Как найти джи физика

Ускорение свободного падения характеризует то, как быстро будет увеличиваться скорость тела при свободном падении. Свободным падением называется ускоренное движение тела в безвоздушном пространстве, при котором на тело действует только сила тяжести. Из физики известно, что ускорение свободного падения на Земле составляет (9,8) 

мс2

.

Вопрос, почему эта величина именно такая, мы рассмотрим в этой теме.

Ускорение свободного падения в упрощённом виде можно рассчитать по формуле 

g=Fm

, которая получается из формулы 

F=m⋅g

, где (F) — сила тяжести либо вес тела в состоянии покоя или равномерного прямолинейного движения, (m) — масса тела, которое притягивает планета, (g) — ускорение свободного падения.

Сила тяжести, действующая на тело, зависит от массы тела, массы планеты, притягивающей тело, и от расстояния, на котором находится тело от центра массы планеты.

(F) — сила тяжести, Н;

(G) — гравитационная постоянная,

G=6,6720⋅10−11Н⋅м2кг2

;

(R) — расстояние между центрами планеты и объекта в метрах. Если притягиваемое тело находится на поверхности планеты, тогда (R) равен радиусу планеты (если планета имеет сферическую форму);

m1 и 

m2

 — масса планеты и притягиваемого тела, выраженные в кг.

Обрати внимание!

Если мы объединим обе формулы, тогда получим формулу 

g=G⋅mR2

, с помощью которой можно вычислить ускорение свободного падения на любом космическом объекте — на планете или звезде.

Пример:

ускорение свободного падения у поверхности Земли вычисляют таким образом:

g=G⋅МЗRЗ2=6,6720⋅10−11⋅5,976⋅10246,371⋅1062=9,8мс2

, где

(g) — ускорение свободного падения;

(G) — гравитационная постоянная,

G=6,6720⋅10−11Н⋅м2кг2

;

Практически на Земле ускорение свободного падения на полюсах немного больше ((9,832) 

мс2

), чем на экваторе ((9,78) 

мс2

), так как Земля не имеет форму идеального шара, а на экваторе скорость вращения больше, чем на полюсах. Среднее значение ускорения свободного падения у поверхности Земли равно (9,8) 

мс2

.

Ускорение свободного падения у поверхности любого космического тела — на планете или звезде — зависит от массы этого тела и квадрата его радиуса. Таким образом, чем больше масса звезды и чем меньше её размеры, тем больше значение ускорения свободного падения у её поверхности.

При помощи формулы расчёта ускорения свободного падения и измерений, проведённых для удалённых объектов, учёные-физики могут определить величину ускорения свободного падения на любой планете или звезде.

Рис. (1). Планеты Солнечной системы: Меркурий, Венера, Земля, Марс, Юпитер, Сатурн, Уран, Нептун; и карликовые планеты: Церера, Плутон, Эрида ((2003) UB (313))

SolSys_IAU06.jpg

Таблица (1). Ускорение свободного падения и другие характеристики планет Солнечной системы и карликовых планет

Небесное

тело

Ускорение

свободного

падения, мс2

Диаметр,

км 

Расстояние

до Солнца,

миллионы км

Масса,

кг

Соотношение

 с массой

Земли

Меркурий

(3,7)

(4878)

(58)

(3,3*)

1023

(0,055)

Венера

(8,87)

(12103)

(108)

(4,9*)

1024

(0,82)

Земля

(9,8)

(12756,28)

(150)

(6,0*)

1024

(1)

Марс

(3,7)

(6794)

(228)

(6,4*)

1023

(0,11)

Юпитер

(24,8)

(142984)

(778)

(1,9*)

1027

(317,8)

Сатурн

(10,4)

(120536)

(1427)

(5,7*)

1026

(95,0)

Уран

(8,87)

(51118)

(2871)

(8,7*)

1025

(14,4)

Нептун

(10,15)

(49532)

(4498)

(1,02*)

1026

(17,1)

Плутон

(0,66)

(2390)

(5906)

(1,3*)

1022

(0,0022)

Луна

(1,62)

(3473,8)

(0,3844 )

(до Земли)

(7,35*)

1022

(0,0123)

Солнце

(274,0)

(1391000)

(2,0*)

1030

(332900)

Нейтронные звёзды имеют малый диаметр — порядка десятков километров, — а масса их сопоставима с массой Солнца. Поэтому гравитационное поле у них очень сильное.

Пример:

если диаметр нейтронной звезды равен (20) км, а масса её в (1,4) раза больше массы Солнца, тогда ускорение свободного падения будет в (200000000000) раз больше, чем у поверхности Земли.

Его величина приблизительно равна 

2⋅1012 мс2

. Значение ускорения свободного падения для нейтронной звезды может достигать значения 

7⋅1012 мс2

.

Для того чтобы в физике удобно было работать с различными величинами, используют их стандартные обозначения. Благодаря ним каждый с легкостью может запомнить многие важные формулы для тех или иных процессов. В данной статье рассмотрим вопрос, что в физике означает g.

Явление гравитации

Явление гравитации

Чтобы понять, что в физике означает g (в 7 классе общеобразовательных школ проходят эту тему), следует познакомиться с явлением гравитации. В конце XVII века Исаак Ньютон опубликовал свой знаменитый научный труд, в котором сформулировал основные положения механики. В этом труде особое место он выделил для так называемого закона Всемирного тяготения. Согласно нему все тела, которые обладают конечной массой, притягиваются друг к другу независимо от расстояния между ними. Сила притяжения между телами с массами m1, m2 вычисляется по следующей формуле:

F = G*m1*m2/r2.

Здесь G — универсальная гравитационная константа, r — расстояние между центрами масс тел в пространстве. Сила F называется гравитационным взаимодействием, которое, как и кулоновское, убывает с квадратом расстояния, однако в отличие от кулоновского гравитация носит только притягивающий характер.

Ускорение свободного падения

Свободное падение

Название этого пункта статьи является ответом на вопрос, что означает буква g в физике. Используют ее потому, что с латинского языка слово «гравитация» будет gravitas. Теперь осталось понять, что такое свободного падения ускорение. Чтобы это сделать, рассмотрим, какая сила действует на каждое тело, находящееся вблизи поверхности Земли. Пусть тело имеет массу m, тогда получаем:

F = G*m *M /R2 = m*g, где g = G*M/R2.

Здесь M, R — масса и радиус нашей планеты. Отметим, даже если тело находится на некоторой высоте h над поверхностью, то эта высота намного меньше величины R, поэтому в формуле ее можно не учитывать. Рассчитаем величину g:

g = G*M/R2 = 6,67*10-11*5,972*1024/(6371000)2 = 9,81 м/c2.

Что в физике означает g? Ускорение g — это такая величина, на которую увеличивается скорость совершенно любого тела, падающего свободно на поверхность Земли. Из вычислений следует, что прирост к скорости за каждую секунду падения составляет 9,81 м/c (35,3 км/ч).

Обратим внимание, что величина g от массы тела не зависит. В действительности же можно заметить, что более плотные тела падают быстрее менее плотных. Происходит это потому, что на них действуют разные силы сопротивления воздуха, а не разная сила тяжести.

Формула выше позволяет определить g не только для нашей Земли, но и для любой другой планеты. Например, если в нее подставить массу и радиус Марса, то получим величину 3,7 м/с2, что почти в 2,7 раза меньше, чем для Земли.

Вес тела и ускорение g

Выше мы рассмотрели, что в физике означает g, также выяснилось, что это ускорение, с которым все тела падают в воздухе, а также g является коэффициентом при вычислении силы тяжести.

Вес стакана на столе

Рассмотрим теперь ситуацию, когда тело находится в состоянии покоя, например, стакан стоит на столе. На него действуют две силы — тяжести и реакции опоры. Первая связана с гравитацией и направлена вниз, вторая обусловлена упругостью материала стола и направлена вверх. Стакан не взлетает вверх и не проваливается сквозь стол только потому, что обе силы друг друга уравновешивают. В данном случае сила, с которой тело (стакан) давит на опору (стол) называется весом тела. Очевидно, что выражение для него примет вид:

P = m*g.

Вес тела величина непостоянная. Записанная выше формула справедлива для состояния покоя или равномерного движения. Если же тело перемещается с ускорением, то его вес может, как возрастать, так и уменьшаться. Например, вес космонавтов, которых ракета-носитель выводит на околоземную орбиту, увеличивается в несколько раз во время старта.

Ускорение свободного падения

Ускорение свободного падения — движение объекта, который получает ускорение из-за действующей на него силы тяжести; обозначается буквой g и измеряется в м/с². На поверхности Земли ускорение свободного падения примерно равно 9,81 м/с².

На полюсах (Южном и Северном) ускорение свободного падения будет больше, а на экваторе — меньше. Это происходит из-за двух фактов:

  • Земля — не идеальный круг, а приплюснутый шар и её радиус на полюсах меньше, чем на экваторе (ускорение зависит от радиуса),
  • центробежные силы (при вращении Земли) минимально компенсируют гравитацию больше на экваторе, чем на полюсах.

В вакууме тела падают с одинаковой скоростью потому, что ускорение свободного падения не зависит от массы.

Таблица ускорения свободного падения небесных тел

Небесное тело g (в м/с²)
Луна 1,62
Солнце 274
Меркурий 3,72
Венера 8,87
Земля 9,81
Марс 3,711
Юпитер 24,79
Сатурн 10,44
Уран 8,87
Нептун 11,15

От чего зависит ускорение свободного падения?

Ускорение свободного падения зависит от массы планеты и радиуса планеты — чем она тяжелее, тем сильнее притягивает тела (т.е. масса тела не влияет на ускорение).

Возможно для будущих вычислений нужны будут эти данные:

  1. Масса Земли = 5,98 × (10^24) кг (или 5,972E24 кг)
  2. Радиус Земли = 6 371 км = 6,37×(10^6) м.

Как найти ускорение свободного падения?

Формула ускорения свободного падения

ускорение свободного падения формула g = G × (M/R²)
Где:
g — ускорение свободного падения
G — гравитационная постоянная
M — масса планеты
R — радиус планеты

Гравитационная постоянная («G», не путайте с «g») — это фундаментальная физическая константа, которая примерно равна

Гравитационная постоянная G

и связывает силы гравитационного притяжения между двумя телами (G) с их массами (m1 и m2) и расстоянием между ними (R) в формуле:

Гравитационная постоянная 'G', F= G*(m1.m2)/r^2

Пример расчёта ускорения свободного падения (для Земли):

Вспомним формулу:

ускорение свободного падения формула g = G × (M/R²)
g — ускорение свободного падения
G — гравитационная постоянная
M — масса планеты
R — радиус планеты

Пример расчёта ускорения свободного падения для Землиб Формула ускорения свободного падения g = G × (M/R²) пример

Как узнать время падения тела?

Формула времени свободного падения (когда тело падает вертикально):

t = V / g = √(2h/g)

Где:

  • t — время
  • V — скорость тела
  • g — ускорение ≈ 9,8 м/с²
  • h — расстояние

Пример:

Высота (h) = 20 м

Нужно найти скорость и время падения.

Решение:

Формула скорости:

Формула скорости     (V² = V²0 + 2×g×h)

V0 = 0

g ≈ 9,8 м/с²

h = 20 м

V² = 0² + 2 × 9,8 м/с² × 20 м ⇔ V = √392 м/с ≈ 19,8 м/с

Зная скорость, применяем эту формулу:

t = V / g = (19,8 м/с) / (9,8 м/с²) ≈ 2,02 с

Либо используя только высоту и ускорение:

t = √(2h/g) = √(2 × 20 м / 9,8 м/с²) ≈ 2,02 с

Где нужны знания о свободном падении?

Они могут понадобиться:

  • в авиации,
  • в космонавтике,
  • при поиске полезных ископаемых (там, где есть залежи тяжёлых ископаемых, g меняется),
  • при разработке новых лыжных трамплинов и полос приземления,
  • при разработке новых автомобилей (рассчитываются наилучшие показатели для экономии топлива).

Узнайте также про Закон сохранения энергии, Силу Архимеда, Законы Ньютона и Космологию.

Для любых двух тел справедлив закон Всемирного тяготения. Он гласит, что сила, с которой притягиваются два тела массами m1 и m2 прямопропорциональна произведению их масс и обратнопропорциональна квадрату расстояния между ними (область применения закона для шаров и точечных тел), т.е.

F=G*m1*m2/r^2, где G=6.672*10^(-11) Н*м^2/кг^2 — гравитационная постоянная

Рассмотрим планету Земля(массой M) и какое-то тело (массой m), которое находитится в непосредственной близости от Земли (на расстоянии много меньшем радиуса Земли). То есть Земля и это тело будут взаимодействовать с силой

F=G*M*m/r^2

Эта сила будет сообщать телу ускорение. По второму закону Ньютона имеем:

F=a*m

G*M*m/r^2=a*m

a=G*M/r^2. Примем r равное радиусу Земли. Подставиив значение G и массы Земли мы получим ускорение примерно равное

a=9.81 м/с^2. Данную величину обозначают g и называют ускорением свободного падения. Т.е. примерно

g=9.81 м/c^2

Если подходить к вопросу строго, то g с изменением высоты меняется, но эти изменения высоты так ничтожны по сравнению с радиусом нашей планеты, что эта величина g в близи земной поверхности проиянта как константа.

Формула ускорения свободного падения в физике

Формула ускорения свободного падения

Гравитационное поле и ускорение свободного падения

Гравитационные взаимодействия тел можно описывать, применяя понятие гравитационного поля. Считают, что передача любых взаимодействий между телами реализуется при помощи полей, которые создают рассматриваемые тела. Одно из тел не оказывает непосредственного действия на другое тело, но оно создает в окружающем его пространстве гравитационное поле, особый вид материи, которая и оказывает воздействие на второе тело. Наглядной картины поля дать нельзя, понятие физического поля относят к основным понятиям, которые невозможно определить, используя другие более простые понятия. Можно только определить свойства поля.

Гравитационное поле может создавать силу. Поле зависит только от тела, которое его создает и не зависит от тела, на которое оно действует. Силовой характеристикой гравитационного поля является его напряжённость, которую обозначают $overline{g}$. Напряженность гравитационного поля измеряется силой, которая действует на материальную точку единичной массы:

[overline{g}=frac{overline{F}}{m}left(1right).]

Если гравитационное поле создается материальной точкой массы $M$, то оно имеет сферическую симметрию. Это значит, что вектор $overline{g}$ в каждой точке поля направлен к точечной массе $M$, которое создает данное поле. Из закона всемирного тяготения следует, что модуль вектора напряженности гравитационного поля:

[gleft(rright)=gamma frac{M}{r^2}left(2right).]

Из формулы (2) следует, что $g$ зависит от расстояния ($r$) от источника поля до точки, в которой поле рассматривается. В таком поле движение происходит по законам Кеплера.

Гравитационные поля удовлетворяют принципу суперпозиции. Напряженность поля, которая создается несколькими телами, равна векторной сумме напряженностей полей, которые порождаются каждым телом отдельно. Принцип суперпозиции выполняется, поскольку гравитационное поле, создаваемое какой-либо массой, не зависит от присутствия других масс. Принцип суперпозиции дает возможность рассчитывать гравитационные поля, которые созданы телами, отличающимися от точечных (размеры которых следует учитывать).

Ускорение при свободном падении

Если тело около поверхности Земли движется только под воздействием силы тяжести ($overline{F}$), говорят, что оно свободно падает. Ускорение свободного падения обозначают буквой $g$. В соответствии со вторым законом Ньютона это ускорение равно:

[overline{g}=frac{overline{F}}{m}left(3right),]

где $m$ — масса свободно падающего тела.

В соответствии с законом гравитации величина силы $overline{F}$ на расстоянии $h$ от поверхности Земли равна:

[left|overline{F}right|=gamma frac{mM}{{(R+h)}^2}left(4right),]

где $gamma $- гравитационная постоянная; $M$ — масса Земли; $R$ — радиус Земли.

Получается, что модуль ускорения свободного падения у поверхности Земли ($hll R$) равен:

[g=gamma frac{M}{R^2}left(5right).]

Направлено ускорение свободного падения к центру Земли.

Правая часть выражения (5) дает величину напряженности гравитационного поля Земли вблизи к ее поверхности.

Получаем, что напряжённость гравитационного поля и ускорение свободного падения в поле гравитации — это одно и то же. Поэтому эти величины были сразу обозначены одной буквой.

Величина ускорения свободного падения на расстоянии $h$ от поверхности Земли вычисляется при помощи формулы:

[g=gamma frac{M}{({R+h)}^2}left(6right).]

В задачах о движении тел около поверхности Земли ускорение свободного падения считают постоянной величиной, которую вычисляют с помощью формулы (5), так как в сравнении с радиусом Земли рассматриваемые расстояния много меньше, чем $R$. Обычно, ускорение свободного падения на Земле считают равным $g=9,8 frac{м}{с^2}$.

Примеры задач с решением

Пример 1

Задание. Каково ускорение свободного падения на Меркурии, если его масса меньше массы Земли в 18,18 раза, отношение радиусов Земли ($R_z$) и радиуса Меркурия ($R_m$) составляет $frac{R_z }{R_m}=2,63$?

Решение. Модуль ускорения свободного падения у поверхности Земли определен формулой:

[g=gamma frac{M}{{R_z}^2}left(1.1right).]

Величина вектора напряженности гравитационного поля любого тела равна:

[gleft(rright)=gamma frac{M}{r^2} left(1.2right),]

если в формулу (1.2) вместо массы $M$ подставить массу Меркурия, а вместо $r$ его радиус, то мы получим ускорение свободного падения около поверхности Меркурия:

[g_m=gamma frac{M_m}{{R_m}^2}left(1.3right).]

Найдем отношение выражений (1.1) и (1.3):

[frac{g}{g_m}=frac{gamma frac{M}{{R_z}^2}}{gamma frac{M_m}{{R_m}^2}}=frac{M}{M_m}frac{{R_m}^2}{{R_z}^2}left(1.4right).]

Считая, что нам известно ускорение свободного падения на Земле ($g=9,8 frac{м}{с^2}$), выразим ускорение свободного падения на Меркурии:

[g_m=gfrac{M_m}{M}cdot frac{{R_z}^2}{{R_m}^2}.]

Вычислим искомое ускорение:

[g_m=9,8cdot frac{1}{18,18}cdot {left(2,63right)}^2=3,73 left(frac{м}{с^2}right).]

Ответ. $g_m=3,73frac{м}{с^2}$

Пример 2

Задание. Ускорение свободного падения на поверхности Земли считают равным $g_0$. Тело опускают в глубокую шахту под Землю. На какой глубине ($h$) от поверхности ускорение свободного падения данного тела будет составлять $g=$0,3 $g_0. $Радиус Земли равен $R. $Землю считайте однородным шаром.

Решение. Если тело находится на некоторой глубине, то считаем, что находящиеся выше слои Земли действуют на тело с силами гравитации, которые взаимно компенсируют друг друга. Поэтому тело притягивается только той массой Земли, которая находится ниже рассматриваемого тела.

Формула ускорения свободного падения, пример 1

В качестве основы для решения задачи используем закон всемирного тяготения в виде:

[F=gamma frac{mM}{r^2}left(2.1right),]

где $m$ — масса тела; $M$ — масса Земли; $r$ — расстояние от центра Земли до рассматриваемого тела, то есть:

[r=R-h left(2.2right),]

где $R$ — радиус Земли. Мы можем использовать закон гравитации в виде (2.1), так как по условию задачи Землю считаем однородным шаром (ее масса распределена сферически симметрично), а тело материальной точкой. С другой стороны на тело действует сила, которая равна:

[F=mg left(2.3right).]

Приравняем правые части выражений (2.1) и (2.3), учтем (2.2):

[mg=gamma frac{mM’}{{(R-h )}^2}to g=gamma frac{M’}{{left(R-h right)}^2}left(2.4right),]

где $M’=frac{4pi }{3}{rho left(R-h right)}^3$ — масса слоев Земли ниже рассматриваемого тела; $rho $ — плотность Земли.

У поверхности Земли мы знаем, что:

[g_0=gamma frac{M}{R^2}=gamma frac{frac{4pi }{3}rho R^3}{R^2}=frac{4pi }{3}gamma rho Rleft(2.5right).]

Выразим из (2.5) плотность Земли:

[rho =frac{3}{4pi }frac{g_0}{gamma R}left(2.6right).]

Подставим результат (2.6) в формулу (2.4) выразим высоту:

[g=gamma frac{frac{4pi }{3}{left(R-h right)}^3}{{left(R-h right)}^2}frac{3}{4pi }frac{g_0}{gamma R}=g_0frac{R-h}{R}to h=Rleft(1-frac{g}{g_0}right)=0,7R.]

Ответ. $h=Rleft(1-frac{g}{g_0}right)=0,7R$

Читать дальше: формула центростремительного ускорения.

236

проверенных автора готовы помочь в написании работы любой сложности

Мы помогли уже 4 430 ученикам и студентам сдать работы от решения задач до дипломных на отлично! Узнай стоимость своей работы за 15 минут!

Понравилась статья? Поделить с друзьями:
  • Триколор ошибка 5 как исправить самостоятельно форум бесплатно
  • Как найти секторы на дорожке
  • Как составить политический лозунг
  • Как найти темп роста чистой прибыли
  • Запуск программы невозможен api ms win crt runtime l1 1 0 dll как исправить