Как найти дугу сектора в радианах

В данной публикации мы рассмотрим формулы, с помощью которых можно вычислить длину дуги сектора круга, а также разберем примеры решения задач для демонстрации их применения на практике.

  • Определение дуги сектора круга

  • Формулы для нахождения длины дуги сектора

    • Через центральный угол в градусах и радиус

    • Через угол сектора в радианах и радиус

  • Примеры задач

Определение дуги сектора круга

Дуга – это участок между двумя точками на окружности.

Дуга сектора круга – это участок между двумя точками на окружности, которые получены в результате пересечения этой окружности двумя радиусами, образовавшими сектор круга.

На рисунке ниже: AB – это дуга зеленого сектора круга с радиусом R (или r).

Дуга сектора круга

  • OA = OB = R (r);
  • α – угол сектора или центральный угол.

Формулы для нахождения длины дуги сектора

Через центральный угол в градусах и радиус

Длина (L) дуги сектора равняется числу π, умноженному на радиус круга (r), умноженному на центральный угол в градусах (α°), деленному на 180°.

Формула расчета длины дуги сектора круга

Примечание: в расчетах используется число π, приблизительно равное 3,14.

Через угол сектора в радианах и радиус

Длина (L) дуги сектора равна произведению радиуса (r) и центрального угла, выраженного в радианах (aрад).

Формула расчета длины дуги сектора круга

Примеры задач

Задание 1
Дан круг с радиусом 15 см. Найдите длину дуги сектора, угол которого равен 30°.

Решение
Воспользуемся формулой расчета, в которой используется центральный угол в градусах:

Пример расчета длины дуги сектора круга

Задание 2
Длина дуги сектора равняется 24 см. Найдите, чему равен его угол (в радианах и градусах), если радиус круга составляет 12 см.

Решение
Для начала вычислим угол в радианах:

Пример нахождения центрального угла сектора круга в радианах

1 радиан ≈ 57,2958°

Следовательно, центральный угол приблизительно равняется 114,59° (2 рад ⋅ 57,2958°).

Нахождение длины дуги сектора круга

В данной публикации мы рассмотрим формулы, с помощью которых можно вычислить длину дуги сектора круга, а также разберем примеры решения задач для демонстрации их применения на практике.

Определение дуги сектора круга

Дуга – это участок между двумя точками на окружности.

Дуга сектора круга – это участок между двумя точками на окружности, которые получены в результате пересечения этой окружности двумя радиусами, образовавшими сектор круга.

На рисунке ниже: AB – это дуга зеленого сектора круга с радиусом R (или r).

  • OA = OB = R (r);
  • α – угол сектора или центральный угол.

Формулы для нахождения длины дуги сектора

Через центральный угол в градусах и радиус

Длина (L) дуги сектора равняется числу π , умноженному на радиус круга (r), умноженному на центральный угол в градусах ( α°), деленному на 180°.

Примечание: в расчетах используется число π , приблизительно равное 3,14.

Через угол сектора в радианах и радиус

Длина (L) дуги сектора равна произведению радиуса (r) и центрального угла, выраженного в радианах (aрад).

Примеры задач

Задание 1
Дан круг с радиусом 15 см. Найдите длину дуги сектора, угол которого равен 30°.

Решение
Воспользуемся формулой расчета, в которой используется центральный угол в градусах:

Задание 2
Длина дуги сектора равняется 24 см. Найдите, чему равен его угол (в радианах и градусах), если радиус круга составляет 12 см.

Решение
Для начала вычислим угол в радианах:

1 радиан ≈ 57,2958°

Следовательно, центральный угол приблизительно равняется 114,59 ° (2 рад ⋅ 57,2958°).

Please wait.

We are checking your browser. mathvox.ru

Why do I have to complete a CAPTCHA?

Completing the CAPTCHA proves you are a human and gives you temporary access to the web property.

What can I do to prevent this in the future?

If you are on a personal connection, like at home, you can run an anti-virus scan on your device to make sure it is not infected with malware.

If you are at an office or shared network, you can ask the network administrator to run a scan across the network looking for misconfigured or infected devices.

Another way to prevent getting this page in the future is to use Privacy Pass. You may need to download version 2.0 now from the Chrome Web Store.

Cloudflare Ray ID: 6cdb5ee05ab316e8 • Your IP : 85.95.179.65 • Performance & security by Cloudflare

Длина дуги окружности через радианы

Во первых, под числом «π» Администрация Сайта понимает величину близкую к:

3.14159 26535 89793 23846 26433 83279 50288 41971 69399 37510 58209 74944 59230 78164 06286 20899 86280 34825 34211 70679… (100 знаков после запятой)

ФОРМУЛЫ ПЕРЕВОДА

  • Перевод радиан в градусы
    • Зная, что углу 2•π соответствует угол 360 градусов:
      • Ad = Ar • 180 / π
      • Где Ad — угол в градусах, Ar — угол в радианах.
  • Перевод градусов в радианы
    • Зная, что углу 360 градусов соответствует угол 2 • π:
      • Ar = Ad • π / 180
      • Где Ad — угол в градусах, Ar — угол в радианах.

ФОРМУЛЫ РАСЧЕТА ДЛИНЫ

  • Длина окружности
    • L = 2 • π • R
      • Где L — длина окружности, R — радиус окружности.
    • L = π • D
      • Где L — длина окружности, D — диаметр окружности.
  • Длина дуги окружности
    • L = A • R
      • Где L — длина дуги окружности, R — радиус окружности,
      • A — центральный угол, выраженный в радианах.
      • Так, для окружности, A = 2•π (360 градусов), получим L = 2 • π • R

ФОРМУЛЫ РАСЧЕТА ПЛОЩАДИ

  • Площадь треугольника.
    • Формула Герона площади треугольника.
    • S = (p • (p-a) • (p-b) • (p-c)) 1/2 .
      • Где S — площадь треугольника, a, b, c — длины сторон,
      • p=(a+b+c)/2 — полупериметр.
  • Площадь круга
    • S = π • R 2
      • Где S — площадь круга, R — радиус круга.
  • Площадь сектора
    • S = (Ld • R)/2 = (A • R 2 )/2
      • Где S — площадь сектора, R — радиус круга, Ld — длина дуги.
  • Площадь поверхности шара (сферы)
    • S = 4 • π • R 2
      • Где S — площадь поверхности шара, R — радиус шара.
  • Площадь боковой поверхности цилиндра
    • S = 2 • π •R • H
      • Где S — площадь боковой поверхности цилиндра, R — радиус основания цилиндра, H — высота цилиндра.
  • Площадь полной поверхности цилиндра
    • S = 2 • π • R • H + 2 • π • R 2
      • Где S — площадь боковой поверхности цилиндра, R — радиус основания цилиндра, H — высота цилиндра.
  • Площадь боковой поверхности конуса
    • S = π • R • L
      • Где S — площадь боковой поверхности конуса, R — радиус основания конуса, L — длина образующей конуса.
  • Площадь полной поверхности конуса
    • S = π • R • L + π • R 2
      • Где S — площадь полной поверхности конуса, R — радиус основания конуса, L — длина образующей конуса.

ФОРМУЛЫ РАСЧЕТА ОБЪЕМА

  • Объем шара
    • V = 4 / 3 • π • R 3
      • Где V — объем шара, R — радиус шара.
  • Объем цилиндра (прямого, круглого)
    • V = π • R 2 ·H
    • Где V — объем цилиндра, R — радиус основания цилиндра, H — высота цилиндра.
  • Объем конуса (прямого, круглого)
    • V = π • R • L = π • R • H/cos (A/2) = π • R • R/sin (A/2)
      • Где V — объем конуса, R — радиус основания конуса, L — длина образующей конуса, A — угол при вершине конуса.
источники:

http://mathvox.ru/geometria/okrujnosti-i-ih-svoistva/glava-3-duga-dlina-dugi-radiannaya-mera-ugla/formula-dlini-dugi-okrujnosti/

http://dpva.ru/Guide/GuideMathematics/PerimSqVolGradRad/RadianLengthSquireVolume/RadianLengthSquireVolumePrint/

Информация по назначению калькулятора

Сектор круга — это часть окружности внутри круга, состоящая из дуги вместе с ее двумя радиусами. Часть окружности (также известная как дуга) и 2 радиуса окружности встречаются в обеих конечных точках дуги, образуя сектор. Форма сектора круга выглядит как кусочек пиццы или пирога. В геометрии круг — одна из самых совершенных фигур. Форма сектора окружности — самая простая форма в геометрии. У него есть свои собственные различные части. Например, диаметр, радиус, окружность, сегмент, сектор.

Круг разделен на два сектора, и разделенные части известны как второстепенные сектора и главные сектора.

Большая часть круга является основным сектором, в то время как меньшая часть является второстепенным сектором.

В случае полукругов окружность делится на два сектора одинакового размера.

2 радиуса встречаются в части окружности круга, известной как дуга, образуя сектор окружности.

Онлайн калькулятор предназначен для нахождения параметров сектора круга, таких как:

  • Площадь сектора
  • — это объем пространства, занимаемого в пределах границы сектора круга. Сектор всегда начинается с центра круга. Полукруг также является сектором круга, в данном случае круг имеет два сектора одинакового размера.
    Можно найти зная радиус и центральный угол в градусах (Ssek = ( α / 360° ) * πr2)

  • Длина дуги
  • — находится путем умножения радиуса на центральный угол сектора в радианах (L = r * α)

  • Радиус
  • Периметр сектора
  • — равен сумме длины дуги и двум радиусам (Psek = L + r + r)

  • Центральный угол сектора в градусах и радианах

В этом простом онлайн-калькуляторе для нахождения величин сектора круга можно быстро определить длину дуги сектора, зная площадь, периметр или центральный угол сектора. Для этого нужно заполнить по одному пустующему слота в калькуляторах окружности и сектора окружности, после чего нажать на кнопку “Рассчитать”. В результате высветятся все недостающие значения вместе с формулами.

Калькулятор окружности:

Достаточно заполнить только одну ячейку — остальное калькулятор посчитает сам.

Периметр или длина окружности (P)

Калькулятор сектора окружности:

Достаточно ввести только одно значение и указать радиус окружности — остальное калькулятор посчитает сам.

Центральный угол сектора в градусах (α)

Площадь сектора окружности (S1)

Калькулятор сегмента окружности:

Достаточно ввести только одно* значение и указать радиус окружности — остальное калькулятор посчитает сам.
Исключения:
* — при известном периметре (P2) нужно дополнительно указать длину дуги (l1) или хорды (c).
* — при известной площади (S2) нужно дополнительно указать длину хорды (c) или высоты (h).

Угол сегмента в градусах (α1)

Площадь сегмента окружности (S2)

Округление:

* — обязательно заполнить

Сегмент круга
Сегмент круга

Круговой сегмент — часть круга ограниченная дугой и секущей (хордой).

На рисунке:
L — длина дуги сегмента
c — хорда
R — радиус
a — угол сегмента
h — высота

Первый калькулятор рассчитывает параметры сегмента, если известен радиус и угол по следующим формулам:

Формулы вычисления параметров сегмента

Площадь сегмента:
S=frac{1}{2}R^2(alpha-sin{alpha}) [1]
Длина дуги:
L={alpha}R
Длина хорды:
c=2{R}{sin{frac{alpha}{2}}}
Высота сегмента:
h={R}left(1-{cos{frac{alpha}{2}}}right)

PLANETCALC, Сегмент

Сегмент

Угол в градусах, образуемый радиусами сектора

Точность вычисления

Знаков после запятой: 2

Однако, как справедливо заметил наш пользователь:«на практике часто случается, что как радиус дуги, так и угол неизвестны» (см. длина дуги ). Для этого случая для расчета площади сегмента и длины дуги можно использовать следующий калькулятор:

PLANETCALC, Параметры сегмента по хорде и высоте

Параметры сегмента по хорде и высоте

Точность вычисления

Знаков после запятой: 2

Калькулятор вычисляет радиус круга по длине хорды и высоте сегмента по следующей формуле:
R=frac{h}{2}+frac{c^2}{8h}

Далее, зная радиус и длину хорды, легко найти угол сегмента по формуле:
alpha=2arcsin{ frac{c}{2R} }
Остальные параметры сегмента вычисляются аналогично первому калькулятору, по формулам, приведенным в начале статьи.

Следующий калькулятор вычисляет площадь сегмента по высоте и радиусу:

PLANETCALC, Площадь сегмента круга по радиусу и высоте

Площадь сегмента круга по радиусу и высоте

Точность вычисления

Знаков после запятой: 2

Этот калькулятор вычисляет угол из высоты и радиуса по следующей формуле:
alpha=2arccosleft(1-frac{h}{R}right)
далее используется формула [1] для получения площади.

15 вычислений по сегменту круга в одной программе

Последний калькулятор включает в себя все оставшиеся вычисления параметров кругового сегмента:

  • длина дуги
  • угол
  • хорда
  • высота
  • радиус
  • площадь

Выберите два известных аргумента и калькулятор выдаст вам все оставшиеся.

PLANETCALC, Круговой сегмент - все варианты расчета

Круговой сегмент — все варианты расчета

Точность вычисления

Знаков после запятой: 2

Файл очень большой, при загрузке и создании может наблюдаться торможение браузера.

Понравилась статья? Поделить с друзьями:
  • Как найти номер права собственности на квартиру
  • Как найти макет по фото
  • Как составить уравнение высоты треугольника по уравнениям его сторон
  • Как найти песню для танцев
  • Как составить жалобу на поликлинику в министерство здравоохранения