Как найти двугранный угол между прямыми

Как найти угол между плоскостями?

Найти угол между плоскостями можно двумя способами: геометрическим и алгебраическим.

Геометрический способ

При геометрическом способе нужно сначала построить угол двугранного угла, а потом искать этот линейный угол с помощью знаний из планиметрии.

Алгебраический способ

Алгебраический способ – это применение метода координат – там есть формула для нахождения угла между плоскостями.

Вот такая:

( displaystyle cos gamma =frac{{{A}_{1}}{{A}_{2}}+{{B}_{1}}{{B}_{2}}+{{C}_{1}}{{C}_{2}}}{sqrt{A_{1}^{2}+B_{1}^{2}+C_{1}^{2}}sqrt{A_{2}^{2}+B_{2}^{2}+C_{2}^{2}}})

Здесь ( displaystyle {{A}_{1}},{{B}_{1}},{{C}_{1}},{{A}_{2}},{{B}_{2}},{{C}_{2}}) — коэффициенты уравнений плоскостей ( displaystyle alpha ) и ( displaystyle beta ) соответственно.

Подробнее про уравнение плоскости ты можешь прочитать в статье «Расстояние от точки до плоскости»!

( displaystyle alpha ): ( displaystyle {{A}_{1}}x+{{B}_{1}}y+{{C}_{1}}z+D=0)

( displaystyle beta ): ( displaystyle {{A}_{2}}x+{{B}_{2}}y+{{C}_{2}}z+D=0).

Какой же способ лучше? Зависит от задачи.

Если нужно найти, скажем, двугранный угол при основании правильной , то проще использовать геометрический способ.

А если линейный угол двугранного угла никак не хочет проходить ни через какие удобные точки, то можно использовать метод координат как палочку выручалочку.

Но тогда нужно очень твёрдо знать формулы и не делать арифметических ошибок при многочисленных подсчётах – ведь придётся искать ( displaystyle {{A}_{1}},{{B}_{1}},{{C}_{1}},{{A}_{2}},{{B}_{2}},{{C}_{2}}), а потом ещё и ( displaystyle cos gamma ).

Давай разберём несложную задачу для примера. Мы применим оба метода к одной и той же задаче.

План урока:

Понятие двугранного угла и угла между плоскостями

Перпендикулярность плоскостей

Прямоугольный параллелепипед

Трехгранный угол

Многогранный угол

Типичные задачи на углы между плоскостями

Понятие двугранного угла и угла между плоскостями

Напомним, что в планиметрии углом называют фигуру, состоящую из точки и двух лучей, выходящих из нее. Сама точка именуется вершиной угла, а лучи – сторонами угла.

По аналогии в стереометрии рассматривается схожая фигура – двугранный угол. Он состоит из двух полуплоскостей, которые исходят из одной прямой. Каждая из этих полуплоскостей именуется гранью двугранного угла, а их общая прямая – это ребро двугранного угла.

1 dvugrannii ugol

Для обозначения двугранного угла достаточно указать две точки на его ребре, а также ещё по одной точке на каждой грани. Например, на следующем рисунке показан угол САВD:

2 dvugrannii ugol

Двугранные углы часто встречаются в обычной жизни. Например, его образуют двухскатные крыши домов. В стереометрии двугранные угла можно найти в любом многограннике.

Двугранные углы можно измерять. Для этого надо выбрать произвольную точку на ребре угла и на каждой грани построить перпендикуляр, проходящий через эту точку. Через эти два перпендикуляра можно построить единственную плоскость. Угол между двумя перпендикулярами и принимается за величину двугранного угла.

3 dvugrannii ugol

Отдельно отметим, что плоскость, проходящая через перпендикуляры (на рисунке выше это γ) перпендикулярна ребру угла АВ. Это вытекает из признака перпендикулярности прямой и плоскости. Действительно, АВ⊥ВС и АВ⊥BD, поэтому и АВ⊥γ. Построенный угол ∠СBD называют линейным углом двугранного угла.

Понятно, что в каждом двугранном угле можно построить сколько угодно линейных углов:

4 dvugrannii ugol

Здесь помимо ∠ВСD построены линейные углы ∠В’С’D’ и ∠В’’С’’D’’. Однако все эти углы имеют одинаковую градусную меру. Сравним, например, ∠ВСD и ∠В’С’D’. Так как BD⊥AB и B’D’⊥АВ, то BD||B’D’. Аналогично можно прийти к выводу, что ВС||B’C’. Получаем, что стороны углов ∠ВСD и ∠В’С’D’ – это сонаправленные лучи, а потому ∠ВСD и ∠В’С’D’ одинаковы.

Двугранные углы, как и обычные углы, можно разделить на острые (их градусная мера меньше 90°), прямые (они в точности равны 90°) и тупые (которые больше 90°).

5 dvugrannii ugol

Если две плоскости пересекаются, то они образуют сразу 4 двугранных угла. Если среди них есть острый угол, то его величина считается углом между плоскостями. Если же все образуется 4 прямых двугранных угла, то угол между плоскостями принимается равным 90°.

6 dvugrannii ugol

Перпендикулярность плоскостей

В частном случае, когда угол составляет 90°, говорят, что пересекающиеся плоскости перпендикулярны.

7 dvugrannii ugol

Перпендикулярны друг другу пол и стены в доме, смежные грани кубика, стенки коробки. Существует особый признак перпендикулярности плоскостей.

8 dvugrannii ugol

Действительно, пусть плоскости α и β пересекаются по линии n, и в β есть такая прямая m, что m⊥α. Тогда m и n должны пересекаться в какой-нибудь точке К. Проведем в плоскости α через К прямую р, перпендикулярную n. Ясно, что m⊥р, ведь m⊥α. Получается, угол между m и р как раз и является углом между плоскостями α и β, ведь m⊥n и р⊥n. И этот угол равен 90°, ведь m⊥p, ч т. д.

Из доказанного признака вытекает следующее утверждение:

9 dvugrannii ugol

Прямоугольный параллелепипед

Ранее мы уже узнали про параллелепипед. Это фигура с 6 гранями, каждая из которых представляет собой параллелограмм. Особый интерес представляет его частный случай – прямоугольный параллелепипед.

10 dvugrannii ugol

Такую форму имеют многие шкафы, другие предметы мебели, коробки для обуви, небоскребы. Изображают прямоугольный параллелепипед так:

11 dvugrannii ugol

Для обозначения вершин параллелепипеда применяют латинские буквы. Очень часто для вершин одной грани используют 4 буквы без индекса (на рисунке выше это А, В, С, D), а другие 4 вершины обозначают такими же буквами, но с нижним индексом 1: А1, B1, C1 и D1. При этом одноименные вершины (например, А и А1) находятся на одном ребре, которое располагается на рисунке вертикально.

Докажем некоторые свойства прямоугольного параллелепипеда.

12 dvugrannii ugol

Например, ребро АD пересекается с гранями АВВ1А1 и CDD1C1. Значит, оно перпендикулярно этим граням (точнее говоря, оно перпендикулярно плоскостям, проходящим через эти грани). Действительно, AD⊥DC, ведь ∠ADC является углом в прямоугольнике АВСD и потому он прямой. Аналогично и AD⊥DD1, ведь и ADD1A1 – прямоугольник. Получается, что ребро AD перпендикулярно 2 прямым в грани CDD1C1 (которые при этом пересекаются), и потому оно перпендикулярно и всей грани. То же самое можно продемонстрировать для любого ребра прямоугольного параллелепипеда и любой грани, которую она пересекает.

13 dvugrannii ugol

13 2 u prjamougolnogo parallelepipeda

Эти грани пересекаются по ребру А1D1. Этому ребру в свою очередь перпендикулярны ребра АА1 и А1В1, лежащие в гранях ADD1A1 и A1D1C1B1. Значит, ∠АА1В1 и будет углом между этими гранями. Но он составляет 90°, то есть грани перпендикулярны, ч. т. д.

Хотя у прямоугольного параллелепипеда есть 12 граней, многие из них имеют одинаковую длину. Поэтому для описания размеров этой фигуры достаточно указать только три параметра. Обычно их называют длиной, шириной и высотой:

14 dvugrannii ugol

Эти параметры также называют измерениями прямоугольного параллелепипеда. Зная их, можно вычислить длину диагонали прямоугольного параллелепипеда. Для этого используется следующая теорема:

15 dvugrannii ugol

Действительно, пусть есть прямоугольный параллелепипед АВСDA1B1C1D1. Назовем ребро AD его длиной, АВ – шириной, а ВВ1 – высотой. Пусть необходимо найти длину диагонали В1D:

16 dvugrannii ugol

Сначала построим отрезок BD и рассмотрим ∆ABD. Он прямоугольный, и потому для него верна теорема Пифагора:

17 dvugrannii ugol

Теперь перейдем к ∆В1ВD. Так как ребро BB1 перпендикулярно грани ABCD, то ∠В1ВD – прямой. Тогда и ∆В1ВD – прямоугольный, а потому и для него можно записать теорему Пифагора:

18 dvugrannii ugol

Дополнительно отметим уже известный нам факт, что тот прямоугольный параллелепипед, у которого все стороны одинаковы, именуется кубом. Можно дать и такое определение куба:

19 dvugrannii ugol

Трехгранный угол

Выберем в пространстве произвольную точку K. Далее из нее проведем три луча КА, КВ и КС так, чтобы они не находились в одной плоскости:

20 dvugrannii ugol

В результате мы получили фигуру, которую именуют трехгранным углом. Она состоит их трех плоских углов: ∠АКС, ∠АКВ и ∠ВКС. Эти углы так и называются – плоские углы трехгранного угла. Сам же трехгранный угол обозначают четырьмя буквами: КАВС. Обратите внимание, что через каждую пару лучей КА, КВ и КС можно провести плоскость. Таким образом, название «трехгранный» угол показывает, что в точке К сходятся три грани. Чаще всего в стереометрии такой угол возникает при рассмотрении вершин тетраэдра, в котором есть сразу четыре трехгранных угла:

21 dvugrannii ugol

Доказательство. Пусть в пространстве из точки D выходят лучи AD, BD и CD. Важно понимать, что мы можем свободно «передвигать» точки А, В и С по лучам, и величина плоских углов при этом меняться не будет. Если среди плоских углов нет наибольшего, то теорема очевидно выполняется. Поэтому надо рассмотреть лишь случай, когда один из углов – наибольший. Пусть им будет ∠BDC:

22 dvugrannii ugol

Это возможно сделать, ведь ∠BDC > AD, поэтому внутри ∠BDC можно провести луч DK. Далее «сместим» точку А на луче АD так, чтобы DK = AD. Естественно, что при этом плоские углы трехгранного угла никак не изменятся, также как останется верным равенство

23 dvugrannii ugol

Сравним ∆ADC и ∆DKC. У них есть общая сторона DC, одинаковы стороны DK и AD, а также совпадают углы между ними. Значит, эти треугольники равны, и тогда можно записать, что:

24 dvugrannii ugol

Теперь сравним ∆ABD и ∆DBK. У них BD – общая сторона, а DK = AD. При этом BK < AB. В таком случае против меньшей стороны будет лежать меньший угол (смотри примечание после доказательства), то есть

25 dvugrannii ugol

Именно это неравенство и необходимо было доказать.

Примечание. В ходе доказательства было использовано утверждение, что если у двух треугольников две стороны одинаковы, в третьи стороны отличаются, то против меньшей третьей стороны будет располагаться меньший угол:

26 dvugrannii ugol

Это утверждение часто не рассматривается в курсе планиметрии, поэтому есть смысл доказать его отдельно. Действительно, пусть есть ∆АВС и ∆А’B’C’, АС = А’C’ и АВ = A’B’, а СВ < C’B’. Надо показать, что ∠А <∠A’. Для этого выразим стороны СВ и C’B’ (а точнее говоря, их квадраты) с помощью теоремы косинусов:

27 dvugrannii ugol

Из последнего неравенства на основе определения косинуса для углов из интервала от 0° до 180° вытекает, что и

28 dvugrannii ugol

Многогранный угол

Возможен случай, когда из одной точки в пространстве выходят не три, а большее количество лучей, причем образуемые ими углы не располагаются в единой плоскости. Такая фигура именуется многогранным углом. Трехгранный угол можно считать его частным случаем. Также его частными случаями будут четырехгранный угол, пятигранный угол, шестигранный угол и т. д.

Более наглядна следующая демонстрация многогранного угла. Построим на плоскости α произвольный многоугольник. Далее выберем какую-нибудь точку вне плоскости α и соединим ее с вершинами многоугольника с помощью лучей. При этом у нас как раз получится многогранный угол. Если, например, в качестве многоугольника мы использовали пятиугольник, то и получим мы пятигранный угол:

29 dvugrannii ugol

Важно отметить, что в данном случае состоит многогранный угол именно из лучей КА1, КА2, КА3…, а не из одноименных отрезков. То есть многогранный угол – это ни в коем случае не многогранник КА1А2А3А4А5, у него есть только одна вершина – точка К. Многогранник КА1А2А3А4А5 – это пирамида, такая фигура изучается в курсе стереометрии чуть позже. Многоугольник А1А2А3А4А5 – это сечение многогранного угла. Углы ∠А1КА2, ∠А2КА3, ∠А3КА4… – это плоские углы многогранного угла.

Заметим, что на исходный многоугольник на плоскости может быть как выпуклым, так и невыпуклым. Соответственно и многогранный угол может быть как выпуклым, так и невыпуклым:

30 dvugrannii ugol

Так как любой треугольник – это выпуклый многоугольник, то и любой трехгранный угол является выпуклым. В выпуклом угле все его точки лежат по одну сторону от любой плоскости, проходящей, через какие-нибудь два смежных луча угла. Вообще любое сечение многогранного угла представляет собой выпуклый многоугольник.

Докажем важное утверждение:

31 dvugrannii ugol

Для доказательства возьмем произвольный многогранный угол и проведем в нем сечение А1А2А3…Аn, которое будет являться выпуклым многоугольником:

32 dvugrannii ugol

32 2 postroenie piramidy edited

33 dvugrannii ugol

В последнем равенстве в каждой скобке стоят по два плоских угла в тех трехгранных углах, вершины которых совпадают с вершинами многоугольника А1А2А3…Аn. В предыдущей теореме мы выяснили, что эта сумма меньше третьего плоского угла, то есть

34 dvugrannii ugol

В правой части в скобках стоит сумма углов выпуклого n-угольника А1А2А3…Аn. Она, как мы знаем, составляет 180°•(n – 2), то есть

35 dvugrannii ugol

Последнее неравенство и необходимо было доказать.

Типичные задачи на углы между плоскостями

В школьной практике почти не встречаются задачи с многогранными углами, поэтому достаточно понимания и двугранного угла.

Задание. У тетраэдра ABCD все ребра одинаковы. Найдите величину двугранного угла между плоскостями АВС и АСD.

Решение. Отметим на ребре АС точку М, которая является его серединой:

36 dvugrannii ugol

Заметим, что плоскости АВС и АСD пересекаются по прямой АС. Раз все ребра тетраэдра одинаковы, то ∆АВС и ∆АСD – равносторонние. DM и BM – это медианы в ∆АВС и ∆АСD соответственно, ведь M – середина АС. Но раз треугольники равносторонние, то они одновременно являются и высотами, то есть BM⊥AC и DM⊥АС. Тогда ∠DMB как раз и представляет собой линейный угол двугранного угла BАСD. То есть именно его значение нам и надо вычислить (если, конечно, он окажется не больше 90°).

Пусть ребра тетраэдра имеют длину а. Тогда АМ вдвое короче. Найдем из прямоугольного ∆АМD длину MD:

37 dvugrannii ugol

38 dvugrannii ugol

Задание. Двугранный угол равен φ, меньший 90°. На одной из его граней отмечена точка К, которая находится на расстоянии d от другой грани. Каково расстояние между точкой К и ребром двугранного угла?

Решение. Пусть угол образован плоскостями α и β. Опустим из K два перпендикуляра – один на плоскость β в точку Н, а другой на линию пересечения плоскостей в точку Р:

39 dvugrannii ugol

По условию задачи ∠НРК = φ, а HK = d. Нам же надо найти РК. Это можно сделать, применив определение синуса к ∆РНК:

40 dvugrannii ugol

Задание. Верно ли, что плоскость, пересекающая две параллельные плоскости, образует с ними одинаковые углы?

Решение. Пусть есть параллельные друг другу плоскости α и β, а пересекает их плоскость γ. Линию пересечения α и γ обозначим как n, и такую же линию для β и γ обозначим как m:

41 dvugrannii ugol

Заметим, что m и n располагаются в одной плоскости γ и при этом не пересекаются, в противном случае у α и β нашлась бы общая точка, которой быть не должно. Значит, m||n.

Далее проведем в γ прямую р, перпендикулярную n. Раз m||n и р⊥n, то и р⊥m. То есть р – общий перпендикуляр для m и n.

Далее в α через точку пересечения n и p проведем прямую k, перпендикулярную n. Ясно, что k||β. После уже через точку пересечения m и p построим такую прямую k’, что k||k’:

42 dvugrannii ugol

Так как k||β и k||k’, то прямая k’ будет принадлежать плоскости β (по теореме 6 из этого урока). Так как k||k’, m||n и n⊥k, то по теореме о сонаправленных лучах можно утверждать, что и m⊥k’. Тогда углы, отмеченные на рисунке синим цветом – это и есть линейные углы двугранных углов. Они одинаковы, так как являются соответственными при секущей р и параллельных прямых k и k’. Если же двугранные углы равны, то одинаковы и углы между плоскостями, ч. т. д.

Примечание. Доказанный факт можно сформулировать в виде теоремы:

43 dvugrannii ugol

Она может быть использована при решении некоторых сложных задач.

Задание. В прямоугольном ∆АВС АВ и АС – катеты с длиной 7 и 24 соответственно. Через гипотенузу проведена плоскость β, образующая с плоскостью АВС угол 30°. Каково расстояние между точкой А и плоскостью β?

Решение.

44 dvugrannii ugol

Опустим из А перпендикуляр АН на β. Это и будет искомое нами расстояние. Также в ∆АВС построим высоту AD. Заметим, что раз АН⊥β, то по определению и АН⊥HD. Можно сказать, что HD – это проекция AD на β. Раз прямая ВС перпендикулярна наклонной AD, то она одновременно будет перпендикулярна и наклонной HD по обратной теореме о трех перпендикулярах.

Плоскости АВС и β пересекаются по прямой ВС, АD⊥ВС и HD⊥BC. Получается, что ADH – это как раз угол между АВС и β, и по условию он составляет 30°.

По теореме Пифагора вычислим гипотенузу ВС:

45 dvugrannii ugol

Теперь перейдем к ∆AHD. Он также прямоугольный (∠Н = 90°). Используем для него тригонометрию:

46 dvugrannii ugol

Задание. Известны измерения прямоугольного параллелепипеда. Его длина составляет 90 см, ширина – 20 см, а высота – 60 см. Какова длина диагонали такого параллелепипеда?

Решение. Обозначим измерения буквами а, b, с, а диагональ буквой d. Достаточно просто воспользоваться формулой:

47 dvugrannii ugol

Далее рассмотрим несколько задач, в которых надо найти угол между плоскостями, находящимися в кубе с ребром, чья длина составляет единицу.

Задание. Вычислите угол между гранью ADHЕ и сечением АBGН:

48 dvugrannii ugol

Решение. Заметим, что сечение АВGH содержит прямую АВ. Но АВ – это перпендикуляр к АЕНD. Если АВGH содержит перпендикуляр к ADH, то эти две плоскости перпендикулярны, и угол между ними составляет 90°.

Ответ: 90°.

Задание. Определите угол между гранью ADHE и сечением ADGF:

49 dvugrannii ugol

Решение. Две рассматриваемые плоскости пересекаются по ребру AD. Ребра DH и AD перпендикулярны как стороны квадрата. Так как AD – это перпендикуляр к грани СDHG, то AD⊥DG. Получается, что ∠HDG – это и есть искомый угол. Его величина равна 45°, ведь это угол между диагональю квадрата и его стороной.

Ответ: 45°.

Задание. Вычислите угол между сечениями АВGH и EFCD:

50 dvugrannii ugol

Решение. Пересекаются эти две плоскости по прямой KP, где K и P – точки пересечения диагоналей квадратов BFGH и AEHD. Докажем, что отрезки KG и KC перпендикулярны KP.

Действительно, рассмотрим четырехугольник АВGH. Ребра АВ и GH перпендикулярны граням AEHD и BFGH, поэтому все углы в АВGH – прямые, то есть это прямоугольник и BG||AH. Теперь рассмотрим четырехугольник АВKP. Стороны BK и AP параллельны и равны как половины равных отрезков BG и AH. Значит, BKAP – параллелограмм. Но в нем есть прямые углы ∠В и ∠А, поэтому BKAP – прямоугольник. Аналогично можно показать, что и KGHP – прямоугольник. Это и приводит к выводу о том, что KG⊥KP и PH⊥KP. Поэтому ∠СKG и является искомым углом между сечениями. Он является углом между диагоналями квадрата, то есть равен 90°.

Ответ: 90°.

Задание. Найдите угол между сечением AFH и гранью AEHD:

51 dvugrannii ugol

Решение. Обозначим середину диагонали AH буквой K. Докажем ∠EKF – искомый нами угол:

52 dvugrannii ugol

Действительно, плоскости AHD и AFH пересекаются по прямой AH. EK – медиана в равнобедренном ∆AEH с основанием AH, поэтому она также является и высотой, то есть EK⊥AH. AF и FH – диагонали в равных квадратах ABFE и EFGH, поэтому эти диагонали одинаковы. Значит, ∆AFH – равнобедренный, и поэтому его медиана FK также перпендикулярна основанию AH. Получается, что ∠EKF и является искомым. Вычислить его можно из ∆EKF.

Сначала найдем длину EK. В прямоугольном ∆AEK ∠KAE составляет 45° (угол между диагональю и стороной квадрата), поэтому

53 dvugrannii ugol

Задание. Вычислите угол между гранью BCGF и сечением AFH:

54 dvugrannii ugol

Решение. Вспомним, что в предыдущей задаче мы уже вычислили угол между гранью АЕHD и тем же сечением АFH. Но грани AEHD и BCFG параллельны, поэтому АFH должна пересекаться их под одним и тем же углом. Поэтому ответ этой задачи совпадает с ответом к предыдущей задаче.

Ответ: ≈ 54,74°.

Задание. Чему равен угол между сечениями АСH и AFGH?

55 dvugrannii ugol

Решение. Пусть диагонали СН и DG пересекаются в точке К. Точка K будет принадлежать обоим сечениям, как и точка А. Значит, сечения пересекаются по линии АК. Проведем в сечении AFGH через точку K прямую, перпендикулярны АК и пересекающую FG в какой-то точке Р (позже мы убедимся, что прямая действительно должна пересекать отрезок FG):

56 dvugrannii ugol

Докажем, что ∠CPK и является углом между сечениями. Мы специально провели РК так, что РК⊥АК. Теперь посмотрим на ∆АСН. Он равносторонний, ведь его стороны АС, СН и DH – это диагонали равных квадратов (граней куба). Прямая АК – медиана, ведь K – точка пересечения диагоналей квадрата СDHG, которая делит диагонали пополам. Но раз ∆АСН равносторонний, то его медиана – это ещё и высота, то есть АК⊥РК. Итак, АК⊥СК и АК⊥РК, поэтому ∠CPK – это угол между сечениями. Для его вычисления необходимо найти все стороны в ∆РСК и далее применить теорему косинусов.

Проще всего найти СК. ∆СKD – прямоугольный (∠К = 90°), а ∠СDK составляет 45° (угол между стороной и диагональю в квадрате). Тогда можно записать, что

57 dvugrannii ugol

Отдельно отметим, что отрезки GK и KD имеют такую же длину, ведь диагонали в квадрате (а значит и их половины) одинаковы.

Для нахождения РК покажем отдельно плоскость AFG, то есть красное сечение:

58 dvugrannii ugol

Обозначим ∠KAD как φ. Тогда ∠АКD будет составлять 90 – φ. Углы ∠АКD, ∠АKP и ∠PKG в сумме дают 180°, что позволяет найти ∠PKG:

59 dvugrannii ugol

Получилось, что у ∆АКD и ∆PKG есть по два одинаковых угла (φ и 90°). Значит, они подобны. Составим такую пропорцию:

60 dvugrannii ugol

Теперь можно вернуться ко всему кубу и найти отрезок РС. Здесь снова можно применить теорему Пифагора, но уже к ∆PCG:

61 dvugrannii ugol

Теперь для ∆PCK мы можем записать теорему косинусов

62 dvugrannii ugol

Неожиданно мы доказали, что два построенных сечения перпендикулярны друг другу. Прийти к этому выводу можно было и иначе. Достаточно было бы показать, что прямая CH – это перпендикуляр к сечению AFGD. Попробуйте сделать это самостоятельно.

Ответ: 90°.

Задание. Вычислите угол между сечениями BDHF и ADGF:

63 dvugrannii ugol

Решение. У сечений общими являются точки F и D. Значит, именно по прямой FD они пересекаются.

Опустим в синей сечении BDHF перпендикуляр на FD, который упадет в некоторую точку K:

64 dvugrannii ugol

Докажем, что отрезок GK также перпендикулярен FD. Действительно, BK – это высота в ∆BDF. Но ∆BDF и ∆GDF равны, ведь они одинаковы все три стороны (FD – общая сторона, BF и FG – ребра куба, BD и DG – диагонали на гранях куба). В равных треугольниках высоты должны делить стороны на равные отрезки, поэтому высота, опущенная из G на FD, также разделит FD на отрезки FK и KD. То есть она просто упадет в точку K. Это и значит, что KG – высота. Получается, что нам надо вычислить ∠BKG.

Сначала найдем длину диагоналей BD и BG. Можно применить теорему Пифагора для ∆BFG:

65 dvugrannii ugol

KG имеет ту же длину, ведь KG и BK – одинаковые высоты в равных треугольниках ∆BDF и ∆GDF.

Теперь используем теорему косинусов для ∆BKG:

66 dvugrannii ugol

Мы вычислили двугранный угол, но он оказался больше 90°. Это значит, угол между плоскостями равен не 120°, а 180° – 120°, то есть 60°.

Ответ: 60°.

Сегодня мы познакомились с понятием двугранного угла, научились вычислять углы между плоскостями. В частном случае вместо вычисления угла можно просто доказать перпендикулярность плоскостей.

§ 14.Двугранные углы. Угол между двумя плоскостями

14.1. Двугранный угол и его измерение

Рассмотрим два полупространства, образованные непараллельными плоскостями. Пересечение этих полупространств назовём двугранным углом.

Прямую, по которой пересекаются плоскости — границы полупространств, называют ребром двугранного угла, а полуплоскости этих плоскостей, образующие двугранный угол, — гранями двугранного угла.

Двугранный угол с гранями α, β и ребром a обозначают αaβ. Можно использовать и такие обозначения двугранного угла, как K(AB)T; α(AB)β (рис. 94, 95).

Рис. 94

Рис. 95

Рис. 96

Замечание. Иногда говорят, что двугранный угол αaβ образован двумя полуплоскостями α и β, имеющими общую граничную прямую a.

Фигуры, образованные двумя страницами одной книги, двумя соседними гранями куба, — модели двугранного угла.

Для измерения двугранного угла введём понятие его линейного угла. На ребре a двугранного угла αaβ отметим произвольную точку O и в гранях α и β проведём из точки O соответственно лучи OA и OB, перпендикулярные ребру a (рис. 96, а). Угол AOB, образованный этими лучами, называется линейным углом двугранного угла αaβ.

Так как OAa и OBa, то плоскость AOB перпендикулярна прямой a. Это означает, что линейный угол двугранного угла есть пересечение данного двугранного угла и плоскости, перпендикулярной его ребру.

Вследствие произвольного выбора точки O на ребре двугранного угла заключаем, что двугранный угол имеет бесконечное множество линейных углов. Докажем, что все они равны. Действительно, рассмотрим два линейных угла AOB и A1O1B1 двугранного угла αaβ (рис. 96, б). Лучи OA и O1A1 лежат в одной грани α и перпендикулярны прямой a — ребру двугранного угла, поэтому они сонаправлены. Аналогично получаем, что сонаправлены лучи OB и O1B1. Тогда AOB = A1O1B1 (как углы с сонаправленными сторонами).

Таким образом, нами доказана теорема.

Теорема 27. Величина линейного угла не зависит от выбора его вершины на ребре двугранного угла.

Иначе говоря, все линейные углы данного двугранного угла равны между собой.

Это позволяет ввести следующее определение.

Определение. Величиной двугранного угла называется величина его линейного угла.

Рис. 97

Величина двугранного угла, измеренная в градусах, принадлежит промежутку (0°; 180°).

На рисунке 97 изображён двугранный угол, градусная мера (величина) которого равна 30°. В этом случае также говорят, что двугранный угол равен тридцати градусам.

Двугранный угол является острым (рис. 98, а), прямым (рис. 98, б) или тупым (рис. 98, в), если его линейный угол соответственно острый, прямой или тупой.

Рис. 98

Заметим, что аналогично тому, как и на плоскости, в пространстве определяются смежные (рис. 99, а) и вертикальные (рис. 99, б) двугранные углы. При этом справедливы и аналогичные теоремы о величинах этих углов.

Попробуйте доказать самостоятельно следующие два утверждения, важные для решения задач.

На гранях двугранного угла величины α взяты точки A и B; A1 и B1 — проекции этих точек на ребро двугранного угла; AA1= a; BB1 = b; A1B1 = h. Тогда

AB = .

Рис. 99

Если внутри двугранного угла величины α взята точка на расстояниях a и b от граней двугранного угла, то её расстояние от ребра двугранного угла равно .

14.2. Угол между двумя плоскостями

Две пересекающиеся плоскости образуют четыре двугранных угла с общим ребром (рис. 100). Если величина одного из них равна ϕ, то величины трёх остальных равны соответственно 180° – ϕ, ϕ, 180° – ϕ (почему?). Наименьшая из этих величин принимается за величину угла между данными пересекающимися плоскостями.

Определение. Углом между двумя пересекающимися плоскостями называется наименьший из двугранных углов, образованных при их пересечении.

Угол между параллельными или совпадающими плоскостями полагается считать равным нулю.

Если величина угла между плоскостями α и β равна ϕ, то пишут: (α; β) = ϕ.

Рис. 100

Так как двугранный угол измеряется своим линейным углом, то из выше приведённого определения следует, что угол между пересекающимися плоскостями равен углу между пересекающимися прямыми, лежащими в этих плоскостях и перпендикулярными к линии их пересечения (см. рис. 100). Это означает, что величина угла между плоскостями принадлежит промежутку [0°; 90°].

Рис. 101

ЗАДаЧа. Отрезок DM длиной 3,2 перпендикулярен плоскости ромба ABCD (ADC — тупой). Диагонали ромба равны 12 и 16. Найти углы между плоскостями:

а) ABC и MBC; б) AMD и CMD.

Решение. а) Пусть DE — высота ромба ABCD (рис. 101). Тогда по теореме о трёх перпендикулярах MEBC и DEM = ϕ — линейный угол двугранного угла, образованного плоскостями ABC и MBC. Найдём величину этого угла.

По условию задачи DM (ABC), поэтому ⧌ MDE — прямоугольный, значит, tg ϕ = . Так как DE — высота ромба ABCD, то DE = , где S — площадь этого ромба. Сторона BC ромба является гипотенузой прямоугольного треугольника BOC, катеты OB и OC которого равны 6 и 8. Значит, BC =  =  = 10.

Учитывая, что S = ACBD = •12•16 = 96, находим: DE =  = 9,6. Тогда tg ϕ =  =  = , откуда ϕ = arctg .

б) Так как отрезок DM — перпендикуляр к плоскости ромба ABCD, то ADDM, CDDM, значит, ADC = ψ — линейный угол двугранного угла, образованного пересекающимися плоскостями ADM и CDM. Найдём этот угол.

В треугольнике ACD по теореме косинусов находим

cos ψ =  =  = – ,

откуда ψ = arccos .

Ответ: а) arctg ; б) arccos .

Двугранный угол

Автор статьи

Евгений Николаевич Беляев

Эксперт по предмету «Математика»

Задать вопрос автору статьи

Понятие двугранного угла

Для введения понятия двугранного угла, для начала вспомним одну из аксиом стереометрии.

Любую плоскость можно разделить на две полуплоскости прямой $a$, лежащей в этой плоскости. При этом, точки, лежащие в одной полуплоскости находятся с одной стороны от прямой $a$, а точки, лежащие в разных полуплоскостях — по разные стороны от прямой $a$ (рис. 1).

Рисунок 1.

На этой аксиоме основан принцип построение двугранного угла.

Определение 1

Фигура называется двугранным углом, если она состоит из прямой и двух полуплоскостей этой прямой, не принадлежащих одной плоскости.

При этом полуплоскости двугранного угла называются гранями, а прямая, разделяющая полуплоскости — ребром двугранного угла (рис. 1).

<a href=Двугранный угол»>

Рисунок 2. Двугранный угол

Градусная мера двугранного угла

Определение 2

Выберем на ребре произвольную точку $A$. Угол между двумя прямыми, лежащими в разных полуплоскостях, перпендикулярных ребру и пересекающихся в точке $A$ называется линейным углом двугранного угла (рис. 3).

Рисунок 3.

Очевидно, что каждый двугранный угол имеет бесконечное число линейных углов.

Все линейные углы одного двугранного угла равняются между собой.

Доказательство.

Рассмотрим два линейных угла $AOB$ и $A_1{OB}_1$ (рис. 4).

Рисунок 4.

Так как лучи $OA$ и ${OA}_1$ лежат в одной полуплоскости $alpha $ и перпендикулярны одной прямой, то они являются сонаправленными. Так как лучи $OB$ и ${OB}_1$ лежат в одной полуплоскости $beta $ и перпендикулярны одной прямой, то они являются сонаправленными. Следовательно

[angle AOB=angle A_1{OB}_1]

В силу произвольности выборов линейных углов. Все линейные углы одного двугранного угла равны между собой.

Теорема доказана.

«Двугранный угол» 👇

Определение 3

Градусной мерой двугранного угла называется градусная мера линейного угла двугранного угла.

Примеры задач

Пример 1

Пусть нам даны две неперпендикулярные плоскости $alpha $ и $beta $ которые пересекаются по прямой $m$. Точка $A$ принадлежит плоскости $beta $. $AB$ — перпендикуляр к прямой $m$. $AC$ перпендикуляр к плоскости $alpha $ (точка $C$ принадлежит $alpha $). Доказать, что угол $ABC$ является линейным углом двугранного угла.

Доказательство.

Изобразим рисунок по условию задачи (рис. 5).

Рисунок 5.

Для доказательства вспомним следующую теорему

Теорема 2: Прямая, проходящая через основание наклонной, перпендикулярно ей, перпендикулярна её проекции.

Так как $AC$ — перпендикуляр к плоскости $alpha $, то точка $C$ — проекция точки $A$ на плоскость $alpha $. Следовательно, $BC$ — проекция наклонной $AB$. По теореме 2, $BC$ перпендикулярна ребру двугранного угла.

Тогда, угол $ABC$ удовлетворяет всем требованиям определения линейного угла двугранного угла.

ч. т. д.

Пример 2

Двугранный угол равен $30^circ$. На одной из граней лежит точка $A$, которая удалена от другой грани на расстояние $4$ см. Найти расстояние от точки $A$ до ребра двугранного угла.

Решение.

Будем рассматривать рисунок 5.

По условию, имеем $AC=4 см$.

По определению градусной меры двугранного угла, имеем, что угол $ABC$ равен $30^circ$.

Треугольник $ABC$ является прямоугольным треугольником. По определению синуса острого угла

[frac{AC}{AB}=sin{30}^0] [frac{5}{AB}=frac{1}{2}] [AB=10]

Ответ: $10$ см.

Находи статьи и создавай свой список литературы по ГОСТу

Поиск по теме

Дата последнего обновления статьи: 27.04.2023

Содержание:

Перпендикулярность в пространстве

В этом параграфе вы ознакомитесь с понятиями угла между прямыми в пространстве, угла между прямой и плоскостью, угла между двумя плоскостями; узнаете, что такое ортогональная проекция, изучите свой­ство ортогональной проекции многоугольника.

Угол между прямыми в пространстве

Поскольку две любые пересекающиеся прямые пространства лежат в одной плоскости, то угол между ними определим так же, как в планиметрии. Определение. Углом между двумя пересекающимися прямыми называют величину того из углов, образовавшихся при их пересечении, который не превышает Перпендикулярность в пространстве с примерами решения (рис. 33.1).

Угол между двумя параллельными прямыми считают равным Перпендикулярность в пространстве с примерами решения Следовательно, если Перпендикулярность в пространстве с примерами решения — угол между двумя прямыми, лежащими в одной плоскости, то Перпендикулярность в пространстве с примерами решения.

Введем понятие угла между скрещивающимися прямыми. Определение. Углом между двумя скрещивающимися прямыми называют угол между пересекающимися прямыми, соответственно параллельными данным скрещивающимся пря­мым.

Перпендикулярность в пространстве с примерами решения Перпендикулярность в пространстве с примерами решения

Пусть прямые Перпендикулярность в пространстве с примерами решенияскрещивающиеся. Через точку М простран­ства проведем прямые Перпендикулярность в пространстве с примерами решения так, что Перпендикулярность в пространстве с примерами решения (рис. 33.2). По определению угол между скрещивающимися прямыми Перпендикулярность в пространстве с примерами решения равен углу между пересекающимися прямыми Перпендикулярность в пространстве с примерами решения .

Возникает естественный вопрос: зависит ли угол между данными скрещивающимися прямыми Перпендикулярность в пространстве с примерами решения от выбора точки М ? Ответить на этот вопрос помогает следующая теорема.

Теорема 33.1. Угол между двумя пересекающимися прямыми равен углу между двумя другими пересекающимися прямыми, соответственно параллельными данным.

Воспользовавшись теоремой 33.1, можно показать, что угол между скрещивающимися прямыми Перпендикулярность в пространстве с примерами решения равен углу между пересекающимися прямыми Перпендикулярность в пространстве с примерами решения , где Перпендикулярность в пространстве с примерами решения

Например, на рисунке 33.3 изображена треугольная призма Перпендикулярность в пространстве с примерами решения. Угол между скрещивающимися прямыми Перпендикулярность в пространстве с примерами решенияи ВС равен углу между пересекающимися прямыми Перпендикулярность в пространстве с примерами решения и ВС.

Определение. Две прямые в пространстве называют перпендикулярными, если угол между ними равен 90°.

Заметим, что перпендикулярные прямые могут как пересекаться, так и быть скрещивающимися.

Если прямые Перпендикулярность в пространстве с примерами решения перпендикулярны, то записывают: Перпендикулярность в пространстве с примерами решения Два отрезка в пространстве называют перпендикулярными, если они лежат на перпендикулярных прямых.

Например, ребра AD и Перпендикулярность в пространстве с примерами решениякуба Перпендикулярность в пространстве с примерами решения перпендикулярны (рис. 33.4). Действительно, поскольку Перпендикулярность в пространстве с примерами решения то угол между прямыми AD и Перпендикулярность в пространстве с примерами решения равен углу между прямыми AD и Перпендикулярность в пространстве с примерами решения. Но Перпендикулярность в пространстве с примерами решения, поэтому Перпендикулярность в пространстве с примерами решения.

Пример:

На рисунке 33.5 изображен куб Перпендикулярность в пространстве с примерами решения . Най­дите угол между прямыми Перпендикулярность в пространстве с примерами решения и Перпендикулярность в пространстве с примерами решения.

Решение:

Соединим точки Перпендикулярность в пространстве с примерами решения. Поскольку Перпендикулярность в пространстве с примерами решения, то точки Перпендикулярность в пространстве с примерами решения лежат в одной плоскости. Эта плоскость пересекает параллельные плоскости Перпендикулярность в пространстве с примерами решения по параллельным прямым Перпендикулярность в пространстве с примерами решения. Следовательно, угол между прямыми Перпендикулярность в пространстве с примерами решения равен углу Перпендикулярность в пространстве с примерами решения. Соединим точки В и D. Отрезки Перпендикулярность в пространстве с примерами решения равны как диагонали равных квадратов. Следовательно, треугольник Перпендикулярность в пространстве с примерами решения равносторонний. Тогда Перпендикулярность в пространстве с примерами решения. Ответ : 60°.

Перпендикулярность в пространстве с примерами решения Перпендикулярность в пространстве с примерами решения Перпендикулярность в пространстве с примерами решения

Перпендикулярность прямой и плоскости

В повседневной жизни мы говорим: флагшток перпендикулярен поверхности земли (рис. 34.1), мачты парусника перпендикулярны поверхности палубы (рис. 34.2), шуруп вкручивают в доску перпендикулярно ее поверхности (рис. 34.3) и т.п.

Перпендикулярность в пространстве с примерами решения Перпендикулярность в пространстве с примерами решения Перпендикулярность в пространстве с примерами решения

Эти примеры дают представление о прямой, перпендикулярной плоскости. Определение. Прямую называют перпендикулярной пло­скости, если она перпендикулярна любой прямой, лежащей в этой плоскости (рис. 34.4).

Если прямая Перпендикулярность в пространстве с примерами решения перпендикулярна плоскости Перпендикулярность в пространстве с примерами решения то записывают: Перпендикулярность в пространстве с примерами решения Также принято говорить, что плоскость Перпендикулярность в пространстве с примерами решения перпендикулярна прямой Перпендикулярность в пространстве с примерами решения или прямая Перпендикулярность в пространстве с примерами решения и плоскость Перпендикулярность в пространстве с примерами решения перпендикулярны.

Из определения следует, что если прямая Перпендикулярность в пространстве с примерами решения перпендикулярна плоскости Перпендикулярность в пространстве с примерами решения то она пересекает эту плоскость.

Отрезок называют перпендикулярным плоскости, если он принадлежит прямой, перпендикулярной этой плоскости.

Перпендикулярность в пространстве с примерами решения Перпендикулярность в пространстве с примерами решения

Например, интуитивно понятно, что ребро Перпендикулярность в пространстве с примерами решения прямоугольного параллелепипеда Перпендикулярность в пространстве с примерами решения перпендикулярно плоскости АВС (рис. 34.5). Доказать этот факт нетрудно, воспользовавшись следующей теоремой.

Теорема 34.1 (признак перпендикулярности прямой и плоскости). Если прямая перпендикулярна двум пересекающимся прямым, лежащим в плоскости, то она перпендикулярна самой плоскости.

На рисунке 34.5 прямая Перпендикулярность в пространстве с примерами решенияперпендикулярна двум пересекающимся прямым АВ и AD плоскости АВС. Следовательно, по признаку перпен­дикулярности прямой и плоскости Перпендикулярность в пространстве с примерами решения а значит, и ребро Перпендикулярность в пространстве с примерами решениятакже перпендикулярно плоскости АВС.

Теорему 34.1 часто используют на практике. Например, подставка для новогодней елки имеет форму крестовины. Если елку установить так, чтобы ее ствол был перпендикулярен направлениям крестовины, то елка будет стоять перпендикулярно плоскости пола (рис. 34.6).

Перпендикулярность в пространстве с примерами решения

Приведем теорему, которую можно рассматривать как еще один признак перпендикуляр­ности прямой и плоскости.

Теорем а 34.2. Если одна из двух параллельных прямых перпендикулярна плоскости, то и другая прямая перпендикулярна этой плоскости (рис. 34.7).

Перпендикулярность в пространстве с примерами решения Перпендикулярность в пространстве с примерами решения

Например, на рисунке 34.5 прямая Перпендикулярность в пространстве с примерами решения перпендикулярна плоскости АВС, а прямая Перпендикулярность в пространстве с примерами решения параллельна прямой Перпендикулярность в пространстве с примерами решения. Следовательно, по теореме 34.2 прямая Перпендикулярность в пространстве с примерами решения также перпендикулярна плоскости АВС. Сформулируем теорему, являющуюся признаком параллельности двух прямых.

Теорем а 34.3. Если две прямые перпендикулярны одной и той же плоскости, то они параллельны (рис. 34.8). Справедлива и такая теорема.

Теорема 34.4. Через данную точку можно провести прямую, перпендикулярную данной плоскости, и притом только одну.

Пример:

Плоскость Перпендикулярность в пространстве с примерами решения перпендикулярная катету АС прямоугольного треугольника АВС, пересекает катет АС в точке Е, а ги­потенузу АВ — в точке F (рис. 34.9). Найдите отрезок EF, если АЕ : ЕС = 3 : 4, ВС = 21 см.

Решение:

Поскольку прямая АС перпендикулярна плоскости Перпендикулярность в пространстве с примерами решения то прямая АС перпендикулярна любой прямой этой плоскости, в частности прямой EF. Прямые EF и ВС лежат в одной плоскости и перпендикулярны прямой АС, поэтому Перпендикулярность в пространстве с примерами решения. Из этого следует, что треугольники AEF и Перпендикулярность в пространстве с примерами решения подобны. Следовательно, можно записать: EF : СВ=АЕ : АС. Отсюда EF : 21 = 3 : 7, EF = 9 см. Ответ: 9 см.

Перпендикулярность в пространстве с примерами решения

Перпендикуляр и наклонная

Пусть фигура Перпендикулярность в пространстве с примерами решения — параллельная проекция фигуры F на плоскость Перпендикулярность в пространстве с примерами решения в направлении прямой Перпендикулярность в пространстве с примерами решения Если Перпендикулярность в пространстве с примерами решения, то фигуру Перпендикулярность в пространстве с примерами решения называют ортогональной проекцией фигуры F на плоскость Перпендикулярность в пространстве с примерами решения

Например, основание ABCD прямоугольного параллелепипеда Перпендикулярность в пространстве с примерами решения является ортогональной проекцией основания Перпендикулярность в пространстве с примерами решения на пло­скость АВС в направлении прямой Перпендикулярность в пространстве с примерами решения(рис. 35.1).

Перпендикулярность в пространстве с примерами решения

В дальнейшем, говоря о проекции фигуры, если не оговорено противное, будем иметь в виду ортогональную проекцию.

Пусть даны плоскость Перпендикулярность в пространстве с примерами решения и не принадлежащая ей точка А . Через точку А проведем прямую Перпендикулярность в пространстве с примерами решения перпендикулярную плоскости Перпендикулярность в пространстве с примерами решения Пусть Перпендикулярность в пространстве с примерами решения(рис. 35.2).

Отрезок АВ называют перпендикуляром, опущенным из точки А на плоскость Перпендикулярность в пространстве с примерами решения точку В — основанием перпендикуляра. Основание В перпендикуляра АВ — это проекция точки А на плоскость Перпендикулярность в пространстве с примерами решения.

Отметим на плоскости Перпендикулярность в пространстве с примерами решения какую-нибудь точку С, отличную от точки В. Проведем отрезок АС (рис. 35.2). Отрезок АС называют наклонной, проведенной из точки А к плоскости Перпендикулярность в пространстве с примерами решения точку С — основанием наклонной. Отрезок ВС является проекцией наклонной АС.

Перпендикулярность в пространстве с примерами решения Перпендикулярность в пространстве с примерами решения

Теорема 35.1. Если из одной тонки проведены к плоскости перпендикуляр и наклонная, то наклонная больше перпендикуляра.

Пример:

Докажите, что если точка, не принадлежащая плоскости многоугольника, равноудалена от его вершин, то проекцией этой точки на плоскость многоугольника является центр его описанной окружности.

Решение:

Проведем доказательство для треугольника. Для других многоугольников доказательство будет аналогичным. Пусть точка М не принадлежит плоскости АВС, причем МА = = МВ = МС. Опустим из точки М перпендикуляр МО на плоскость АВС (рис. 35.3). Докажем, что точка О — центр описанной окружности треугольника АВС. Поскольку Перпендикулярность в пространстве с примерами решения, то Перпендикулярность в пространстве с примерами решения. В пря­моугольных треугольниках МОА, МОВ, МОС катет МО — общий, гипотенузы равны, следовательно, эти треугольники равны по гипотенузе и катету. Из равенства данных треугольников следует, что ОА = ОВ = ОС, то есть точка О — центр описанной окружности треугольника АВС.

Заметим, что когда надо определить расстояние между двумя геометрическими фигурами, то стремятся найти расстояние между их ближайшими точками. Например, из курса планиметрии вы знаете, что расстоянием от точки, не принадлежащей прямой, до этой прямой называют расстояние от данной точки до ближайшей точки на прямой, то есть длину перпендикуляра, опущенного из точки на прямую. Теорема 35.1 показывает, что целесообразно принять следующее определение.

Определение. Если точка не принадлежит плоскости, то рас­стоянием от точки до плоскости называют длину перпен­дикуляра, опущенного из точки на плоскость. Если точка принадлежит плоскости, то считают, что расстояние от точки до плоскости равно нулю.

Пример:

Докажите, что если прямая параллельна плоскости, то все точки прямой равноудалены от плоскости.

Решение:

Пусть А и В — две произвольные точки прямой Перпендикулярность в пространстве с примерами решения параллельной плоскости Перпендикулярность в пространстве с примерами решения Точки Перпендикулярность в пространстве с примерами решения — основания перпендикуляров, опущенных соответственно из точек А и В на плоскость Перпендикулярность в пространстве с примерами решения (рис. 35.4). Докажем, что Перпендикулярность в пространстве с примерами решения.

Перпендикулярность в пространстве с примерами решения

По теореме 34.3 Перпендикулярность в пространстве с примерами решения. Следовательно, точки Перпендикулярность в пространстве с примерами решения лежат в одной пло­скости. Плоскость Перпендикулярность в пространстве с примерами решения проходит через прямую Перпендикулярность в пространстве с примерами решения параллельную плоскости Перпендикулярность в пространстве с примерами решения и пересекает плоскость Перпендикулярность в пространстве с примерами решения по прямой Перпендикулярность в пространстве с примерами решения. Тогда по теореме 30.2 получаем: Перпендикулярность в пространстве с примерами решения. Таким образом, в четырехугольнике Перпендикулярность в пространстве с примерами решения каждые две противолежащие стороны параллельны. Следовательно, четырехугольник Перпендикулярность в пространстве с примерами решения — параллелограмм. Отсюда Перпендикулярность в пространстве с примерами решения Так как точки А и В выбраны на прямой Перпендикулярность в пространстве с примерами решения произвольно, то утверждение задачи доказано.

Доказанное свойство позволяет принять следующее определение. Определение. Расстоянием от прямой до параллель­ной ей плоскости называют расстояние от любой точки этой прямой до плоскости. Используя результат, полученный в ключевой задаче 2, можно решить следующую задачу.

Пример:

Докажите, что если две плоскости параллельны, то все точки одной плоскости равноудалены от другой плоскости. Определение. Расстоянием между двумя параллель­ными плоскостями называют расстояние от любой точки одной плоскости до другой плоскости.

Результаты, полученные в ключевых задачах 2 и 3, часто ис­пользуют в практической деятельности, например в строительстве (рис. 35.5).

Перпендикулярность в пространстве с примерами решения Перпендикулярность в пространстве с примерами решения

Теорема 35.2 (теорема о трех перпендикулярах). Если прямая, принадлежащая плоскости, перпендикулярна проекции наклонной к этой плоскости, то она перпендикулярна и самой наклонной. И наоборот, если прямая, принадлежащая плоскости, перпендикулярна наклонной к этой плоскости, то она перпендикулярна и проекции наклонной на эту плоскость.

Доказательство. Докажем первую часть теоремы.Пусть прямая Перпендикулярность в пространстве с примерами решения принадлежащая плоскости Перпендикулярность в пространстве с примерами решения перпендикулярна проекции ВС наклонной АС (рис. 35.6). Докажем, что Перпендикулярность в пространстве с примерами решения. Имеем: Перпендикулярность в пространстве с примерами решения следовательно, Перпендикулярность в пространстве с примерами решения. Получили, что прямая а перпендикулярна двум пересекающимся прямым АВ и ВС плоскости АВС; следовательно,Перпендикулярность в пространстве с примерами решения. Поскольку Перпендикулярность в пространстве с примерами решения то Перпендикулярность в пространстве с примерами решения Доказательство второй части теоремы аналогично доказатель­ству первой части.

Пример:

Точка М не принадлежит плоскости выпуклого многоугольника и равноудалена от всех прямых, содержащих его стороны. Проекцией точки М на плоскость многоугольника является точка О, принадлежащая многоугольнику. Докажите, что точка О — центр вписанной окружности многоугольника.

Решение:

Проведем доказательство для треугольника. Для других многоугольников доказательство будет аналогичным. Опустим из точки О перпендикуляры ON, ОК и ОЕ соответственно на прямые АВ, ВС и СА (рис. 35.7). Соединим точку М с точками Е, К и N.

Отрезок ON является проекцией на­клонной MN на плоскость АВС. По построению Перпендикулярность в пространстве с примерами решения. Тогда по теореме о трех перпендикулярах получаем: Перпендикулярность в пространстве с примерами решения

Аналогично можно доказать, что Перпендикулярность в пространстве с примерами решения. Следовательно, длины отрезков MN, МК и ME — расстояния от точки М до прямых АВ, ВС и СА соответственно. По условию MN = МК = МЕ. Перпендикулярность в пространстве с примерами решения

В прямоугольных треугольниках MON, МОК, МОЕ катет МО общий, гипотенузы равны; следовательно, данные треугольники равны по катету и гипотенузе. Из равенства этих треугольников следует, что ON = ОК = ОЕ.

Длины отрезков ON, ОК и ОЕ являются расстояниями от точки О до прямых, содержащих стороны треугольника АВС. Мы показали, что эти расстояния равны. Так как точка О принадлежит треугольнику АВС, то точка О — центр вписанной окружности треугольника АВС.

Угол между прямой и плоскостью

Вы знаете, что в давние времена путешественники ориентировались по звездам. Они измеряли угол, который образовывал с плоскостью горизонта луч, идущий от данной точки к небесному телу.

Сегодня человеку в своей деятельности также важно определять углы, под которыми наклонены к данной плоскости некоторые объекты (рис. 36.1). Эти примеры показывают, что целесообразно ввести понятие угла между прямой и плоскостью.

Перпендикулярность в пространстве с примерами решения

Определение. Если прямая параллельна плоскости или принадлежит ей, то считают, что угол меж ду такой прямой и плоскостью равен 0°.

Если прямая перпендикулярна плоскости, то считают, что угол между такой прямой и плоскостью равен Перпендикулярность в пространстве с примерами решения .

Если прямая пересекает плоскость и не перпендикулярна ей, то углом между такой прямой и плоскостью называют угол между прямой и ее проекцией на плоскость (рис. 36.2).

Перпендикулярность в пространстве с примерами решения Перпендикулярность в пространстве с примерами решения

Из определения следует, что если Перпендикулярность в пространстве с примерами решения — угол между прямой и плоскостью, то Перпендикулярность в пространстве с примерами решения.

Также принято говорить, что прямая образует угол Перпендикулярность в пространстве с примерами решения с плоскостью.

Углом между отрезком и плоскостью называют угол между прямой, содержащей этот отрезок, и плоскостью.

Например, рассмотрим куб Перпендикулярность в пространстве с примерами решения(рис. 36.3). Угол между диагональю Перпендикулярность в пространстве с примерами решения грани Перпендикулярность в пространстве с примерами решения и плоскостью АВС равен 45°. Действительно, прямая АВ — проекция прямой Перпендикулярность в пространстве с примерами решения на плоскость АВС. Тогда угол между прямой Перпендикулярность в пространстве с примерами решения и плоскостью АВС равен величине угла Перпендикулярность в пространстве с примерами решения . Поскольку четырехугольник Перпендикулярность в пространстве с примерами решения — квадрат, то Перпендикулярность в пространстве с примерами решения.

Пример:

Докажите, что если из одной точки к плоскости проведены наклонные, образующие равные углы с плоскостью, то проекция данной точки на плоскость равноудалена от оснований наклонных.

Решение:

Пусть МЛ и М В — наклонные, образующие с плоскостью Перпендикулярность в пространстве с примерами решения равные углы, отрезки ОА и ОВ — проекции этих наклонных (рис. 36.4). Докажем, что ОА = ОВ.

Перпендикулярность в пространстве с примерами решения

Прямая ОА является проекцией прямой МА на плоскость Перпендикулярность в пространстве с примерами решения Так как угол МАО острый, то он равен углу между прямыми ОА и МА. Следовательно, величина угла МАО равна углу между наклонной МА и плоскостью Перпендикулярность в пространстве с примерами решения. Аналогично можно доказать, что величина угла МВО равна углу между наклонной МВ и плоскостью Перпендикулярность в пространстве с примерами решения По условию Перпендикулярность в пространстве с примерами решения.

Поскольку Перпендикулярность в пространстве с примерами решения то Перпендикулярность в пространстве с примерами решения. Получаем, что прямоугольные треугольники МОА и МОВ равны по катету и противолежащему острому углу. Отсюда Перпендикулярность в пространстве с примерами решения.

  • Заказать решение задач по высшей математике

Двугранный угол. Угол между плоскостями

Перпендикулярность в пространстве с примерами решения

На рисунке 37.1 изображена фигура, состоящая из двух полуплоскостей, имеющих общую границу. Эта фигура делит пространство на две части, выделенные на рисунке 37.2 разными цветами. Каждую из этих частей вместе с полуплоскостями называют двугран­ным углом. Полуплоскости называют гранями двугранного угла, а их общую границу — ребром двугранного угла. Как видим, «желтый» и «синий» двугранные углы, изображенные на рисунке 37.2, существенно различаются. Это различие выражается следующим свойством. На гранях двугранного угла выберем произвольные точки М и N (рис. 37.3).

Отрезок MN принадлежит «желтому» двугранному углу, а «сине­му» двугранному углу принадлежат лишь концы отрезка. В дальнейшем, говоря «двугранный угол», будем подразумевать такой двугранный угол, который содержит любой отрезок с концами на его гранях («желтый» двугранный угол).

Перпендикулярность в пространстве с примерами решения Перпендикулярность в пространстве с примерами решения

Наглядное представление о двугранном угле дают полуоткрытая классная доска, двускатная крыша, открытый ноутбук (рис. 37.4).

Перпендикулярность в пространстве с примерами решения

Двугранный угол считают пространственным аналогом угла на плоскости. Вы знаете, как определяют величину угла на плоскости. Научимся определять величину двугранного угла.

Отметим на ребре MN двугранного угла произ­вольную точку О. Через точку О в гранях двугран­ного угла проведем лучи ОА и ОВ перпендикулярно ребру MN (рис. 37.5). Угол АОВ, образованный этими лучами, называют линейным углом двугран­ного угла. Поскольку Перпендикулярность в пространстве с примерами решенияи Перпендикулярность в пространстве с примерами решения, то Перпендикулярность в пространстве с примерами решения. Таким образом, если через произвольную точку ребра двугранного угла провести плоскость перпендикулярно ребру, то эта плоскость пересечет двугранный угол по его линейному углу.

Перпендикулярность в пространстве с примерами решения

Определение. Величиной двугранного угла называют величину его линейного угла.

Двугранный угол называют острым, прямым, тупым или развернутым, если его линейный угол соответственно острый, прямой, тупой или развернутый.

Перпендикулярность в пространстве с примерами решения

Например, рассмотрим куб Перпендикулярность в пространстве с примерами решения(рис. 37.6). Двугранный угол с ребром Перпендикулярность в пространстве с примерами решения, грани которого принадлежат плоскостям Перпендикулярность в пространстве с примерами решения и Перпендикулярность в пространстве с примерами решения является прямым. Действительно, поскольку Перпендикулярность в пространстве с примерами решения и Перпендикулярность в пространстве с примерами решения, то угол ADC — линейный угол двугранного угла с ребром Перпендикулярность в пространстве с примерами решения.

Угол ADC прямой.

При пересечении двух плоскостей образуются четыре двугранных угла, отличных от развернутого (рис. 37.7). Здесь возможны два случая:

  1. все четыре двугранных угла прямые (рис. 37.7, а);
  2. из четырех двугранных углов два равных угла острые и два равных угла тупые (рис. 37.7, б).

Перпендикулярность в пространстве с примерами решения

В обоих случаях из четырех двугранных углов найдется такой, величина которого не превышает 90°.

Определение. Углом между двумя пересекающимися плоскостями называют величину того из образовавшихся дву­гранных углов, который не превышает 90°. Угол между двумя параллельными плоскостям и равен 0°.

Углом между многоугольником и плоскостью, которой много угольник не принадлежит, называют угол между плоскостью, содержащей многоугольник, и данной плоскостью.

Углом между двумя многоугольниками, лежащими в разных плоскостях, называют угол между плоскостями, в которых лежат эти многоугольники.

Пример:

Прямоугольные треугольники Перпендикулярность в пространстве с примерами решения и АВМ Перпендикулярность в пространстве с примерами решения имеют общий катет АВ (рис. 37.8). Отрезок МВ перпендикулярен плоскости АВС. Известно, что МВ = 4 см, АС = 6 см, МС = 10 см. Найдите угол между плоскостями АВС и АМС.

Перпендикулярность в пространстве с примерами решения

Решение:

Отрезок ВА является проекцией наклонной МА на плоскость АВС. Так как Перпендикулярность в пространстве с примерами решения, то по теореме о трех перпендикулярах Перпендикулярность в пространстве с примерами решения. Следователь но, угол МАВ — линейный угол двугранного угла с ребром АС, грани которого принадлежат плоскостям АВС и АМС. Поскольку угол МАВ острый, то угол между плоскостями АВС и АМС равен величине угла МАВ.

Для стороны AM прямоугольного треугольника АМС можно записать: Перпендикулярность в пространстве с примерами решения . Отсюда Перпендикулярность в пространстве с примерами решения. Для угла МАВ прямоугольного треугольника МАВ запишем: Перпендикулярность в пространстве с примерами решения. Отсюда Перпендикулярность в пространстве с примерами решения и Перпендикулярность в пространстве с примерами решения. Ответ: 30°.

Имеет место теорема, устанавливающая связь между площадью данного многоугольника и площадью его проекции.

Теорема 37.1 (площадь ортогональной проекции мно­гоугольника). Площадь проекции выпуклого многоугольника равна произведению его площади и косинуса угла а между многоугольником и его проекцией, где Перпендикулярность в пространстве с примерами решения.

Определение. Две плоскости называют перпендикулярными, если угол между ними равен 90°.

Если плоскости Перпендикулярность в пространстве с примерами решения перпендикулярны, то записывают: Перпендикулярность в пространстве с примерами решения. Также принято говорить, что плоскость Перпендикулярность в пространстве с примерами решения перпендикулярна плоскости Перпендикулярность в пространстве с примерами решения или плоскость Перпендикулярность в пространстве с примерами решения перпендикулярна плоскости Перпендикулярность в пространстве с примерами решения.

Наглядное представление о перпендикулярных плоскостях дают плоскости стены и потолка комнаты, плоскости двери и пола, плоскости сетки и теннисного корта (рис. 37.9).

Перпендикулярность в пространстве с примерами решения

Очевидно, что перпендикулярные плоскости при пересечении образуют четыре прямых двугранных угла (рис. 37.10).

Перпендикулярность в пространстве с примерами решения Перпендикулярность в пространстве с примерами решения

Теорема 37.2 (признак перпендикулярности плоско­стей). Если одна из двух плоскостей проходит через прямую, перпендикулярную другой плоскости, то эти плоскости перпендикулярны.

Например, плоскость грани Перпендикулярность в пространстве с примерами решения прямоугольного параллелепипеда Перпендикулярность в пространстве с примерами решения, (рис. 37.11) перпендикулярна плоскости грани ABCD. Действительно, плоскость Перпендикулярность в пространстве с примерами решения проходит через прямую Перпендикулярность в пространстве с примерами решения, перпендикулярную плоскости АВС.

Перпендикулярность в пространстве с примерами решения ГЛАВНОЕ В ПАРАГРАФЕ 5

Угол между прямыми в пространстве Углом между двумя пересекающимися прямыми называют ве­личину того из углов, образовавшихся при их пересечении, который не превышает 90°. Считают, что угол между двумя параллельными прямыми равен 0°. Углом между двумя скрещивающимися прямыми называют угол между пересекающимися прямыми, соответственно параллельными данным скрещивающимся прямым. Две прямые в пространстве называют перпендикулярными, если угол между ними равен 90°.

Перпендикулярность прямой и плоскости

  • Прямую называют перпендикулярной плоскости, если она перпендикулярна любой прямой, лежащей в этой плоскости.
  • Если прямая перпендикулярна двум пересекающимся прямым, лежащим в плоскости, то она перпендикулярна самой плоскости.
  • Если одна из двух параллельных прямых перпендикулярна плоскости, то и другая прямая перпендикулярна этой плоскости.
  • Если две прямые перпендикулярны одной и той же плоскости, то они параллельны.
  • Через данную точку можно провести прямую, перпендикулярную данной плоскости, и притом только одну.

Ортогональная проекция фигуры

Пусть фигура Перпендикулярность в пространстве с примерами решения — параллельная проекция фигуры F на плоскость Перпендикулярность в пространстве с примерами решения в направлении прямой Перпендикулярность в пространстве с примерами решения. Если Перпендикулярность в пространстве с примерами решения, то фигуру Перпендикулярность в пространстве с примерами решения называют ортогональной проекцией фигуры F на плоскость Перпендикулярность в пространстве с примерами решения

Расстояние от точки до плоскости

Если точка не принадлежит плоскости, то расстоянием от точки до плоскости называют длину перпендикуляра, опущенного из точки на плоскость. Если точка принадлежит плоскости, то считают, что расстояние от точки до плоскости равно нулю.

Расстояние от прямой до параллельной ей плоскости

Расстоянием от прямой до параллельной ей плоскости называют расстояние от любой точки этой прямой до плоскости.

Расстояние между двумя параллельными плоскостями

Расстоянием между двумя параллельными плоскостями назы­вают расстояние от любой точки одной плоскости до другой плоскости.

Теорема о трех перпендикулярах

Если прямая, принадлежащая плоскости, перпендикулярна проекции наклонной к этой плоскости, то она перпендикулярна и самой наклонной. И наоборот, если прямая, принадлежащая плоскости, перпендикулярна наклонной к этой плоскости, то она перпендикулярна и проекции наклонной на эту плоскость.

Угол между прямой и плоскостью

  • Если прямая параллельна плоскости или принадлежит ей, то считают, что угол между такой прямой и плоскостью равен 0°.
  • Если прямая перпендикулярна плоскости, то считают, что угол между такой прямой и плоскостью равен 90°.
  • Если прямая пересекает плоскость и не перпендикулярна ей, то углом между такой прямой и плоскостью называют угол между прямой и ее проекцией на плоскость.

Величина двугранного угла

Величиной двугранного угла называют величину его линейного угла.

Угол между двумя пересекающимися плоскостями

Углом между двумя пересекающимися плоскостями называют величину того из образовавшихся двугранных углов, который не превышает 90°.

Площадь ортогональной проекции многоугольника

Площадь проекции выпуклого многоугольника равна произведению его площади и косинуса угла а между многоугольником и его проекцией, где Перпендикулярность в пространстве с примерами решения

Перпендикулярные плоскости

Две плоскости называют перпендикулярными, если угол между ними равен 90°.

Признак перпендикулярности плоскостей

Если одна из двух плоскостей проходит через прямую, перпендикулярную другой плоскости, то эти плоскости перпендикулярны.

  • Векторы и координаты в пространстве
  • Множества
  • Рациональные уравнения
  • Рациональные неравенства и их системы
  • Предел числовой последовательности
  • Предел и непрерывность числовой функции одной переменной
  • Функции, их свойства и графики
  • Параллельность в пространстве

Понравилась статья? Поделить с друзьями:
  • Как найти сумму длин всех сторон треугольника
  • Составьте сложный план по теме общество как сложная динамичная система
  • Как исправить ошибку 20020 в симс
  • Как найти крылья птенца в террарии
  • Как найти среднее арифметическое для интервального ряда