Как найти доверительные интервалы статистика


Загрузить PDF


Загрузить PDF

Доверительный интервал является показателем точности измерений. Это также показатель того, насколько стабильна полученная величина, то есть насколько близкую величину (к первоначальной величине) вы получите при повторении измерений (эксперимента). Выполните следующие действия, чтобы вычислить доверительный интервал для нужных величин.

Шаги

  1. Изображение с названием Calculate Confidence Interval Step 1

    1

    Запишите задачу. Например: средний вес студента мужского пола в университете АВС составляет 90 кг. Вы будете тестировать точность предсказания веса студентов мужского пола в университете АВС в пределах данного доверительного интервала.

  2. Изображение с названием Calculate Confidence Interval Step 2

    2

    Составьте подходящую выборку. Вы будете использовать ее для сбора данных для тестирования гипотезы. Допустим, вы уже случайно выбрали 1000 студентов мужского пола.

  3. Изображение с названием Calculate Confidence Interval Step 3

    3

    Рассчитайте среднее значение и стандартное отклонение этой выборки. Выберите статистические величины (например, среднее значение и стандартное отклонение), которые вы хотите использовать для анализа вашей выборки. Вот как вычислить среднее значение и стандартное отклонение:

    • Для расчета среднего значения выборки сложите значения весов 1000 выбранных мужчин и разделите результат на 1000 (число мужчин). Допустим, получили средний вес, равный 93 кг.
    • Для расчета стандартного отклонения выборки необходимо найти среднее значение. Затем нужно вычислить дисперсию данных или среднее значение квадратов разностей от среднего. Найдя это число, просто возьмите квадратный корень из него. Допустим, в нашем примере стандартное отклонение равно 15 кг (заметим, что иногда эта информация может быть дана вместе с условием статистической задачи).
  4. Изображение с названием Calculate Confidence Interval Step 4

    4

    Выберите нужный доверительный уровень. Наиболее часто используемые доверительные уровни: 90 %, 95 % и 99 %. Он также может быть дан вместе с условием задачи. Допустим, вы выбрали 95 %.

  5. Изображение с названием Calculate Confidence Interval Step 5

    5

    Рассчитайте предел погрешности. Вы можете найти предел погрешности с помощью следующей формулы: Za/2 * σ/√(n). Za/2 = коэффициент доверия (где а = доверительный уровень), σ = стандартное отклонение, а n = размер выборки. Это формула показывает, что вы должны умножить критическое значение на стандартную ошибку. Вот как вы можете решить эту формулу, разбив ее на части:

    • Вычислите критическое значение или Za/2. Доверительный уровень равен 95 %. Преобразуйте проценты в десятичную дробь: 0,95 и разделите ее на 2, чтобы получить 0,475. Затем посмотрите в таблицу Z-оценок, чтобы найти соответствующее значение для 0,475. Вы найдете значение 1,96 (на пересечении строки 1,9 и столбца 0,06).
    • Возьмите стандартную ошибку (стандартное отклонение): 15 и разделите ее на квадратный корень из размера выборки: 1000. Вы получите: 15/31,6 или 0,47 кг.
    • Умножьте 1,96 на 0,47 (критическое значение на стандартную ошибку), чтобы получить 0,92 — предел погрешности.
  6. Изображение с названием Calculate Confidence Interval Step 6

    6

    Запишите доверительный интервал. Чтобы сформулировать доверительный интервал, просто запишите среднее значение (93) ± погрешность. Ответ: 93 ± 0,92. Вы можете найти верхнюю и нижнюю границы доверительного интервала, прибавляя и вычитая погрешность к/от средней величины. Итак, нижняя граница составляет 93 — 0,92 или 92,08, а верхняя граница составляет 93 + 0,92 или 93,92.

    • Вы можете использовать следующую формулу для вычисления доверительного интервала: x̅ ± Za/2 * σ/√(n), где x̅ — среднее значение.

    Реклама

Советы

  • И t-оценки и z-оценки можно рассчитать вручную, а также с помощью графического калькулятора или статистических таблиц, которые часто встречаются в учебниках по статистике. Также доступны онлайн-инструменты.
  • Критическое значение, используемое для расчета погрешности, является постоянным и выражается либо через t-оценку, либо через z-оценку. T-оценка обычно более предпочтительна в условиях, когда стандартное отклонение выборки неизвестно или когда используется маленькая выборка.
  • Ваша выборка должна быть достаточной (по размеру) для того, чтобы вычислить правильный доверительный интервал.
  • Доверительный интервал не указывает на вероятность получения того или иного результата. Например, если вы на 95 % уверены, что среднее значение вашей выборки лежит между 75 и 100, то доверительный интервал в 95 % не означает, что среднее значение попадает в ваш диапазон.
  • Есть много методов, таких как простая случайная выборка, систематический отбор и стратифицированная выборка, с помощью которых вы можете собрать репрезентативную выборку для тестирования.

Реклама

Что вам понадобится

  • Выборка
  • Компьютер
  • Доступ в интернет
  • Учебник статистики
  • Графический калькулятор

Об этой статье

Эту страницу просматривали 264 469 раз.

Была ли эта статья полезной?


Часто в статистике нас интересует измерение параметров населения — чисел, описывающих некоторые характеристики всего населения.

Двумя наиболее распространенными параметрами населения являются:

1. Среднее значение населения: среднее значение некоторой переменной в популяции (например, средний рост мужчин в США).

2. Доля населения: доля некоторой переменной в населении (например, доля жителей округа, которые поддерживают определенный закон).

Хотя мы заинтересованы в измерении этих параметров, обычно слишком дорого и долго собирать данные о каждом человеке в популяции, чтобы вычислить параметр популяции.

Вместо этого мы обычно берем случайную выборку из общей совокупности и используем данные из выборки для оценки параметра совокупности.

Например, предположим, что мы хотим оценить средний вес определенного вида черепах во Флориде. Поскольку во Флориде тысячи черепах, было бы очень много времени и денег, чтобы обойти и взвесить каждую отдельную черепаху.

Вместо этого мы могли бы взять простую случайную выборку из 50 черепах и использовать средний вес черепах в этой выборке для оценки истинного среднего значения популяции:

Выборка из примера населения

Проблема в том, что средний вес черепах в выборке не обязательно точно соответствует среднему весу черепах во всей популяции. Например, мы можем просто случайно выбрать образец, полный черепах с низким весом, или, возможно, образец, полный тяжелых черепах.

Чтобы зафиксировать эту неопределенность, мы можем создать доверительный интервал. Доверительный интервал — это диапазон значений, который может содержать параметр генеральной совокупности с определенным уровнем достоверности. Он рассчитывается по следующей общей формуле:

Доверительный интервал = (точечная оценка) +/- (критическое значение) * (стандартная ошибка)

Эта формула создает интервал с нижней границей и верхней границей, который, вероятно, содержит параметр совокупности с определенным уровнем достоверности.

Доверительный интервал = [нижняя граница, верхняя граница]

Например, формула для расчета доверительного интервала для среднего значения генеральной совокупности выглядит следующим образом:

Доверительный интервал = x +/- z*(s/ √n )

куда:

  • x : выборочное среднее
  • z: выбранное значение z
  • s: стандартное отклонение выборки
  • n: размер выборки

Z-значение, которое вы будете использовать, зависит от выбранного вами уровня достоверности. В следующей таблице показано значение z, которое соответствует популярным вариантам выбора уровня достоверности:

| Уровень достоверности | z-значение | | — | — | | 0,90 | 1,645 | | 0,95 | 1,96 | | 0,99 | 2,58 |

Например, предположим, что мы собираем случайную выборку черепах со следующей информацией:

  • Размер выборки n = 25
  • Средний вес выборки x = 300
  • Стандартное отклонение выборки s = 18,5

Вот как найти вычислить 90% доверительный интервал для истинного среднего веса населения:

90% доверительный интервал: 300 +/- 1,645*(18,5/√25) = [293,91, 306,09]

Мы интерпретируем этот доверительный интервал следующим образом:

Вероятность того, что доверительный интервал [293,91, 306,09] содержит истинный средний вес популяции черепах, составляет 90%.

Другой способ сказать то же самое состоит в том, что существует только 10-процентная вероятность того, что истинное среднее значение генеральной совокупности лежит за пределами 90-процентного доверительного интервала. То есть существует только 10%-ная вероятность того, что истинный средний вес популяции черепах больше 306,09 фунтов или меньше 293,91 фунтов.

Ничего не стоит, что есть два числа, которые могут повлиять на размер доверительного интервала:

1. Размер выборки: чем больше размер выборки, тем уже доверительный интервал.

2. Уровень достоверности: чем выше уровень достоверности, тем шире доверительный интервал.

Типы доверительных интервалов

Существует много типов доверительных интервалов. Вот наиболее часто используемые:

Доверительный интервал для среднего

Доверительный интервал для среднего значения — это диапазон значений, который может содержать среднее значение генеральной совокупности с определенным уровнем достоверности. Формула для расчета этого интервала:

Доверительный интервал = x +/- z*(s/ √n )

куда:

  • x : выборочное среднее
  • z: выбранное значение z
  • s: стандартное отклонение выборки
  • n: размер выборки

Ресурсы: Как рассчитать доверительный интервал для среднего
Доверительный интервал для среднего калькулятора

Доверительный интервал для разницы между средними значениями

Доверительный интервал (ДИ) для разницы между средними значениями представляет собой диапазон значений, который, вероятно, содержит истинное различие между двумя средними значениями генеральной совокупности с определенным уровнем достоверности. Формула для расчета этого интервала:

Доверительный интервал = ( x 1 – x 2 ) +/- t * √ ((s p 2 /n 1 ) + (s p 2 /n 2 ))

куда:

  • x 1 , x 2 : среднее значение для образца 1, среднее значение для образца 2
  • t: t-критическое значение, основанное на доверительном уровне и (n 1 +n 2 -2) степенях свободы
  • s p 2 : объединенная дисперсия
  • n 1 , n 2 : размер выборки 1, размер выборки 2

куда:

  • Объединенная дисперсия рассчитывается как: s p 2 = ((n 1 -1)s 1 2 + (n 2 -1)s 2 2 ) / (n 1 +n 2 -2)
  • Критическое значение t можно найти с помощью калькулятора обратного t-распределения .

Ресурсы: Как рассчитать доверительный интервал для разницы между средними
Доверительный интервал для калькулятора разницы между средними значениями

Доверительный интервал для пропорции

Доверительный интервал для доли — это диапазон значений, который может содержать долю населения с определенным уровнем достоверности. Формула для расчета этого интервала:

Доверительный интервал = p +/- z * (√ p (1-p) / n )

куда:

  • p: доля выборки
  • z: выбранное значение z
  • n: размер выборки

Ресурсы: Как рассчитать доверительный интервал для пропорции
Доверительный интервал для калькулятора пропорций

Доверительный интервал для разницы в пропорциях

Доверительный интервал для разницы в пропорциях — это диапазон значений, который может содержать истинную разницу между двумя пропорциями населения с определенным уровнем достоверности. Формула для расчета этого интервала:

Доверительный интервал = (p 1 –p 2 ) +/- z*√(p 1 (1-p 1 )/n 1 + p 2 (1-p 2 )/n 2 )

куда:

  • p 1 , p 2 : доля образца 1, доля образца 2
  • z: z-критическое значение, основанное на доверительном уровне
  • n 1 , n 2 : размер выборки 1, размер выборки 2

Ресурсы: Как рассчитать доверительный интервал для разницы пропорций
Доверительный интервал для калькулятора разницы пропорций

Доверительный интервал для математического ожидания нормальной случайной
величины при неизвестной дисперсии

Пусть

, причем

 и

 неизвестны.  Необходимо построить доверительный интервал,
накрывающий с надежностью

 истинное значение параметра

.

Для этого из генеральной
совокупности СВ

 извлекается
выборка объема

:

.

1) В качестве точечной
оценки математического ожидания

 используется
выборочное среднее

, а в
качестве оценки дисперсии

 –
исправленная выборочная дисперсия

которой соответствует стандартное отклонение

.

2) Для нахождения
доверительного интервала строится статистика

имеющая в этом случае распределение Стьюдента с
числом степеней свободы

 независимо
от значений параметров

 и

.

3) Задается требуемый
уровень значимости

.

4) Применяется следующая
формула расчета вероятности:

где

 –
критическая точка распределения Стьюдента, которая находится по таблице критических точек распределения Стьюдента (односторонняя критическая область).

Тогда:

Это означает, что
интервал:

накрывает неизвестный
параметр

 с
надежностью

Доверительный интервал для математического ожидания
нормальной случайной величины при известной дисперсии

Пусть количественный
признак

 генеральной
совокупности имеет нормальное распределение

 с
заданной дисперсией

 и
неизвестным математическим ожиданием

.  Построим
доверительный интервал для

.

1) Пусть для оценки

 извлечена
выборка

 объема

. Тогда

2) Составим случайную
величину:

Нетрудно показать, что случайная величина


имеет стандартизированное нормальное распределение, то есть:

3) Зададим уровень
значимости

.

4) Применяя формулу нахождения
вероятности отклонения нормальной величины от математического ожидания, имеем:

Это означает, что
доверительный интервал

накрывает неизвестный
параметр

 с надежностью

. Точность оценки определяется величиной:

Число

 определяется
по таблице значений функции Лапласа из равенства

Окончательно получаем:

Доверительный интервал для
дисперсии нормальной случайной величины при неизвестном математическом ожидании

Пусть

, причем

 и

 –
неизвестны. Пусть для оценки

 извлечена выборка объема

:

.

1) В качестве точечной оценки дисперсии

 используется
исправленная выборочная дисперсия
:

которой соответствует стандартное отклонение

.

2) При нахождении
доверительного интервала для дисперсии в этом случае вводится статистика

имеющая

 –
распределение с числом степеней свободы

 независимо
от значения параметра

.

3) Задается требуемый
уровень значимости

.

4) Тогда, используя таблицу критических точек хи-квадрат распределения, нетрудно указать критические
точки

, для которых будет выполняться следующее
равенство:

Подставив вместо

 соответствующее значение, получим:

Получаем доверительный
интервал для неизвестной дисперсии:

Доверительный интервал для
дисперсии нормальной случайной величины при известном математическом ожидании

Пусть

, причем

 –
известна, а

 –
неизвестна. Пусть для оценки

 извлечена выборка объема

:

.

1) В качестве точечной оценки дисперсии

 используется выборочная дисперсия:

2) При нахождении
доверительного интервала для дисперсии в этом случае вводится статистика

имеющая

 –
распределение с числом степеней свободы

 независимо
от значения параметра

.

3) Задается требуемый
уровень значимости

.

4) Тогда, используя таблицу критических точек хи-квадрат распределения,
нетрудно указать критические точки

, для которых будет выполняться следующее
равенство:

Подставив вместо

 соответствующее значение, получим:

Получаем доверительный
интервал для неизвестной дисперсии:

Доверительный интервал для
среднего квадратического отклонения

Извлекая квадратный корень:

Положив:

Получим следующий
доверительный интервал для среднего квадратического
отклонения:

Для отыскания

 по заданным

 и

 пользуются специальными таблицами.

Для проверки на нормальность заданного распределения случайной величины можно использовать

правило трех сигм.

Задача

Имеется
три независимых реализации нормальной случайной величины: 0.8, 3.2, 2.0.

Построить
доверительные интервалы для среднего и дисперсии с надежностью  

Указание:
воспользоваться таблицами Стьюдента и хи-квадрат.

Решение

На сайте можно заказать решение контрольной или самостоятельной работы, домашнего задания, отдельных задач. Для этого вам нужно только связаться со мной:

ВКонтакте
WhatsApp
Telegram

Мгновенная связь в любое время и на любом этапе заказа. Общение без посредников. Удобная и быстрая оплата переводом на карту СберБанка. Опыт работы более 25 лет.

Подробное решение в электронном виде (docx, pdf) получите точно в срок или раньше.

Вычисление средней и дисперсии

Вычислим среднее и
исправленную дисперсию
:

Нахождение доверительных интервалов для средней и дисперсии

Найдем доверительный интервал для оценки
неизвестного среднего. Он считается по формуле:

По таблице критических точек t-критерия Стьюдента, для уровня значимости

 (односторонняя критическая область):

 Искомый
доверительный интервал для среднего:

Найдем доверительный интервал для оценки дисперсии.
Он считается по формуле:

Для уровня значимости

 и

 получаем по таблице значений хи-квадрат:

Искомый доверительный интервал для дисперсии:

Ответ


Кроме этой задачи на другой странице сайта есть

пример расчета доверительного интервала математического ожидания и среднего квадратического отклонения для интервального вариационного ряда

На сайте можно заказать решение контрольной или самостоятельной работы, домашнего задания, отдельных задач. Для этого вам нужно только связаться со мной:

ВКонтакте
WhatsApp
Telegram

Мгновенная связь в любое время и на любом этапе заказа. Общение без посредников. Удобная и быстрая оплата переводом на карту СберБанка. Опыт работы более 25 лет.

Подробное решение в электронном виде (docx, pdf) получите точно в срок или раньше.

Для помощи во время экзамена/зачета в онлайн режиме необходимо договариваться заранее.

What Is a Confidence Interval?

A confidence interval, in statistics, refers to the probability that a population parameter will fall between a set of values for a certain proportion of times. Analysts often use confidence intervals that contain either 95% or 99% of expected observations. Thus, if a point estimate is generated from a statistical model of 10.00 with a 95% confidence interval of 9.50 — 10.50, it can be inferred that there is a 95% probability that the true value falls within that range.

Statisticians and other analysts use confidence intervals to understand the statistical significance of their estimations, inferences, or predictions. If a confidence interval contains the value of zero (or some other null hypothesis), then one cannot satisfactorily claim that a result from data generated by testing or experimentation is to be attributable to a specific cause rather than chance.

Key Takeaways

  • A confidence interval displays the probability that a parameter will fall between a pair of values around the mean.
  • Confidence intervals measure the degree of uncertainty or certainty in a sampling method.
  • They are also used in hypothesis testing and regression analysis.
  • Statisticians often use p-values in conjunction with confidence intervals to gauge statistical significance.
  • They are most often constructed using confidence levels of 95% or 99%.

Understanding Confidence Intervals

Confidence intervals measure the degree of uncertainty or certainty in a sampling method. They can take any number of probability limits, with the most common being a 95% or 99% confidence level. Confidence intervals are conducted using statistical methods, such as a t-test.

Statisticians use confidence intervals to measure uncertainty in an estimate of a population parameter based on a sample. For example, a researcher selects different samples randomly from the same population and computes a confidence interval for each sample to see how it may represent the true value of the population variable. The resulting datasets are all different; some intervals include the true population parameter and others do not.

A confidence interval is a range of values, bounded above and below the statistic’s mean, that likely would contain an unknown population parameter. Confidence level refers to the percentage of probability, or certainty, that the confidence interval would contain the true population parameter when you draw a random sample many times. Or, in the vernacular, «we are 99% certain (confidence level) that most of these samples (confidence intervals) contain the true population parameter.»

The biggest misconception regarding confidence intervals is that they represent the percentage of data from a given sample that falls between the upper and lower bounds. For example, one might erroneously interpret the aforementioned 99% confidence interval of 70-to-78 inches as indicating that 99% of the data in a random sample falls between these numbers. This is incorrect, though a separate method of statistical analysis exists to make such a determination. Doing so involves identifying the sample’s mean and standard deviation and plotting these figures on a bell curve.

Confidence interval and confidence level are interrelated but are not exactly the same.

Calculating Confidence Interval

Suppose a group of researchers is studying the heights of high school basketball players. The researchers take a random sample from the population and establish a mean height of 74 inches.

The mean of 74 inches is a point estimate of the population mean. A point estimate by itself is of limited usefulness because it does not reveal the uncertainty associated with the estimate; you do not have a good sense of how far away this 74-inch sample mean might be from the population mean. What’s missing is the degree of uncertainty in this single sample.

Confidence intervals provide more information than point estimates. By establishing a 95% confidence interval using the sample’s mean and standard deviation, and assuming a normal distribution as represented by the bell curve, the researchers arrive at an upper and lower bound that contains the true mean 95% of the time.

Assume the interval is between 72 inches and 76 inches. If the researchers take 100 random samples from the population of high school basketball players as a whole, the mean should fall between 72 and 76 inches in 95 of those samples.

If the researchers want even greater confidence, they can expand the interval to 99% confidence. Doing so invariably creates a broader range, as it makes room for a greater number of sample means. If they establish the 99% confidence interval as being between 70 inches and 78 inches, they can expect 99 of 100 samples evaluated to contain a mean value between these numbers.

 A 90% confidence level, on the other hand, implies that we would expect 90% of the interval estimates to include the population parameter, and so forth.

What Does a Confidence Interval Reveal?

A confidence interval is a range of values, bounded above and below the statistic’s mean, that likely would contain an unknown population parameter. Confidence level refers to the percentage of probability, or certainty, that the confidence interval would contain the true population parameter when you draw a random sample many times.

Why Are Confidence Intervals Used?

Statisticians use confidence intervals to measure uncertainty in a sample variable. For example, a researcher selects different samples randomly from the same population and computes a confidence interval for each sample to see how it may represent the true value of the population variable. The resulting datasets are all different where some intervals include the true population parameter and others do not.

What Is a Common Misconception About Confidence Intervals?

The biggest misconception regarding confidence intervals is that they represent the percentage of data from a given sample that falls between the upper and lower bounds. In other words, it would be incorrect to assume that a 99% confidence interval means that 99% of the data in a random sample falls between these bounds. What it actually means is that one can be 99% certain that the range will contain the population mean.

What Is a T-Test?

Confidence intervals are conducted using statistical methods, such as a t-test. A t-test is a type of inferential statistic used to determine if there is a significant difference between the means of two groups, which may be related to certain features. Calculating a t-test requires three key data values. They include the difference between the mean values from each data set (called the mean difference), the standard deviation of each group, and the number of data values of each group.

How Do You Interpret P-Values and Confidence Interval?

A p-value is a statistical measurement used to validate a hypothesis against observed data that measures the probability of obtaining the observed results, assuming that the null hypothesis is true. In general, a p-value less than 0.05 is considered to be statistically significant, in which case the null hypothesis should be rejected. This can somewhat correspond to the probability that the null hypothesis value (which is often zero) is contained within a 95% confidence interval.

The Bottom Line

Confidence intervals allow analysts to understand the likelihood that the results from statistical analyses are real or due to chance. When trying to make inferences or predictions based on a sample of data, there will be some uncertainty as to whether to results of such an analysis actually correspond with the real-world population being studied. The confidence interval depicts the likely range within which the true value should fall.

Когда нам нужно получить одно число в качестве оценки параметра совокупности, мы используем точечную оценку. Тем не менее, из-за ошибки выборки, точечная оценка не будет в точности равняться параметру совокупности при любом размере данной выборки.

Часто, вместо точечной оценки, более полезным подходом будет найти диапазон значений, в рамках которого, как мы ожидаем, может находится значение искомого параметра с заданным уровнем вероятности.

Этот подход называется интервальной оценкой параметра (англ. ‘interval estimate of parameter’), а доверительный интервал выполняет роль этого диапазона значений.

Определение доверительного интервала.

Доверительный интервал (англ. ‘confidence interval’) представляет собой диапазон, для которого можно утверждать, с заданной вероятностью (1 — alpha ), называемой степенью доверия (или степенью уверенности, англ. ‘degree of confidence’), что он будет содержать оцениваемый параметр.

Этот интервал часто упоминается как (100 (1 — alpha)% ) доверительный интервал для параметра.

Конечные значения доверительного интервала называются нижним и верхним доверительными пределами (или доверительными границами или предельной погрешностью, англ. ‘lower/upper confidence limits’).

В этом чтении, мы имеем дело только с двусторонними доверительными интервалами — доверительные интервалами, для которых мы вычисляем и нижние и верхние пределы.

Кроме того, можно определить два типа односторонних доверительных интервалов для параметра совокупности.

Нижний односторонний доверительный интервал устанавливает только нижний предел. Это означает допущение, что с определенной степенью доверия параметр совокупности равен или превышает нижний предел.

Верхний односторонний доверительный интервал устанавливает только верхний предел. Это означает допущение, что с определенной степенью доверия параметр совокупности меньше или равен верхнему пределу.

Инвестиционные аналитики редко используют односторонние доверительные интервалы.

Доверительные интервалы часто дают либо вероятностную интерпретацию, либо практическую интерпретацию.

При вероятностной интерпретации, мы интерпретируем 95%-ный доверительный интервал для среднего значения совокупности следующим образом.

При повторяющейся выборке, 95% таких доверительных интервалов будут, в конечном счете, включать в себя среднее значение совокупности.

Например, предположим, что мы делаем выборку из совокупности 1000 раз, и на основании каждой выборки мы построим 95%-ный доверительный интервал, используя вычисленное выборочное среднее.

Из-за случайного характера выборок, эти доверительные интервалы отличаются друг от друга, но мы ожидаем, что 95% (или 950) этих интервалов включают неизвестное значение среднего по совокупности.

На практике мы обычно не делаем такие повторяющиеся выборки. Поэтому в практической интерпретации, мы утверждаем, что мы 95% уверены в том, что один 95%-ный доверительный интервал содержит среднее по совокупности.

Мы вправе сделать это заявление, потому что мы знаем, что 95% всех возможных доверительных интервалов, построенных аналогичным образом, будут содержать среднее по совокупности.

Доверительные интервалы, которые мы обсудим в этом чтении, имеют структуры, подобные описанной ниже базовой структуре.

Построение доверительных интервалов.

Доверительный интервал (100 (1 — alpha)% ) для параметра имеет следующую структуру.

Точечная оценка (pm) Фактор надежности (times) Стандартная ошибка

где

  • Точечная оценка = точечная оценка параметра (значение выборочной статистики).
  • Фактор надежности (англ. ‘reliability factor’) = коэффициент, основанный на предполагаемом распределении точечной оценки и степени доверия ((1 — alpha)) для доверительного интервала.
  • Стандартная ошибка = стандартная ошибка выборочной статистики, значение которой получено с помощью точечной оценки.

Величину (Фактор надежности) (times) (Cтандартная ошибка) иногда называют точностью оценки (англ. ‘precision of estimator’). Большие значения этой величины подразумевают более низкую точность оценки параметра совокупности.

Самый базовый доверительный интервал для среднего значения по совокупности появляется тогда, когда мы делаем выборку из нормального распределения с известной дисперсией. Фактор надежности в данном случае на основан стандартном нормальном распределении, которое имеет среднее значение, равное 0 и дисперсию 1.

Стандартная нормальная случайная величина обычно обозначается как (Z). Обозначение (z_alpha ) обозначает такую точку стандартного нормального распределения, в которой (alpha) вероятности остается в правом хвосте.

Например, 0.05 или 5% возможных значений стандартной нормальной случайной величины больше, чем ( z_{0.05} = 1.65 ).

Предположим, что мы хотим построить 95%-ный доверительный интервал для среднего по совокупности, и для этой цели, мы сделали выборку размером 100 из нормально распределенной совокупности с известной дисперсией (sigma^2) = 400 (значит, (sigma) = 20).

Мы рассчитываем выборочное среднее как ( overline X = 25 ). Наша точечная оценка среднего по совокупности, таким образом, 25.

Если мы перемещаем 1.96 стандартных отклонений выше среднего значения нормального распределения, то 0.025 или 2.5% вероятности остается в правом хвосте. В силу симметрии нормального распределения, если мы перемещаем 1.96 стандартных отклонений ниже среднего, то 0.025 или 2.5% вероятности остается в левом хвосте.

В общей сложности, 0.05 или 5% вероятности лежит в двух хвостах и 0.95 или 95% вероятности лежит между ними.


Таким образом, ( z_{0.025} = 1.96) является фактором надежности для этого 95%-ного доверительного интервала. Обратите внимание на связь (100 (1 — alpha)% ) для доверительного интервала и (z_{alpha/2}) для фактора надежности.

Стандартная ошибка среднего значения выборки, заданная Формулой 1, равна:

( sigma_{overline X} = 20 Big / sqrt{100} = 2 )

Доверительный интервал, таким образом, имеет нижний предел:

( overline X — 1.96 sigma_{overline X} ) = 25 — 1.96(2) = 25 — 3.92 = 21.08.

Верхний предел доверительного интервала равен:

( overline X + 1.96sigma_{overline X} ) = 25 + 1.96(2) = 25 + 3.92 = 28.92

95%-ный доверительный интервал для среднего по совокупности охватывает значения от 21.08 до 28.92.

Доверительные интервалы для среднего по совокупности (нормально распределенная совокупность с известной дисперсией).

Доверительный интервал (100 (1 — alpha)% ) для среднего по совокупности ( mu ), когда мы делаем выборку из нормального распределения с известной дисперсией ( sigma^2 ) задается формулой:

( Large dst overline X pm z_{alpha /2}{sigma over sqrt n}  ) (Формула 4)

Факторы надежности для наиболее часто используемых доверительных интервалов приведены ниже.

Факторы надежности для доверительных интервалов на основе стандартного нормального распределения.

Мы используем следующие факторы надежности при построении доверительных интервалов на основе стандартного нормального распределения:

  • 90%-ные доверительные интервалы: используется (z_{0.05}) = 1.65
  • 95%-ные доверительные интервалы: используется (z_{0.025}) = 1.96
  • 99%-ные доверительные интервалы: используется (z_{0.005}) = 2.58

На практике, большинство финансовых аналитиков используют значения для (z_{0.05}) и (z_{0.005}), округленные до двух знаков после запятой.

Для справки, более точными значениями для (z_{0.05}) и (z_{0.005}) являются 1.645 и 2.575, соответственно.

Для быстрого расчета 95%-ного доверительного интервала (z_{0.025}) иногда округляют 1.96 до 2.

Эти факторы надежности подчеркивают важный факт о всех доверительных интервалах. По мере того, как мы повышаем степень доверия, доверительный интервал становится все шире и дает нам менее точную информацию о величине, которую мы хотим оценить.

«Чем уверенней мы хотим быть, тем меньше мы должны быть уверены»

см. Freund и Williams (1977), стр. 266.

На практике, допущение о том, что выборочное распределение выборочного среднего, по меньшей мере, приблизительно нормальное, часто является обоснованным, либо потому, что исходное распределение приблизительно нормальное, либо потому что мы имеем большую выборку и поэтому к ней применима центральная предельная теорема.

Однако, на практике, мы редко знаем дисперсию совокупности. Когда дисперсия генеральной совокупности неизвестна, но выборочное среднее, по меньшей мере, приблизительно нормально распределено, у нас есть два приемлемых пути чтобы вычислить доверительные интервалы для среднего значения совокупности.


Вскоре мы обсудим более консервативный подход, который основан на t-распределении Стьюдента (t-распределение, для краткости).

Распределение статистики (t) называется t-распределением Стьюдента (англ. «Student’s t-distribution») из-за псевдонима «Студент» (Student), использованного британским математиком Уильямом Сили Госсеттом, который опубликовал свою работу в 1908 году.

В финансовой литературе, это наиболее часто используемый подход для статистической оценки и проверки статистических гипотез, касающихся среднего значения, когда дисперсия генеральной совокупности не известна, как для малого, так и для большого размер выборки.

Второй подход к доверительным интервалам для среднего по совокупности, основанного на стандартном нормальном распределении, — это z-альтернатива (англ. ‘z-alternative’). Он может быть использован только тогда, когда размер выборки является большим (в общем случае, размер выборки 30 или больше, можно считать большим).

В отличии от доверительного интервала, приведенного в Формуле 4, этот доверительный интервал использует стандартное отклонение выборки (s) при вычислении стандартной ошибки выборочного среднего (по Формуле 2).

Доверительные интервалы для среднего по совокупности — z-альтернатива (большая выборка, дисперсия совокупности неизвестна).

Доверительный интервал (100 (1 — alpha)% ) для среднего по совокупности ( mu ) при выборке из любого распределения с неизвестной дисперсией, когда размер выборки большой, задается формулой:

( Large dst overline X pm z_{alpha /2}{s over sqrt n} ) (Формула 5)

Поскольку этот тип доверительного интервала применяется довольно часто, мы проиллюстрируем его вычисление в Примере 4.

Пример (4) расчета доверительного интервала для среднего по совокупности коэффициентов Шарпа с использованием z-статистики.

Предположим, что инвестиционный аналитик делает случайную выборку акций взаимных фондов США и рассчитывает средний коэффициент Шарпа.

[см. также: CFA — Коэффициент Шарпа]

Размер выборки равен 100, а средний коэффициент Шарпа составляет 0.45. Выборка имеет стандартное отклонение 0.30.

Рассчитайте и интерпретируйте 90-процентный доверительный интервал для среднего по совокупности всех акций взаимных фондов США с использованием фактора надежности на основе стандартного нормального распределения.


Фактор надежности для 90-процентного доверительного интервала, как указано ранее, составляет ( z_{0.05} = 1.65 ).

Доверительный интервал будет равен:

( begin{aligned} & overline X pm z_{0.05}{s over sqrt n } \ &= 0.45 pm 1.65{0.30 over sqrt {100}} \ &= 0.45 pm 1.65(0.03) = 0.45 pm 0.0495   end{aligned} )

Доверительный интервал охватывает значения 0.4005 до 0.4995, или от 0.40 до 0.50, с округлением до двух знаков после запятой. Аналитик может сказать с 90-процентной уверенностью, что интервал включает среднее по совокупности.

В этом примере аналитик не делает никаких конкретных предположений о распределении вероятностей, характеризующем совокупность. Скорее всего, аналитик опирается на центральную предельную теорему для получения приближенного нормального распределения для выборочного среднего.

Как показывает Пример 4, даже если мы не уверены в характере распределения совокупности, мы все еще можем построить доверительные интервалы для среднего по совокупности, если размер выборки достаточно большой, поскольку можем применить центральную предельную теорему.

Концепция степеней свободы.

Обратимся теперь к консервативной альтернативе и используем t-распределение Стьюдента, чтобы построить доверительные интервалы для среднего по совокупности, когда дисперсия генеральной совокупности не известна.

Для доверительных интервалов на основе выборок из нормально распределенных совокупностей с неизвестной дисперсией, теоретически правильный фактор надежности основан на t-распределении. Использование фактора надежности, основанного на t-распределении, имеет важное значение для выборок небольшого размера.

Применение фактора надежности (t) уместно, когда дисперсия генеральной совокупности неизвестна, даже если у нас есть большая выборка и мы можем использовать центральную предельную теорему для обоснования использования фактора надежности (z). В этом случае большой выборки, t-распределение обеспечивает более консервативные (широкие) доверительные интервалы.

t-распределение является симметричным распределением вероятностей и определяется одним параметром, известным как степени свободы (DF, от англ. ‘degrees of freedom’). Каждое значение для числа степеней свободы определяет одно распределение в этом семействе распределений.

Далее мы сравним t-распределения со стандартным нормальным распределением, но сначала мы должны понять концепцию степеней свободы. Мы можем сделать это путем изучения расчета выборочной дисперсии.

Формула 3 дает несмещенную оценку выборочной дисперсии, которую мы используем. Выражение в знаменателе, ( n — 1 ), означающее размер выборки минус 1, это число степеней свободы при расчете дисперсии совокупности с использованием Формулы 3.

Мы также используем ( n — 1 ) как число степеней свободы для определения факторов надежности на основе распределения Стьюдента. Термин «степени свободы» используются, так как мы предполагаем, что в случайной выборке наблюдения отобраны независимо друг от друга. Числитель выборочной дисперсии, однако, использует выборочное среднее.


Каким образом использование выборочного среднего влияет на количество наблюдений, отобранных независимо, для формулы выборочной дисперсии?

При выборке размера 10 и среднем значении в 10%, к примеру, мы можем свободно отобрать только 9 наблюдений. Независимо от отобранных 9 наблюдений, мы всегда можем найти значение для 10-го наблюдения, которое дает среднее значение, равное 10%. С точки зрения формулы выборочной дисперсии, здесь есть 9 степеней свободы.

Учитывая, что мы должны сначала вычислить выборочное среднее от общего числа (n) независимых наблюдений, только (n — 1) наблюдений могут быть отобраны независимо друг от друга для расчета выборочной дисперсии.

Концепция степеней свободы часто применяется в финансовой статистике, и вы встретите ее в последующих чтениях.

t-распределение Стьюдента.

Предположим, что мы делаем выборку из нормального распределения.

Коэффициент (z = (overline X — mu) Big / (sigma big / sqrt n) ) нормально распределен со средним значением 0 и стандартным отклонением 1, однако, коэффициент (t = (overline X — mu) Big / (s big / sqrt n) ) следует t-распределению со средним 0 и (n — 1) степеней свободы.

Коэффициент (t) не является нормальным, поскольку представляет собой отношение двух случайных величин, выборочного среднего и стандартного отклонения выборки.

Определение стандартной нормальной случайной величины включает в себя только одну случайную величину, выборочное среднее. По мере увеличения степеней свободы, однако, t-распределение приближается к стандартному нормальному распределению.

На Рисунке 1 показано стандартное нормальное распределение и два t-распределения, одно с DF = 2 и одно с DF = 8.

Рисунок (1) t-распределение Стьюдента по сравнению со стандартным нормальным распределением. Рисунок (1) t-распределение Стьюдента по сравнению со стандартным нормальным распределением.

Из трех распределений, показанных на Рисунке 1, стандартное нормальное распределение имеет хвосты, которые стремятся к нулю быстрее, чем хвосты двух t-распределений. t-распределение симметрично распределено вокруг среднего нулевого значения, так же как и нормальное распределение.

По мере увеличения степеней свободы, t-распределение приближается к стандартному нормальному распределению. t-распределение с DF = 8 ближе к стандартному нормальному, чем t-распределение с DF = 2.

Помимо области плюс и минус четырех стандартных отклонений от среднего значения, остальная область под стандартным нормальным распределением, как представляется, близка к 0. Однако, оба t-распределения содержать некоторую площадь под каждой кривой за пределом четырех стандартных отклонений.

t-распределения имеют более толстые хвосты, но хвосты t-распределения Стьюдента с DF = 8 сильнее напоминают хвосты нормального распределения. По мере увеличения степеней свободы, хвосты распределения Стьюдента становятся менее толстыми.

Для часто используемых значений распределения Стьюдента составлены таблицы. Например, для каждой степени свободы (t_{0.10}), (t_{0.05}), (t_{0.025}), (t_{0.01}) и (t_{0.005}) значения будут такими, что соответственно, 0.10, 0.05, 0.025, 0.01 и 0.005 вероятности останется в правом хвосте для заданного числа степеней свободы.

Значения (t_{0.10}), (t_{0.05}), (t_{0.025}), (t_{0.01}) и (t_{0.005}) также называют односторонними критическими значениями t на значимых уровнях 0.10, 0.05, 0.025, 0.01 и 0.005, для указанного числа степеней свободы.

Например,

для DF = 30,

(t_{0.10}) = 1.310,
(t_{0.05}) = 1.697,
(t_{0.025}) = 2.042,
(t_{0.01}) = 2.457,
(t_{0.005}) = 2.750.

Приведем форму доверительных интервалов для среднего по совокупности, используя распределение Стьюдента.

Доверительные интервалы для среднего по совокупности (дисперсия совокупности неизвестна) — t-распределение.

Если мы делаем выборку из генеральной совокупности с неизвестной дисперсией и соблюдается одно из перечисленных ниже условий:

  • выборка является большой, или
  • выборка небольшая, но совокупность имеет нормальное распределение, или приблизительно нормально распределена,

то доверительный интервал (100 (1 — alpha)% ) для среднего совокупности ( mu ) задается формулой:

( Large dst overline X pm t_{alpha /2}{s over sqrt n} )  (Формула 6)

где число степеней свободы для ( t_{alpha /2}) равно ( n-1 ), а ( n ) — это размер выборки.

Пример 5 использует данные Примера 4, но применяет t-статистику, а не z-статистику, чтобы рассчитать доверительный интервал для среднего значения совокупности коэффициентов Шарпа.

Пример (5) расчета доверительного интервала для среднего по совокупности коэффициентов Шарпа с использованием t-статистики.

Как и в Примере 4, инвестиционный аналитик стремится вычислить 90-процентный доверительный интервал для среднего по совокупности коэффициентов Шарпа, основанных на случайной выборке из 100 взаимных фондов США.

Выборочное среднее коэффициентов Шарпа составляет 0.45, а выборочное стандартное отклонение — 0.30.

Теперь, признав, что дисперсия генеральной совокупности распределения коэффициентов Шарпа неизвестна, аналитик решает вычислить доверительный интервал, используя теоретически правильную t-статистику.

Поскольку размер выборки равен 100, DF = 99. Используя таблицу степеней свободы, мы находим, что (t_{0.05}) = 1.66.

Этот фактор надежности немного больше, чем фактор надежности (z_{0.05}) = 1.65, который был использован в Примере 4.

Доверительный интервал будет:

( begin{aligned} & overline X pm t_{0.05}{s over sqrt n } \  &= 0.45 pm 1.66{0.30 over sqrt {100}} \ &= 0.45 pm 1.66(0.03) = 0.45 pm 0.0498   end{aligned} )

Доверительный интервал охватывает значения 0.4002 до 0.4998, или 0.40 до 0.50, с двумя знаками после запятой. При округлении до двух знаков после запятой, доверительный интервал не изменился по сравнению с Примером 4.

В Таблице 3 приведены различные факторы надежности, которые мы использовали.

Таблица 3. Основы для расчета факторов надежности.

Выборка из:

Статистика для выборки малого размера

Статистика для выборки большого размера

Нормальное распределение с известной дисперсией

(z)

(z)

Нормальное распределение с неизвестной дисперсией

(t)

(t)*

Ненормальное распределение с известной дисперсией

недоступно

(z)

Ненормальное распределение с неизвестной дисперсией

недоступно

(t)*

* Использование (z) также приемлемо.

Понравилась статья? Поделить с друзьями:
  • Как можно найти людей на авито
  • Как найти bluetooth в телевизоре sony
  • Как найти на телефоне автодозвон
  • Как составить служебную записку на то что бы нам приобрели
  • Как найти инвестора для инвестиций