Как найти дугу окружности если известен диаметр


Загрузить PDF


Загрузить PDF

Дуга – это некоторая часть окружности.[1]
Длина дуги равна расстоянию между двумя точками, которые лежат на окружности. Чтобы вычислить длину дуги, необходимо иметь некоторое представление о геометрии окружности. Так как дуга представляет собой часть окружности, нужно найти величину центрального угла (в градусах или радианах), а затем вычислить длину дуги.

  1. Изображение с названием Find Arc Length Step 1

    1

    Запишите формулу для вычисления длины дуги. Формула: L=2pi (r)({frac  {theta }{360}}), где r – радиус окружности, theta – центральный угол, измеренный в градусах.[2]

  2. Изображение с названием Find Arc Length Step 2

    2

    В формулу подставьте радиус окружности. Как правило, значение радиуса дается в задаче; в противном случае просто измерьте его. Значение радиуса подставляется вместо r.

    • Например, если радиус окружности равен 10 см, формула запишется так: L=2pi (10)({frac  {theta }{360}}).
  3. Изображение с названием Find Arc Length Step 3

    3

    В формулу подставьте центральный угол. Как правило, значение центрального угла дается в задаче; в противном случае просто измерьте его. В указанную формулу подставьте центральный угол, измеренный в градусах (а не в радианах). Значение центрального угла подставляется вместо theta .

    • Например, если центральный угол равен 135 градусов, формула запишется так: L=2pi (10)({frac  {135}{360}}).
  4. Изображение с названием Find Arc Length Step 4

    4

    Радиус умножьте на 2pi . Если нет калькулятора, воспользуйтесь следующим приблизительным значением: pi =3,14. Перепишите формулу, подставив в нее полученное значение, которое равно длине окружности.[3]

  5. Изображение с названием Find Arc Length Step 5

    5

    Разделите центральный угол на 360. Так как в круге 360 градусов, это вычисление позволит определить, какую часть круга представляет сектор. Благодаря полученной информацию можно найти часть окружности, которую представляет дуга.

  6. Изображение с названием Find Arc Length Step 6

    6

    Перемножьте два числа. Получится длина дуги.

    Реклама

  1. Изображение с названием Find Arc Length Step 7

    1

    Запишите формулу для вычисления длины дуги. Формула: L=theta (r), где r – радиус окружности, theta – центральный угол, измеренный в радианах.[4]

  2. Изображение с названием Find Arc Length Step 8

    2

    В формулу подставьте радиус окружности. Чтобы воспользоваться этим методом, нужно знать радиус. Значение радиуса подставляется вместо r.

    • Например, если радиус окружности равен 10 см, формула запишется так: L=theta (10).
  3. Изображение с названием Find Arc Length Step 9

    3

    В формулу подставьте центральный угол. В указанную формулу подставляйте центральный угол, измеренный в радианах. Если угол измеряется в градусах, этим методом пользоваться нельзя.

    • Например, если центральный угол равен 2,36 радиан, формула запишется так: L=2,36(10).
  4. Изображение с названием Find Arc Length Step 10

    4

    Умножьте радиус на центральный угол (измеренный в радианах). Получится длина дуги.

    Реклама

Советы

  • Если известен диаметр окружности, можно найти длину дуги. Приведенные выше формулы для вычисления длины дуги включают радиус окружности. Радиус равен половине диаметра, поэтому чтобы вычислить радиус, нужно просто разделить диаметр на 2.[5]
    Например, диаметр окружности равен 14 см; чтобы найти радиус, разделите 14 на 2:
    14div 2=7.
    Таким образом, радиус окружности равен 7 см.

Реклама

Об этой статье

Эту страницу просматривали 90 255 раз.

Была ли эта статья полезной?

Длина дуги

На этой странице приведены две формулы для расчета длины дуги окружности — через радиус и угол между ними и по формуле Гюйгенса. Также вы можете рассчитать длину дуги окружности с помощью калькуляторов, которые используют эти формулы.

Дуга — одно из двух подмножеств окружности, на которые её разбивают любые две различные принадлежащие ей точки. Любые две точки окружности разбивают её на две части, при этом каждая из частей является дугой.

Площадь круга и его частей. Длина окружности и ее дуг

Основные определения и свойства

Множество точек плоскости, находящихся на одном и том же расстоянии от одной точки — центра окружности

Часть окружности, расположенная между двумя точками окружности

Конечная часть плоскости, ограниченная окружностью

Часть круга, ограниченная двумя радиусами

Часть круга, ограниченная хордой

Выпуклый многоугольник, у которого все стороны равны и все углы равны

Около любого правильного многоугольника можно описать окружность

Фигура Рисунок Определения и свойства
Окружность
Дуга
Круг
Сектор
Сегмент
Правильный многоугольник
Окружность

Множество точек плоскости, находящихся на одном и том же расстоянии от одной точки — центра окружности

Дуга

Часть окружности, расположенная между двумя точками окружности

Круг

Конечная часть плоскости, ограниченная окружностью

Сектор

Часть круга, ограниченная двумя радиусами

Сегмент

Часть круга, ограниченная хордой

Правильный многоугольник

Выпуклый многоугольник, у которого все стороны равны и все углы равны

Около любого правильного многоугольника можно описать окружность

Определение 1 . Площадью круга называют предел, к которому стремятся площади правильных многоугольников, вписанных в круг, при неограниченном возрастании числа сторон.

Определение 2 . Длиной окружности называют предел, к которому стремятся периметры правильных многоугольников, вписанных в круг, при неограниченном возрастании числа сторон.

Замечание 1 . Доказательство того, что пределы площадей и периметров правильных многоугольников, вписанных в круг, при неограниченном возрастании числа сторон действительно существуют, выходит за рамки школьной математики и в нашем справочнике не приводится.

Определение 3 . Числом π (пи) называют число, равное площади круга радиуса 1.

Замечание 2 . Число π является иррациональным числом, т.е. числом, которое выражается бесконечной непериодической десятичной дробью:

Число π является трансцендентным числом, то есть числом, которое не может быть корнем алгебраического уравнения с целочисленными коэффициентами.

Формулы для площади круга и его частей

,

где R – радиус круга, D – диаметр круга

,

если величина угла α выражена в радианах

,

если величина угла α выражена в градусах

,

если величина угла α выражена в радианах

,

если величина угла α выражена в градусах

Числовая характеристика Рисунок Формула
Площадь круга
Площадь сектора
Площадь сегмента
Площадь круга

,

где R – радиус круга, D – диаметр круга

Площадь сектора

,

если величина угла α выражена в радианах

,

если величина угла α выражена в градусах

Площадь сегмента

,

если величина угла α выражена в радианах

,

если величина угла α выражена в градусах

Формулы для длины окружности и её дуг

где R – радиус круга, D – диаметр круга

если величина угла α выражена в радианах

,

если величина угла α выражена в градусах

Длина окружности

где R – радиус круга, D – диаметр круга

Длина дуги

если величина угла α выражена в радианах

,

если величина угла α выражена в градусах

Площадь круга

Рассмотрим две окружности с общим центром ( концентрические окружности ) и радиусами радиусами 1 и R , в каждую из которых вписан правильный n – угольник (рис. 1).

Обозначим через O общий центр этих окружностей. Пусть внутренняя окружность имеет радиус 1 .

Поскольку при увеличении n площадь правильного n – угольника, вписанного в окружность радиуса 1 , стремится к π , то при увеличении n площадь правильного n – угольника, вписанного в окружность радиуса R , стремится к числу πR 2 .

Таким образом, площадь круга радиуса R , обозначаемая S , равна

Длина окружности

то, обозначая длину окружности радиуса R буквой C , мы, в соответствии с определением 2, при увеличении n получаем равенство:

откуда вытекает формула для длины окружности радиуса R :

Следствие . Длина окружности радиуса 1 равна 2π.

Длина дуги

Рассмотрим дугу окружности, изображённую на рисунке 3, и обозначим её длину символом L(α), где буквой α обозначена величина соответствующего центрального угла.

В случае, когда величина α выражена в градусах, справедлива пропорция

из которой вытекает равенство:

В случае, когда величина α выражена в радианах, справедлива пропорция

из которой вытекает равенство:

Площадь сектора

Рассмотрим круговой сектор, изображённый на рисунке 4, и обозначим его площадь символом S (α) , где буквой α обозначена величина соответствующего центрального угла.

В случае, когда величина α выражена в градусах, справедлива пропорция

из которой вытекает равенство:

В случае, когда величина α выражена в радианах, справедлива пропорция

из которой вытекает равенство:

Площадь сегмента

Рассмотрим круговой сегмент, изображённый на рисунке 5, и обозначим его площадь символом S (α), где буквой α обозначена величина соответствующего центрального угла.

Поскольку площадь сегмента равна разности площадей кругового сектора MON и треугольника MON (рис.5), то в случае, когда величина α выражена в градусах, получаем

В случае, когда величина α выражена в в радианах, получаем

Как найти длину дуги окружности ?

r — радиус окружности

α — угол AOB, в градусах

Формула длины дуги ( L ):

Калькулятор для расчета длины дуги окружности :

Формулы для окружности и круга:

источники:

http://www.resolventa.ru/demo/diaggia6.htm

http://www-formula.ru/2011-09-21-06-50-23

  • Длина дуги

    Длина дуги окружности представляет собой часть длины самой окружности, поэтому она также будет зависеть от радиуса окружности. Поскольку дуга окружности образована определенным центральным углом, то ее длина, как и площадь сектора круга, — это определенная часть исходной длины окружности, относящаяся к ней как центральный угол сектора к полному углу круга в 360°. Поэтому формула длины дуги будет выглядеть следующим образом:


    Формула длины дуги окружности через диаметр образуется подстановкой вместо радиуса половины диаметра:


    Также можно подставить вместо радиуса корень из произведения площади круга на число π, выведенный из формулы площади круга:


    Существует также формула Гюйгенса для расчета длины дуги окружности через хорду. Для того чтобы ей воспользоваться нужно провести перпендикуляр из середины хорды, соединяющий ее с самой дугой, а из точки соединения перпендикуляра с дугой провести еще два отрезка к концам хорды. Таким образом, мы получаем два конгруэнтных перпендикулярных треугольника, гипотенузы которых мы будем использовать в формуле под обозначением l, а саму хорду назовем L. Следует учитывать, что для углов более 60 градусов формула Гюйгенса дает ощутимую погрешность в расчетах.

Оглавление:

  • 📝 Как это работает?
  • 🤔 Частые вопросы и ответы
  • 📋 Похожие материалы
  • 📢 Поделиться и комментировать

Что такое окружность?

Что такое окружность

Окружность – это замкнутая плоская кривая, ограничивающая круг.

Или, другими словами, окружность представляет собой множество точек, удаленных на одно и тоже расстояние от центра круга на длину радиуса этого круга. А длина окружности – это длина этой кривой, которую образует это множество точек и которая ограничивает собой круг. Это хорошо видно на иллюстрации выше.

Как найти длину окружности?

Чтобы вычислить длину окружности, нужно знать радиус, диаметр или площадь круга. Причём достаточно только чего-то одного из этих элементов.

По диаметру

Диаметр — это такой отрезок, который соединяет две точки на окружности и проходит через центр круга. Чтобы найти длину окружности через диаметр, просто умножаем диаметр окружности на число Пи и получаем длину окружности.

Формула будет такой:

L = π × d

Где L – длина окружности, π – константа, равная примерно 3,14, а d – это диаметр.

Например, нам нужно посчитать периметр канализационной трубы диаметром 100 мм. Окружность этой трубы можно найти весьма несложными расчётами:

L = 3,14 × 100 = 314 мм.

Кстати, у труб есть 2 окружности и 2 диметра: внутренние и внешние. Это хорошо показано на рисунке ниже.

Рассчитать длину окружности трубы

Всегда обращайте внимание, какой именно диаметр известен и какую длину окружности вам требуется вычислить. Часто внутренний диаметр обозначается малой d или D1, а наружный просто – D или DN.

Зная радиус

Радиус окружности — это отрезок, который соединяет центр окружности с точкой на окружности. Радиус равен половине диаметра, поэтому вычисление длины окружности будет похоже на предыдущий случай: умножаем радиус на два и на число пи и получаем длину окружности.

Формула расчёта выглядит следующим образом:

L = 2π × R

Где L – длина окружности, π – константа (приблизительно 3,14), а r – это радиус.

К примеру, нужно посчитать длину внутренней окружности трубы, с внутренним радиусом 26 мм. В этом случае периметр получается следующим образом:

L = 2 × 3,14 × 26 = 163,28 мм.

Также обратите внимание, что в число Пи взято с точностью до двух знаков после запятой, и всегда расчёт через Пи идёт с округлением и является приблизительным.

Через площадь круга

И, пожалуй, самым редким случаем калькуляции периметра круга будет тот, когда нам известна только площадь этого круга. В этом случае, чтобы рассчитать длину окружности, можно воспользоваться следующей формулой:

L = (4Sπ)1/2

Где L – длина окружности, S – площадь круга, а π – константа, равная 3,14.

То есть длина окружности равна квадратному корню произведения площади круга, числу пи, умноженному на четыре. На всякий случай, корень и степень ½ – это одно и то же.

Возьмём пример, к нам прилетели инопланетяне и оставили круги на полях.

Круга на полях: площадь и периметр

Площадь одного из этих кругов составила аж 1146,5 квадратных метра. Чтобы рассчитать длину окружности, нужно сделать следующее:

  1. Умножить 4 на 3,14, и полученное произведение умножить на площадь круга 1146,5. Получаем 14400,04.
  2. И теперь находим квадратный корень из этого числа и получаем примерно 120 метров. Это и есть длина окружности.

Как и в прошлых случаях из-за наличия числа Пи, которое является иррациональным, ответ будет считаться с округлением.

❓Вопросы и ответы

И наконец, предлагаем вам прочитать ответы на некоторые часто задаваемые вопросы относительно вычисления длины окружности.

Что что имеет большее значение радиус, диаметр, длина окружности или площадь круга?

Площадь круга. А если выставить всё это по мере убывания, то рейтинг будет таким:

  • Площадь круга
  • Длина окружности
  • Диаметр
  • Радиус

Какие есть ещё калькуляторы для круга у вас на сайте?

У нас есть разные калькуляторы, в частности калькуляторы: диаметра, площади круга и длины окружности. Для последней калькулятор находится наверху данной страницы.

Почему Пи равняется 3,1415926…, а не является «ровным» числом?

Число Пи – это отношение длины окружности к диаметру. После его вычисления математики выяснили, что оно является иррациональным числом: то есть его значение не может быть точно выражено в виде дроби m/n, где m — целое число, а n — натуральное. Следовательно, его десятичное представление никогда не заканчивается и не является периодическим. На июнь 2022 года известны первые 100 триллионов знаков числа «пи» после запятой. И получается, что именно с такой точностью можно рассчитать площадь круга. Если у квадрата и треугольника площадь точная, то у круга всегда приблизительная.

Хватит ли чего-то одного (диаметра, радиуса, площади) для расчёта длины окружности?

Да, хватит. Формулы и примеры расчетов периметра круга, в которых используется что-то одно из перечисленного, есть выше на данной странице.

Что такое внутренняя и внешняя окружность? Чем они отличаются?

Внутренняя и внешняя окружность (а также диаметр) чаще всего используются для расчёта параметров труб, у которых есть стенки ненулевой ширины. Поэтому окружность внутри трубы всегда меньше окружности снаружи. Для окружности снаружи используется обозначение L или LN, а диаметра – D или DN. А для периметра и диаметра круга внутри добавляется нижний индекс «единица»: L1 и D1, или используются буквы в нижнем регистре (малые): l и d.

Похожие калькуляторы

Возможно вам пригодятся ещё несколько калькуляторов по данной теме:

  • Калькулятор площади шара (сферы). Рассчитайте онлайн площадь поверхности шарообразного объекта (сферы).
  • Площадь правильного шестиугольника: калькулятор. Рассчитайте площадь правильного (равностороннего) шестиугольника с помощью онлайн-калькулятора.
  • Калькулятор числа «e». Посмотрите онлайн нужное число знаков после запятой в числе «e» (Эйлера или Непера).
  • Площадь поверхности куба: калькулятор. Рассчитайте онлайн площадь поверхности куба по длине ребер, диагонали куба или диагоналям его сторон.
  • Калькулятор масштабов. Переведите онлайн именованный масштаб на чертеже в реальный и наоборот.
  • Калькулятор числа Пи. Узнайте, чему равно число Пи с точностью до нужного количества знаков после запятой.
  • Калькулятор объема параллелепипеда. Рассчитайте онлайн объем любого параллелепипеда по длинам его ребер и не только.
  • Калькулятор объема куба. Рассчитайте онлайн объем любого кубического предмета по длине стороны или диагоналям.
  • Калькулятор объема бака. Посчитайте объем цилиндрического, прямоугольного или автомобильного бака по габаритам (по расходу и пройденному расстоянию).
  • Калькулятор объема помещения. Посчитайте объем комнаты или любого помещения в кв.метра или литрах.

Если понравилось, поделитесь калькулятором в своих социальных сетях: вам нетрудно, а проекту полезно для продвижения. Спасибо!

Есть что добавить?

Напишите своё мнение, комментарий или предложение.

Показать комментарии

Как посчитать длину окружности

  1. Главная
  2. /
  3. Математика
  4. /
  5. Геометрия
  6. /
  7. Как посчитать длину окружности

Чтобы посчитать длину окружности (круга) просто воспользуйтесь нашим удобным онлайн калькулятором:

Онлайн калькулятор

окружность Для того чтобы определить длину окружности вам необходимо знать её радиус или диаметр, либо её площадь. Зная хотя бы один из этих параметров, введите его в соответствующие поле и получите результат в виде длины окружности (длины дуги в 360 градусов).

Как посчитать длину окружности зная диаметр

Какая длина у окружности если

её диаметр ?

Ответ:

0

Какова длина окружности (С) если её диаметр d?

Формула

С = π⋅d, где π ≈ 3.14

Пример

Если диаметр круга равен 1 см, то его длина примерно равна 3.14 см.

Как посчитать длину окружности зная радиус

Какая длина у окружности если

её радиус ?

Ответ:

0

Какова длина окружности (С) если её радиус r?

Формула

С = 2⋅π⋅r, где π ≈ 3.14

Пример

Если радиус круга равен 0.5 см, то его длина примерно равна 3.14 см.

Как посчитать длину окружности зная её площадь

Какая длина у окружности если

её площадь ?

Ответ:

0

Какова длина окружности (С) если её площадь S?

Формула

С = 2π⋅S/π, где π ≈ 3.14

Пример

Если площадь круга равна 6 см2, то его длина примерно равна 8.68 см.

См. также

Понравилась статья? Поделить с друзьями:
  • Как найти константу равновесия зная температуру
  • Mysql handler read rnd next как исправить
  • Как правильно составить договор дарения денежных средств
  • Как найти объем области
  • Как найти площадь равнобедренного треуг