.
19. Наумов А.Н. и др. Системы управления базами данных и знаний.-М.: Финансы и статистика,1991.-352 с.
20. Набебин А.А.Дискретная математика.- М.: Лаб.Баз. Знаний., 2001. -280 с.
21. Новиков Ф.А. Дискретная математика для программистов.- СПб.: Питер, 2000. -304 с.
22. Розенфельд Б.А. Многомерные пространства.-М.: Наука,1966.-648 с.
23. Ульман Дж. Основы систем баз данных. — М.: Финансы и статистика,1983.-334 с.
24. Холл М. Теория групп.-М.: Изд. ИЛ, 1962.- 468 с.
25. Шиханович Ю.А. Группы, кольца, решётки. — СПб.: Кирцидели,2006. — 368 с.
26. Шнеперман Л.Б. Курс алгебры и теории чисел в задачах и упражнениях: В 2-х ч Ч.2.-Мн.: Выш. шк., 1987. -256 с.
27. Шнеперман Л.Б. Сборник задач по алгебре и теории чисел.- Минск: Дизайн ПРО,2000. -240 с.

Понравилась статья? Поделить с друзьями:
  • Как найти золото в беларуси
  • Как найти маркировку двигателя
  • Как найти работу в творчестве
  • Как составить балльные шкалы
  • Как составить меню для собаки на натуралке