Как найти единственный корень уравнения

Уравнение

Уравнение — это равенство, которое справедливо не при любых значениях входящих в него букв, а только при некоторых. Так же можно сказать, что уравнение является равенством, содержащим неизвестные числа, обозначенные буквами.

Например, равенство 10 — x = 2 является уравнением, так как оно справедливо только при x = 8. Равенство x 2 = 49 — это уравнение, справедливое при двух значениях x, а именно, при

(+7) 2 = 49 и (-7) 2 = 49.

Если вместо x подставить его значение, то уравнение превратится в тождество. Такие переменные, как x, которые только при определённых значениях обращают уравнение в тождество, называются неизвестными уравнения. Они обычно обозначаются последними буквами латинского алфавита x, y и z.

Любое уравнение имеет левую и правую части. Выражение, стоящее слева от знака = , называется левой частью уравнения, а стоящее справа — правой частью уравнения. Числа и алгебраические выражения, из которых состоит уравнение, называются членами уравнения:

Корни уравнения

Корень уравнения — это число, при подстановке которого в уравнение получается верное равенство. Уравнение может иметь всего один корень, может иметь несколько корней или не иметь корней вообще.

Например, корнем уравнения

является число 8, а у уравнения

два корня — +7 и -7.

Решить уравнение – значит, найти все его корни или доказать, что их нет.

Виды уравнений

Кроме числовых уравнений, подобных приведённым выше, где все известные величины обозначены числами, существуют ещё буквенные уравнения, в которые кроме букв, обозначающих неизвестные, входят ещё буквы, обозначающие известные (или предполагаемые известные) величины.

По числу неизвестных уравнения разделяются на уравнения с 1-м неизвестным, с 2-мя неизвестными, с 3-мя и более неизвестными.

7x + 2 = 35 — 2x — уравнение с одним неизвестным,

3x + y = 8x — 2y — уравнение с двумя неизвестными.

Что такое корень уравнения

Корнем уравнения называют число, подстановка которого в уравнение вместо переменной (обычно (x)), дает одинаковые значения выражений справа и слева от знака равно.

Решая, например, уравнение (2x+1=x+4) находим ответ: (x=3). Если подставить тройку вместо икса, получатся одинаковые значения слева и справа:

И никакое другое число, кроме тройки такого равенства нам не даст. Значит, число (3) – единственный корень уравнения.

Еще раз: корень – это НЕ ИКС! Икс – это переменная , а корень – это число , которое превращает уравнение в верное равенство (в примере выше – тройка). И при решении уравнений мы это неизвестное число (или числа) ищем.

Пример : Является ли (5) корнем уравнения (x^<2>-2x-15=0)?
Решение : Подставим (5) вместо икса:

По обе стороны от равно — одинаковые значения (ноль), значит 5 действительно корень.

Матхак : на контрольных таким способом можно проверить верно ли вы нашли корни.

Пример : Какое из чисел (0, pm1, pm2), является корнем для (2x^<2>+15x+22=0)?
Решение : Проверим подстановкой каждое из чисел:

проверяем (0): (2cdot0^<2>+15cdot0+22=0)
(0+0+22=0)
(22=0) — не сошлось, значит (0) не подходит
проверяем (1): (2cdot1^<2>+15cdot1+22=0)
(2+15+22=0)
(39=0) — опять не сошлось, то есть и (1) не корень
проверяем (-1): (2cdot(-1)^<2>+15cdot(-1)+22=0)
(2-15+22=0)
(9=0) — снова равенство неверное, (-1) тоже мимо
проверяем (2): (2cdot2^<2>+15cdot2+22=0)
(2cdot4+30+22=0)
(60=0) — и вновь не то, (2) также не подходит
проверяем (-2): (2cdot(-2)^<2>+15cdot(-2)+22=0)
(2cdot4-30+22=0)
(0=0) — сошлось, значит (-2) — корень уравнения

Очевидно, что решать уравнения перебором всех возможных значений – безумие, ведь чисел бесконечно много. Потому были разработаны специальные методы нахождения корней. Так, например, для линейных уравнений достаточно одних только равносильных преобразований , для квадратных – уже используются формулы дискриминанта и т.д. Каждому типу уравнений – свой метод.

Ответы на часто задаваемые вопросы

Вопрос: Может ли корень уравнения быть равен нулю?
Ответ: Да, конечно. Например, уравнение (3x=0) имеет единственный корень — ноль. Можете проверить подстановкой.

Вопрос: Когда в уравнении нет корней?
Ответ: В уравнении может не быть корней, если нет таких значений для икса, которые сделают уравнение верным равенством. Яркий примером тут может быть уравнение (0cdot x=5). Это уравнение не имеет корней, так как значение икса здесь не играет роли (из-за умножения на ноль) — все равно левая часть будет всегда равна нулю. А ноль не равен пятерке. Значит, корней нет.

Вопрос: Что значит «найдите меньший корень уравнения»?
Ответ: Это значит, что нужно решить уравнение, и в ответ указать его меньший корень. Например, уравнение (x^2-5x-6=0) имеет два корня: (x_1=-1) и (x_2=6). Меньший из корней: (-1). Вот его и надо будет записать в ответ. Если бы спрашивали про больший корень, то надо было бы записать (6).

Уравнение и его корни: определения, примеры

После того, как мы изучили понятие равенств, а именно один из их видов – числовые равенства, можно перейти к еще одному важному виду – уравнениям. В рамках данного материала мы объясним, что такое уравнение и его корень, сформулируем основные определения и приведем различные примеры уравнений и нахождения их корней.

Понятие уравнения

Обычно понятие уравнения изучается в самом начале школьного курса алгебры. Тогда оно определяется так:

Уравнением называется равенство с неизвестным числом, которое нужно найти.

Принято обозначать неизвестные маленькими латинскими буквами, например, t , r , m др., но чаще всего используются x , y , z . Иными словами, уравнение определяет форма его записи, то есть равенство будет уравнением только тогда, когда будет приведен к определенному виду – в нем должна быть буква, значение которое надо найти.

Приведем несколько примеров простейших уравнений. Это могут быть равенства вида x = 5 , y = 6 и т.д., а также те, что включают в себя арифметические действия, к примеру, x + 7 = 38 , z − 4 = 2 , 8 · t = 4 , 6 : x = 3 .

После того, как изучено понятие скобок, появляется понятие уравнений со скобками. К ним относятся 7 · ( x − 1 ) = 19 , x + 6 · ( x + 6 · ( x − 8 ) ) = 3 и др. Буква, которую надо найти, может встречаться не один раз, а несколько, как, например, в уравнении x + 2 + 4 · x − 2 − x = 10 . Также неизвестные могут быть расположены не только слева, но и справа или в обеих частях одновременно, например, x · ( 8 + 1 ) − 7 = 8 , 3 − 3 = z + 3 или 8 · x − 9 = 2 · ( x + 17 ) .

Далее, после того, как ученики знакомятся с понятием целых, действительных, рациональных, натуральных чисел, а также логарифмами, корнями и степенями, появляются новые уравнения, включающие в себя все эти объекты. Примерам таких выражений мы посвятили отдельную статью.

В программе за 7 класс впервые возникает понятие переменных. Это такие буквы, которые могут принимать разные значения (подробнее см. в статье о числовых, буквенных выражениях и выражениях с переменными). Основываясь на этом понятии, мы можем дать новое определение уравнению:

Уравнение – это равенство, включающее в себя переменную, значение которой нужно вычислить.

То есть, к примеру, выражение x + 3 = 6 · x + 7 – это уравнение с переменной x , а 3 · y − 1 + y = 0 – уравнение с переменной y .

В одном уравнении может быть не одна переменная, а две и более. Их называют соответственно уравнениями с двумя, тремя переменными и др. Запишем определение:

Уравнениями с двумя (тремя, четырьмя и более) переменными называют уравнения, которые включают в себя соответствующее количество неизвестных.

К примеру, равенство вида 3 , 7 · x + 0 , 6 = 1 является уравнением с одной переменной x , а x − z = 5 – уравнением с двумя переменными x и z . Примером уравнения с тремя переменными может быть выражение x 2 + ( y − 6 ) 2 + ( z + 0 , 6 ) 2 = 26 .

Корень уравнения

Когда мы говорим об уравнении, сразу возникает необходимость определиться с понятием его корня. Попробуем объяснить, что оно означает.

Нам дано некое уравнение, включающее в себя одну переменную. Если мы подставим вместо неизвестной буквы число, то уравнение станет числовым равенством – верным или неверным. Так, если в уравнении a + 1 = 5 мы заменим букву числом 2 , то равенство станет неверным, а если 4 , то получится верное равенство 4 + 1 = 5 .

Нас больше интересуют именно те значения, с которыми переменная обратится в верное равенство. Они и называются корнями или решениями. Запишем определение.

Корнем уравнения называют такое значение переменной, которое обращает данное уравнение в верное равенство.

Корень также можно назвать решением, или наоборот – оба эти понятия означают одно и то же.

Возьмем пример для пояснения этого определения. Выше мы приводили уравнение a + 1 = 5 . Согласно определению, корнем в данном случае будет 4 , потому что при подстановке вместо буквы оно дает верное числовое равенство, а двойка не будет решением, поскольку ей отвечает неверное равенство 2 + 1 = 5 .

Сколько корней может иметь одно уравнение? Любое ли уравнение имеет корень? Ответим на эти вопросы.

Уравнения, не имеющие ни одного корня, тоже существуют. Примером может быть 0 · x = 5 . Мы можем подставить в него бесконечно много разных чисел, но ни одно из них не превратит его в верное равенство, поскольку умножение на 0 всегда дает 0 .

Также бывают уравнения, имеющие несколько корней. У них может быть как конечное, так и бесконечно большое количество корней.

Так, в уравнении x − 2 = 4 есть только один корень – шесть, в x 2 = 9 два корня ­­– три и минус три, в x · ( x − 1 ) · ( x − 2 ) = 0 три корня – нуль, один и два, в уравнении x=x корней бесконечно много.

Теперь поясним, как правильно записывать корни уравнения. Если их нет, то мы так и пишем: «уравнение корней не имеет». Можно также в этом случае указать знак пустого множества ∅ . Если корни есть, то пишем их через запятую или указываем как элементы множества, заключив в фигурные скобки. Так, если у какого-либо уравнения есть три корня — 2 , 1 и 5 , то пишем — 2 , 1 , 5 или < — 2 , 1 , 5 >.

Допускается запись корней в виде простейших равенств. Так, если неизвестная в уравнении обозначена буквой y , а корнями являются 2 и 7 , то мы пишем y = 2 и y = 7 . Иногда к буквам добавляются нижние индексы, например, x 1 = 3 , x 2 = 5 . Таким образом мы указываем на номера корней. Если решений у уравнения бесконечно много, то мы записываем ответ как числовой промежуток или используем общепринятые обозначения: множество натуральных чисел обозначается N , целых ­– Z , действительных – R . Скажем, если нам надо записать, что решением уравнения будет любое целое число, то мы пишем, что x ∈ Z , а если любое действительное от единицы до девяти, то y ∈ 1 , 9 .

Когда у уравнения два, три корня или больше, то, как правило, говорят не о корнях, а о решениях уравнения. Сформулируем определение решения уравнения с несколькими переменными.

Решение уравнения с двумя, тремя и более переменными – это два, три и более значения переменных, которые обращают данное уравнение в верное числовое равенство.

Поясним определение на примерах.

Допустим, у нас есть выражение x + y = 7 , которое представляет из себя уравнение с двумя переменными. Подставим вместо первой единицу, а вместо второй двойку. У нас получится неверное равенство, значит, эта пара значений не будет решением данного уравнения. Если же мы возьмем пару 3 и 4 , то равенство станет верным, значит, мы нашли решение.

Такие уравнения тоже могут не иметь корней или иметь бесконечное их количество. Если нам надо записать два, три, четыре и более значений, то мы пишем их через запятую в круглых скобках. То есть в примере выше ответ будет выглядеть как ( 3 , 4 ) .

На практике чаще всего приходится иметь дело с уравнениями, содержащими одну переменную. Алгоритм их решения мы подробно рассмотрим в статье, посвященной решению уравнений.

источники:

http://cos-cos.ru/math/95/

http://zaochnik.com/spravochnik/matematika/systems/uravnenie-i-ego-korni/

Решение квадратных уравнений

6 июля 2011

Квадратные уравнения изучают в 8 классе, поэтому ничего сложного здесь нет. Умение решать их совершенно необходимо.

Квадратное уравнение — это уравнение вида ax2 + bx + c = 0, где коэффициенты a, b и c — произвольные числа, причем a ≠ 0.

Прежде, чем изучать конкретные методы решения, заметим, что все квадратные уравнения можно условно разделить на три класса:

  1. Не имеют корней;
  2. Имеют ровно один корень;
  3. Имеют два различных корня.

В этом состоит важное отличие квадратных уравнений от линейных, где корень всегда существует и единственен. Как определить, сколько корней имеет уравнение? Для этого существует замечательная вещь — дискриминант.

Дискриминант

Пусть дано квадратное уравнение ax2 + bx + c = 0. Тогда дискриминант — это просто число D = b2 − 4ac.

Эту формулу надо знать наизусть. Откуда она берется — сейчас неважно. Важно другое: по знаку дискриминанта можно определить, сколько корней имеет квадратное уравнение. А именно:

  1. Если D < 0, корней нет;
  2. Если D = 0, есть ровно один корень;
  3. Если D > 0, корней будет два.

Обратите внимание: дискриминант указывает на количество корней, а вовсе не на их знаки, как почему-то многие считают. Взгляните на примеры — и сами все поймете:

Задача. Сколько корней имеют квадратные уравнения:

  1. x2 − 8x + 12 = 0;
  2. 5x2 + 3x + 7 = 0;
  3. x2 − 6x + 9 = 0.

Выпишем коэффициенты для первого уравнения и найдем дискриминант:
a = 1, b = −8, c = 12;
D = (−8)2 − 4 · 1 · 12 = 64 − 48 = 16

Итак, дискриминант положительный, поэтому уравнение имеет два различных корня. Аналогично разбираем второе уравнение:
a = 5; b = 3; c = 7;
D = 32 − 4 · 5 · 7 = 9 − 140 = −131.

Дискриминант отрицательный, корней нет. Осталось последнее уравнение:
a = 1; b = −6; c = 9;
D = (−6)2 − 4 · 1 · 9 = 36 − 36 = 0.

Дискриминант равен нулю — корень будет один.

Обратите внимание, что для каждого уравнения были выписаны коэффициенты. Да, это долго, да, это нудно — зато вы не перепутаете коэффициенты и не допустите глупых ошибок. Выбирайте сами: скорость или качество.

Кстати, если «набить руку», через некоторое время уже не потребуется выписывать все коэффициенты. Такие операции вы будете выполнять в голове. Большинство людей начинают делать так где-то после 50-70 решенных уравнений — в общем, не так и много.

Корни квадратного уравнения

Теперь перейдем, собственно, к решению. Если дискриминант D > 0, корни можно найти по формулам:

Формула корней квадратного уравнения

Основная формула корней квадратного уравнения

Когда D = 0, можно использовать любую из этих формул — получится одно и то же число, которое и будет ответом. Наконец, если D < 0, корней нет — ничего считать не надо.

Задача. Решить квадратные уравнения:

  1. x2 − 2x − 3 = 0;
  2. 15 − 2xx2 = 0;
  3. x2 + 12x + 36 = 0.

Первое уравнение:
x2 − 2x − 3 = 0 ⇒ a = 1; b = −2; c = −3;
D = (−2)2 − 4 · 1 · (−3) = 16.

D > 0 ⇒ уравнение имеет два корня. Найдем их:

Решение простого квадратного уравнения

Второе уравнение:
15 − 2xx2 = 0 ⇒ a = −1; b = −2; c = 15;
D = (−2)2 − 4 · (−1) · 15 = 64.

D > 0 ⇒ уравнение снова имеет два корня. Найдем их

[begin{align} & {{x}_{1}}=frac{2+sqrt{64}}{2cdot left( -1 right)}=-5; \ & {{x}_{2}}=frac{2-sqrt{64}}{2cdot left( -1 right)}=3. \ end{align}]

Наконец, третье уравнение:
x2 + 12x + 36 = 0 ⇒ a = 1; b = 12; c = 36;
D = 122 − 4 · 1 · 36 = 0.

D = 0 ⇒ уравнение имеет один корень. Можно использовать любую формулу. Например, первую:

[x=frac{-12+sqrt{0}}{2cdot 1}=-6]

Как видно из примеров, все очень просто. Если знать формулы и уметь считать, проблем не будет. Чаще всего ошибки возникают при подстановке в формулу отрицательных коэффициентов. Здесь опять же поможет прием, описанный выше: смотрите на формулу буквально, расписывайте каждый шаг — и очень скоро избавитесь от ошибок.

Неполные квадратные уравнения

Бывает, что квадратное уравнение несколько отличается от того, что дано в определении. Например:

  1. x2 + 9x = 0;
  2. x2 − 16 = 0.

Несложно заметить, что в этих уравнениях отсутствует одно из слагаемых. Такие квадратные уравнения решаются даже легче, чем стандартные: в них даже не потребуется считать дискриминант. Итак, введем новое понятие:

Уравнение ax2 + bx + c = 0 называется неполным квадратным уравнением, если b = 0 или c = 0, т.е. коэффициент при переменной x или свободный элемент равен нулю.

Разумеется, возможен совсем тяжелый случай, когда оба этих коэффициента равны нулю: b = c = 0. В этом случае уравнение принимает вид ax2 = 0. Очевидно, такое уравнение имеет единственный корень: x = 0.

Рассмотрим остальные случаи. Пусть b = 0, тогда получим неполное квадратное уравнение вида ax2 + c = 0. Немного преобразуем его:

Решение неполного квадратного уравнения

Решение неполного квадратного уравнения

Поскольку арифметический квадратный корень существует только из неотрицательного числа, последнее равенство имеет смысл исключительно при (−c/a) ≥ 0. Вывод:

  1. Если в неполном квадратном уравнении вида ax2 + c = 0 выполнено неравенство (−c/a) ≥ 0, корней будет два. Формула дана выше;
  2. Если же (−c/a) < 0, корней нет.

Как видите, дискриминант не потребовался — в неполных квадратных уравнениях вообще нет сложных вычислений. На самом деле даже необязательно помнить неравенство (−c/a) ≥ 0. Достаточно выразить величину x2 и посмотреть, что стоит с другой стороны от знака равенства. Если там положительное число — корней будет два. Если отрицательное — корней не будет вообще.

Теперь разберемся с уравнениями вида ax2 + bx = 0, в которых свободный элемент равен нулю. Тут все просто: корней всегда будет два. Достаточно разложить многочлен на множители:

Разложение уравнения на множители

Вынесение общего множителя за скобку

Произведение равно нулю, когда хотя бы один из множителей равен нулю. Отсюда находятся корни. В заключение разберем несколько таких уравнений:

Задача. Решить квадратные уравнения:

  1. x2 − 7x = 0;
  2. 5x2 + 30 = 0;
  3. 4x2 − 9 = 0.

x2 − 7x = 0 ⇒ x · (x − 7) = 0 ⇒ x1 = 0; x2 = −(−7)/1 = 7.

5x2 + 30 = 0 ⇒ 5x2 = −30 ⇒ x2 = −6. Корней нет, т.к. квадрат не может быть равен отрицательному числу.

4x2 − 9 = 0 ⇒ 4x2 = 9 ⇒ x2 = 9/4 ⇒ x1 = 3/2 = 1,5; x2 = −1,5.

Смотрите также:

  1. Теорема Виета
  2. Следствия из теоремы Виета
  3. Тест на тему «Значащая часть числа»
  4. Метод коэффициентов, часть 1
  5. Однородные тригонометрические уравнения: общая схема решения
  6. Задача B4: строительные бригады

Корнем уравнения называют число, подстановка которого в уравнение вместо переменной (обычно (x)), дает одинаковые значения выражений справа и слева от знака равно.

Решая, например, уравнение (2x+1=x+4) находим ответ: (x=3). Если подставить тройку вместо икса, получатся одинаковые значения слева и справа: 

(2x+1=x+4)
(2cdot3+1=3+4)
(7=7)


И никакое другое число, кроме тройки такого равенства нам не даст. Значит, число (3) – единственный корень уравнения.


Еще раз: корень – это НЕ ИКС!
Икс – это переменная, а корень – это число, которое превращает уравнение в верное равенство (в примере выше – тройка). И при решении уравнений мы это неизвестное число (или числа) ищем.


Пример: Является ли (5) корнем уравнения (x^{2}-2x-15=0)?
Решение: Подставим (5) вместо икса:


(5^{2}-2cdot5-15=0)


(25-10-15=0)


(0=0)


По обе стороны от равно — одинаковые значения (ноль), значит 5 действительно корень.

Матхак: на контрольных таким способом можно проверить верно ли вы нашли корни.


Пример: Какое из чисел (0, pm1, pm2), является корнем для (2x^{2}+15x+22=0)?
Решение: Проверим подстановкой каждое из чисел:


проверяем (0):
    (2cdot0^{2}+15cdot0+22=0)

 
  (0+0+22=0) 
    (22=0) — не сошлось, значит (0) не подходит

проверяем (1):

 
   (2cdot1^{2}+15cdot1+22=0)
    (2+15+22=0)
    (39=0) — опять не сошлось, то есть и (1) не корень

проверяем (-1):

 
   (2cdot(-1)^{2}+15cdot(-1)+22=0)
    (2-15+22=0)
    (9=0) — снова равенство неверное, (-1) тоже мимо

 проверяем (2):
    (2cdot2^{2}+15cdot2+22=0)

 
   (2cdot4+30+22=0)

 
   (60=0) — и вновь не то, (2) также не подходит

  проверяем (-2):

 
  (2cdot(-2)^{2}+15cdot(-2)+22=0)

 
    (2cdot4-30+22=0)
    (0=0) — сошлось, значит (-2) — корень уравнения

Очевидно, что решать уравнения перебором всех возможных значений – безумие, ведь чисел бесконечно много. Потому были разработаны специальные методы нахождения корней. Так, например, для линейных уравнений достаточно одних только равносильных преобразований, для квадратных – уже используются формулы дискриминанта и т.д. Каждому типу уравнений – свой метод.

Ответы на часто задаваемые вопросы

Вопрос: Может ли корень уравнения быть равен нулю?
Ответ: Да, конечно. Например, уравнение (3x=0) имеет единственный корень — ноль. Можете проверить подстановкой.

Вопрос: Когда в уравнении нет корней?
Ответ: В уравнении может не быть корней, если нет таких значений для икса, которые сделают уравнение верным равенством. Яркий примером тут может быть уравнение (0cdot x=5). Это уравнение не имеет корней, так как значение икса здесь не играет роли (из-за умножения на ноль) — все равно левая часть будет всегда равна нулю. А ноль не равен пятерке. Значит, корней нет.

Вопрос: Что значит «найдите меньший корень уравнения»?
Ответ: Это значит, что нужно решить уравнение, и в ответ указать его меньший корень. Например, уравнение (x^2-5x-6=0) имеет два корня: (x_1=-1) и (x_2=6). Меньший из корней: (-1). Вот его и надо будет записать в ответ. Если бы спрашивали про больший корень, то надо было бы записать (6).

План урока:

Понятие уравнения

Что такое корень уравнения?

Решение уравнений с одной переменной

Линейное уравнение с одной переменной

Примеры задач

Понятие уравнения

Уравнение являются одним из основных понятий алгебры и всей математики. Сам термин «алгебра» возник от названия книги «Китаб аль-джебрваль-мукабала», написанной великим ученым аль-Хорезми в 830 году, в которой он рассматривал способы решения уравнений.

Уравнение – это разновидность равенства. При этом в нем должна находиться хотя бы одна переменная, но их количество может быть любым. Дадим определение понятия уравнения:

1 opredelenie

В качестве примера уравнений можно привести следующие равенства:

  • x=5;
  • a+b+c=9;
  • dg+98=(j+f)·k;
  • L²+V²= 25²;
  • 5z+3z=100.

Во всех приведенных примерах вместо переменной можно подставлять действительные числа, однако в старших классах мы познакомимся и с более сложными уравнениями, где в качестве переменных величин выступают такие математические объекты, как функции и вектора.

Уравнения – это не просто абстрактные математические конструкции. Часто они появляются при описании окружающего мира на формальном языке математики. Пусть доходы семьи за месяц обозначаются буквой Д, а расходы – Р. Разница в доходах и расходах семьи идет на сбережения (С). Формально такую ситуацию можно описать уравнением:

Д – Р=С.

Что такое корень уравнения?

Как и в любое буквенное выражение, в уравнение можно подставлять различные значения переменных. В зависимости от них оно будет превращаться либо в верное равенство, либо в неверное. Подставим r=6 в уравнение

(r+2)·r=48

и получим запись

(6+2)·6=48.

Очевидно, что это равенство верное. Но если подставить значение r=1, то получится ошибочное равенство

(1+2)·1=48.

Число 6 будет называться корнем уравнения (r+2)·r=48, а число 1 им не является.

Дадим строгое определение понятию корня уравнения:

2 opredelenie

Слово набор используется для того, чтобы охватить определением уравнения с несколькими переменными. Так, переменных две, то следует указывать пару чисел, которые могут обернуть выражение в равенство. Так, для уравнения

M+W=10;

корнем является набор M=4; W=6. Однако по отдельности ни число 6, ни число 4 не является корнем уравнения.

Именно поиск корней уравнения и является целью при его решении:

3 opredelenie

Встает вопрос – а сколько корней может быть у уравнения? Их число может быть абсолютно разным. Возможно записать уравнение, имеющее любое наперед заданное количество корней. Покажем, как это сделать. Уравнение

y–1=0

имеет ровно один корень, равный единице. Теперь умножим его левую часть на выражение (y–2):

(y–2)·(y–1)=0.

Произведение нескольких чисел может равняться нулю только тогда, когда хотя бы одно из них равняется нулю. Поэтому корнями данного уравнения будут числа 1 и 2. Чтобы построить уравнение с 3 корнями, допишем слева ещё одно выражение в скобках:

(y–3)·(y–2)·(y–1)=0.

Теперь имеем три корня: 1, 2 и 3. Добавляя слева подобные выражения, можно получить уравнение с любым количеством корней. Например, ровно 7 корней будет иметь уравнение

(y–7)·(y–6)·(y–5)·(y–4)·(y–3)·(y–2)·(y–1)=0.

Есть ещё два особых случая. Первый из них – это уравнения с бесконечным количеством корней. Примером подобного равенства является z=z.Очевидно, что при любом значении z оно будет верным, поэтому у него бесчисленное множество корней.

Второй особый случай – это уравнения, вообще не имеющие ни единого корня.Доказать их существование можно, просто приведя пример:

y²= –5.

Действительно, если мы возведем в квадрат любое действительное число, мы получим неотрицательное число, поэтому приведенное уравнение не имеет решения.

Однако в данном случае стоит отметить, что количество корней может зависеть от того, какие числа допускается подставлять в записанное выражение. Дело в том, что математики в XVI веке придумали новое понятие – «мнимые числа». Их особенность заключается в том, что при умножении на себя они дают отрицательное число!Например, число «мнимая единица», которая обозначается символом i, при возведении в квадрат дает –1:

i² = –1.

Мнимые числа были специально введены в алгебру для того, чтобы из отрицательных чисел можно было извлекать квадратный корень. Однако со временем область их применения в математике сильно расширилась. Более того, мнимые числа даже используются на практике. Оказалось, что с их помощью удобно описывать процессы в электрических цепях и квантовые явления. Более подробно мнимые числа будут изучены в старших классах и институте. Пока же мы будем учитывать только действительные корни уравнений.

Иногда уравнение записывается так, что в него нельзя подставлять некоторые числа. Часто это связано с недопустимостью деления на ноль. Так, в уравнение

(9-d)/(p-5)=9dx

нельзя подставлять значение p=5. В таком случая говорят, что число 5 не входит в область определения уравнения.

4 opredelenie

Решение уравнений с одной переменной

Рассмотрим простейшее уравнение вида

z=b,

где z– это переменная, а b – произвольное действительное число. Приведем примеры простейших уравнений:

  • e=7;
  • L=9;
  • f= –10,68;
  • y=0.

Очевидно, что единственным корнем уравнения z=b является число b.

Для решения всех остальных уравнений их постепенно упрощают, сводя к одному или нескольким простейшим. Для этого из исходного уравнения с помощью некоторого набора правил получают эквивалентное, или равносильное, уравнение.

5 opredelenie

Например, уравнения 2y+5=15 и 4z=20 равносильны друг другу, так как имеют единственный корень, равный 5.Убедиться в этом можно подстановкой:

2·5+5 = 15;

4·5 = 20.

Какими же способами можно получить из одного уравнение другое, равносильное ему? Во-первых, и в левой, и в правой части можно делать стандартные алгебраические процедуры:

  • складывать подобные слагаемые;
  • раскрывать скобки;
  • выносить общий множитель за скобки.

Например, запись 5d+4d=5z+5k будет эквивалента равенству 9d=5(z+k). Здесь в левой части сложили подобные слагаемые, а в правой вынесли множитель 5 за скобки:

5d+4d = 5z+5k

9d = 5z+5k

9d = 5(z+k).

Во-вторых, к левой и правой части можно добавлять любое одинаковое выражение. Равносильными будут уравнения y+9=10 и y+10=11, так как обе части были увеличены ровно на единицу:

y+9 = 10

y+9+1 = 10+1

y+10 = 11.

Но добавлять можно и выражения, содержащие переменные, поэтому эквивалентны друг другу будут уравнения r+6=8 и r+6+r²=8+r².

Однако здесь можно совершить логическую ошибку, если забыть про области определения уравнений. Приведем пример. Уравнение

N+7=9

имеет единственный корень, равный 2:

2+7 = 9

Теперь добавим к его частям выражение 1/(N-2):

N+7+1/(N–2)=9+1/(N–2).

Подумайте, сколько решений имеет получившееся уравнение? Оказывается, ни одного! При подстановке N=2 получаем деление на ноль, а потому число 2 теперь не может являться корнем уравнения:

N+7+1/(N–2) = 9+1/(N–2);

2+7+1/(2–2) = 9+1/(2–2) (подставили N = 2);

9+1/0 = 9+1/0 (получили деление на ноль).

Но если бы мы добавили к обеим частям дробь 1/(N-3), то получили бы равносильное уравнение:

N+7+1/(N–3) = 9+1/(N–3);

2+7+1/(3–2) = 9+1/(3–2) (подставили N = 3);

9+1/1 = 9 + 1/1;

9+1 = 9+1;

10 = 10.

Добавлять можно не только положительные, но и отрицательные числа. В таком случае мы вычитаем из частей уравнения одинаковое выражение. Из уравнения h+10=20 вычтем число 4 и получим h+6=16:

h+10 = 20;

h+10 – 4= 20 – 4;

h+6 = 16.

На этом свойстве уравнений построен специальный прием, который называют переносом слагаемого из одной части в другую. Пусть дано уравнение L+2=5. Вычитая из обеих частей число 2, получаем запись L= 5–2:

L+2 = 5;

L+2–2 = 5–2;

L = 5–2.

Мы перенесли двойку из левой части в правую, при этом она поменяла знак с плюса на минус. Подобным образом можно перенести любое слагаемое.

6 opredelenie

Покажем перенос слагаемых на нескольких примерах:

3d²+7 = 2d²+10;

3d² = 2d²+10–7(перенесли 7 вправо);

3d² –2d² = 10–7(перенесли 2d² влево);

d² = 3 (сложили подобные слагаемые).

Ещё один пример:

4F–9+2G = 5+2G–2F;

4F–9+2G+2F = 5+2G (перенесли влево слагаемое –2F);

4F+2F = 5+2G+9–2G (перенесли вправо –9 и 2G);

2F = 14 (сложили подобные слагаемые).

В-третьих, обе части уравнения можно умножить или поделить на одинаковое число или выражение. Так, эквивалентны равенства 3p=7 и 6p=14:

3p = 7;

2·3p = 2·7;

6p = 14.

Но здесь стоит соблюдать осторожность и учитывать области определения уравнений. Приведем пример ошибки. Уравнение

x/(x+2)+2/(x+2)=0

умножим на (х+2). В результате получим:

x/(x+2)+2/(x+2) = 0;

(x/(x+2)+2/(x+2))·(х+2) = 0·(x+2);

(х+2)·x/(x+2)+ (х+2)· 2/(x+2) = 0·(x+2);

х+2=0

и корень, равный (–2). Однако если подставить его в исходное уравнение, то получим выражение, не имеющее смысла из-за деления на ноль:

x/(x+2)+2/(x+2) = 0;

–2/(–2+2)+2/(–2+2) = 0; (подставили x = –2)

-2/0+2/0 = 0.

Этих методов достаточно для решения простых уравнений. Существуют и иные способы их преобразования (логарифмирование, возведение в степень и т.п.), которые будут рассмотрены в старших классах.

С помощью эквивалентных преобразований можно решить самые сложные задачи, постепенно упрощая выражение. Пусть есть уравнение

(2x+1)(3x–2)–6x(x+4)= 67–2x.

Решим его. Попробуем сначала раскрыть скобки в левой части:

(6x²–4x+3 –2) – (6x²+24x) = 67–2х

6x²–4x+3x–2–6x²–24x = 67–2х.

Далее перенесем слагаемое (-2x) в левую часть, а (-2) в правую. В результате в одной части у нас будут только слагаемые с переменной, а в другой – числа:

6x²–4x+3x–6x²–24x–67+2x=67+2.

Приведем подобные слагаемые. 6x² и –6x² сократятся:

–23x=69.

Теперь поделим обе части на –23:

x = –3

Получили простейшее уравнение, единственный корень которого равен -3. Так как каждое наше преобразование было равносильным, то и исходное уравнение имеет единственный корень –3. Подставив его туда, можно проверить себя:

(2x+1)·(3x–2)–6x·(x+4) = 67–2x;

(2·(–3)+1)·(3·(–3)–2)–6·(–3)·(–3+4) = 67–2·(–3) (подставили х = –3);

(–6+1)·(–9–2)–(–18)·1 = 67–(–6);

(–5)·(–11)+18 = 67+6;

55+18=73;

73 = 73.

Линейное уравнение с одной переменной

Существует много разновидностей уравнений: квадратные, кубические, логарифмические, тригонометрические и т.п. Наиболее простыми являются линейные уравнения.

7 opredelenie

8 opredelenie

Примеры линейных уравнений:

  • 2x=9;
  • 5F=¼;
  • 6d=-1,5;
  • ¾L=0,96.

Возможны 3 случая:

  1. a=0 и b=0;
  2. a=0, но b≠0;
  3. a≠0.

В первом случае имеем уравнение 0·x=0. При любом значении переменной мы будем получать верное равенство 0=0, поэтому уравнение будет иметь бесконечное множество корней.

Во втором случае имеем уравнение 0·x=b. Левая часть при любом значении x будет равняться нулю, а правая нет, поэтому уравнение не будет иметь ни одного решения.

В третьем случае обе части уравнения поделим на a. Тогда получим равносильное равенство x=b/a. Получаем ровно один корень.

Примеры задач

Уравнения активно используются для решения разнообразных задач. При этом используется следующий алгоритм:

  1. неизвестная величина в задаче обозначается буквой, то есть принимается за переменную величину;
  2. на основании условий задачи записывается уравнение;
  3. решая его, находят значение неизвестной величины.

Рассмотрим несколько примеров.

№1. Фирме принадлежит два офиса. Их общая площадь составляет 508 м². Известно, что одно из помещений занимает площадь в три раза больше, чем второе. Какова площадь каждого здания?

Обозначим как x площадь меньшего офиса. Тогда второе помещение занимает площадь 3x. Их сумма равна 508 м². Это условие можно представить следующим уравнением:

x+3x=508.

Найдем корень уравнения:

x+3x=508;

4x=508;

x=508/4;

x=127.

Получаем, что площадь меньшего офиса составляет 127 м². Тогда второе помещение занимает 3·127=381 м². Результат можно проверить: 127+381=508. Оба условия задачи соблюдены.

Попробуем решить задачу, составив иное уравнение. Обозначим x площадь первого помещения, но площадь второго выразим как (508-x). Тогда уравнение и его выглядеть так:

3x = 508–x; (так как площадь двух помещений отличаются в три раза)

3x+x=508;

4x=508;

x=127.

Из приведенного примера ясно, что условия задачи можно использовать по-разному, а потому и исходные уравнения могут получаться различными. Однако на ответ задачи это не влияет. Более того, можно было принять за неизвестное площадь второго офиса, а не первого.

№ 2. У металлурга есть два слитка. В первом содержится 20% золота, а во втором – 60%. Масса первого самородка на 4 кг меньше, чем масса второго. Металлург сплавил их и получил новый слиток, в котором содержалось 45% золота. Сколько весил каждый из слитков до их сплавления?

Примем за x кг массу первого самородка. Тогда второй должен весить (x+4) кг. Новый слиток весит столько же, сколько первый и второй самородки вместе взятые: x+(x+4).

Теперь оценим массу золота в каждом слитке. В первом его содержится 0,2x (20% от x). Во втором самородке 0,6(x+4) драгоценного металла, а в новом слитке содержится 0,45(x+(x+4)) килограмм золота. Так как количество золота при переплавке не изменяется, то должно выполняться уравнение:

0,2х+0,6(х+4)=0,45(х+(х+4)).

Раскроем скобки:

0,1х+0,6х+2,4=0,45(х+х+4);

0,1х+0,4х+1,2=0,45х+0,45х+1,8.

Теперь перенесем все слагаемые с неизвестной величиной влево, а числа – вправо:

0,1x+0,4х–0,45х–0,45х=1,8–2,4.

Приведем подобные слагаемые:

–0,1х=–0,6.

Получили линейное уравнение, его корень равен

х=(–0,6)/(–0,1)=6.

Первый самородок весит 6 кг. Значит, второй слиток имеет массу 6+4=10 кг, а новый слиток, получившийся после сплавления первых двух, весит 16 кг.

  • Если b = 0, то квадратное уравнение принимает вид ax 2 + 0x+c=0 и оно равносильно ax 2 + c = 0.
  • Если c = 0, то квадратное уравнение выглядит так ax 2 + bx + 0 = 0, иначе его можно написать как ax 2 + bx = 0.
  • Если b = 0 и c = 0, то квадратное уравнение выглядит так ax 2 = 0.

Такие уравнения отличны от полного квадратного тем, что их левые части не содержат либо слагаемого с неизвестной переменной, либо свободного члена, либо и того и другого. Отсюда и их название — неполные квадратные уравнения.

Решение неполных квадратных уравнений

Как мы уже знаем, есть три вида неполных квадратных уравнений:

  • ax 2 = 0, ему отвечают коэффициенты b = 0 и c = 0;
  • ax 2 + c = 0, при b = 0;
  • ax 2 + bx = 0, при c = 0.

Давайте рассмотрим по шагам, как решать неполные квадратные уравнения по видам.

Как решить уравнение ax 2 = 0

Начнем с решения неполных квадратных уравнений, в которых b и c равны нулю, то есть, с уравнений вида ax 2 = 0.

Уравнение ax 2 = 0 равносильно x 2 = 0. Такое преобразование возможно, когда мы разделили обе части на некое число a, которое не равно нулю. Корнем уравнения x 2 = 0 является нуль, так как 0 2 = 0. Других корней у этого уравнения нет, что подтверждают свойства степеней.

Таким образом, неполное квадратное уравнение ax 2 = 0 имеет единственный корень x = 0.

Пример 1. Решить −6x 2 = 0.

  1. Замечаем, что данному уравнению равносильно x 2 = 0, значит исходное уравнение имеет единственный корень — нуль.
  2. По шагам решение выглядит так:

Как решить уравнение ax 2 + с = 0

Обратим внимание на неполные квадратные уравнения вида ax 2 + c = 0, в которых b = 0, c ≠ 0. Мы давно знаем, что слагаемые в уравнениях носят двусторонние куртки: когда мы переносим их из одной части уравнения в другую, они надевает куртку на другую сторону — меняют знак на противоположный.

Еще мы знаем, что если обе части уравнения поделить на одно и то же число (кроме нуля) — у нас получится равносильное уравнение. Ну есть одно и то же, только с другими цифрами.

Держим все это в голове и колдуем над неполным квадратным уравнением (производим «равносильные преобразования»): ax 2 + c = 0:

  • перенесем c в правую часть: ax 2 = — c,
  • разделим обе части на a: x 2 = — c/а.

Ну все, теперь мы готовы к выводам о корнях неполного квадратного уравнения. В зависимости от значений a и c, выражение — c/а может быть отрицательным или положительным. Разберем конкретные случаи.

Если — c/а 2 = — c/а не имеет корней. Все потому, что квадрат любого числа всегда равен неотрицательному числу. Из этого следует, что при — c/а 0, то корни уравнения x 2 = — c/а будут другими. Например, можно использовать правило квадратного корня и тогда корень уравнения равен числу √- c/а, так как (√- c/а) 2 = — c/а. Кроме того, корнем уравнения может стать -√- c/а, так как (-√- c/а) 2 = — c/а. Ура, больше у этого уравнения нет корней.

Неполное квадратное уравнение ax 2 + c = 0 равносильно уравнению х 2 = -c/a, которое:

  • не имеет корней при — c/а 0.
В двух словах

Пример 1. Найти решение уравнения 8x 2 + 5 = 0.

    Перенесем свободный член в правую часть:

Разделим обе части на 8:

  • В правой части осталось число со знаком минус, значит у данного уравнения нет корней.
  • Ответ: уравнение 8x 2 + 5 = 0 не имеет корней.

    Как решить уравнение ax 2 + bx = 0

    Осталось разобрать третий вид неполных квадратных уравнений, когда c = 0.

    Неполное квадратное уравнение ax 2 + bx = 0 можно решить методом разложения на множители. Как разложить квадратное уравнение:

    Разложим на множители многочлен, который расположен в левой части уравнения — вынесем за скобки общий множитель x.

    Теперь можем перейти от исходного уравнения к равносильному x * (ax + b) = 0. А это уравнение равносильно совокупности двух уравнений x = 0 и ax + b = 0, последнее — линейное, его корень x = −b/a.

    Таким образом, неполное квадратное уравнение ax 2 + bx = 0 имеет два корня:

    Пример 1. Решить уравнение 0,5x 2 + 0,125x = 0

  • Это уравнение равносильно х = 0 и 0,5x + 0,125 = 0.
  • Решить линейное уравнение:

    0,5x = 0,125,
    х = 0,125/0,5

  • Значит корни исходного уравнения — 0 и 0,25.
  • Ответ: х = 0 и х = 0,25.

    Как разложить квадратное уравнение

    С помощью теоремы Виета можно получить формулу разложения квадратного трехчлена на множители. Выглядит она так:

    Формула разложения квадратного трехчлена

    Если x1 и x2 — корни квадратного трехчлена ax 2 + bx + c, то справедливо равенство ax 2 + bx + c = a (x − x1) (x − x2).

    Дискриминант: формула корней квадратного уравнения

    Чтобы найти результат квадратного уравнения, придумали формулу корней. Выглядит она так:

    где D = b 2 − 4ac — дискриминант квадратного уравнения.

    Эта запись означает:

    Чтобы легко применять эту формулу, нужно понять, как она получилась. Давайте разбираться.

    Алгоритм решения квадратных уравнений по формулам корней

    Теперь мы знаем, что при решении квадратных уравнения можно использовать универсальную формулу корней — это помогает находить комплексные корни.

    В 8 классе на алгебре можно встретить задачу по поиску действительных корней квадратного уравнения. Для этого важно перед использованием формул найти дискриминант и убедиться, что он неотрицательный, и только после этого вычислять значения корней. Если дискриминант отрицательный, значит уравнение не имеет действительных корней.

    Алгоритм решения квадратного уравнения ax 2 + bx + c = 0:

    • вычислить его значение дискриминанта по формуле D = b 2 −4ac;
    • если дискриминант отрицательный, зафиксировать, что действительных корней нет;
    • если дискриминант равен нулю, вычислить единственный корень уравнения по формуле х = −b/2a;
    • если дискриминант положительный, найти два действительных корня квадратного уравнения по формуле корней

    Чтобы запомнить алгоритм решения квадратных уравнений и с легкостью его использовать, давайте тренироваться!

    Примеры решения квадратных уравнений

    Как решать квадратные уравнения мы уже знаем, осталось закрепить знания на практике.

    Пример 1. Решить уравнение −4x 2 + 28x — 49 = 0.

    1. Найдем дискриминант: D = 28 2 — 4(-4)(-49) = 784 — 784 = 0
    2. Так как дискриминант равен нулю, значит это квадратное уравнение имеет единственный корень
    3. Найдем корень

    Ответ: единственный корень 3,5.

    Пример 2. Решить уравнение 54 — 6x 2 = 0.

      Произведем равносильные преобразования. Умножим обе части на −1

    Оставим неизвестное в одной части, остальное перенесем с противоположным знаком в другую

    Ответ: два корня 3 и — 3.

    Пример 3. Решить уравнение x 2 — х = 0.

      Преобразуем уравнение так, чтобы появились множители

    Ответ: два корня 0 и 1.

    Пример 4. Решить уравнение x 2 — 10 = 39.

      Оставим неизвестное в одной части, остальное перенесем с противоположным знаком в другую

    Ответ: два корня 7 и −7.

    Пример 5. Решить уравнение 3x 2 — 4x+94 = 0.

      Найдем дискриминант по формуле

    D = (-4) 2 — 4 * 3 * 94 = 16 — 1128 = −1112

  • Дискриминант отрицательный, поэтому корней нет.
  • Ответ: корней нет.

    В школьной программе за 8 класс нет обязательного требования искать комплексные корни, но такой подход может ускорить ход решения. Если дискриминант отрицательный — сразу пишем ответ, что действительных корней нет и не мучаемся.

    Формула корней для четных вторых коэффициентов

    Рассмотрим частный случай. Формула решения корней квадратного уравнения , где D = b 2 — 4ac, помогает получить еще одну формулу, более компактную, при помощи которой можно решать квадратные уравнения с четным коэффициентом при x. Рассмотрим, как появилась эта формула.

    Например, нам нужно решить квадратное уравнение ax 2 + 2nx + c = 0. Сначала найдем его корни по известной нам формуле. Вычислим дискриминант D = (2n) 2 — 4ac = 4n 2 — 4ac = 4(n 2 — ac) и подставим в формулу корней:

    2 + 2nx + c = 0″ height=»705″ src=»https://user84060.clients-cdnnow.ru/uploads/5fc11a460e2f8354381151.png» width=»588″>

    Для удобства вычислений обозначим выражение n 2 -ac как D1. Тогда формула корней квадратного уравнения со вторым коэффициентом 2·n примет вид:

    где D1 = n 2 — ac.

    Самые внимательные уже заметили, что D = 4D1, или D1= D/4. Проще говоря, D1 — это четверть дискриминанта. И получается, что знак D1 является индикатором наличия или отсутствия корней квадратного уравнения.

    Сформулируем правило. Чтобы найти решение квадратного уравнения со вторым коэффициентом 2n, нужно:

    • вычислить D1= n 2 — ac;
    • если D1 0, значит можно найти два действительных корня по формуле

    Формула Виета

    Если в школьной геометрии чаще всего используется теорема Пифагора, то в школьной алгебре ведущую роль занимают формулы Виета. Теорема звучит так:

    Сумма корней x 2 + bx + c = 0 равна второму коэффициенту с противоположным знаком, а произведение корней равняется свободному члену.

    Если дано x 2 + bx + c = 0, где x₁ и x₂ являются корнями, то справедливы два равенства:

    Знак системы, который принято обозначать фигурной скобкой, означает, что значения x₁ и x₂ удовлетворяют обоим равенствам.

    Рассмотрим теорему Виета на примере: x 2 + 4x + 3 = 0.

    Пока неизвестно, какие корни имеет данное уравнение. Но в соответствии с теоремой можно записать, что сумма этих корней равна второму коэффициенту с противоположным знаком. Он равен четырем, значит будем использовать минус четыре:

    Произведение корней по теореме соответствует свободному члену. В данном случае свободным членом является число три. Значит:

    Необходимо проверить равна ли сумма корней −4, а произведение 3. Для этого найдем корни уравнения x 2 + 4x + 3 = 0. Воспользуемся формулами для чётного второго коэффициента:
    2 + 4x + 3 = 0″ height=»215″ src=»https://lh5.googleusercontent.com/E_X403ETh_88EANRWdQN03KRT8yxP2HO4HoCrxj__c8G0DqmNJ1KDRqtLH5Z1p7DtHm-rNMDB2tEs41D7RHpEV5mojDTMMRPuIkcW33jVNDoOe0ylzXdHATLSGzW4NakMkH2zkLE» width=»393″>

    Получилось, что корнями уравнения являются числа −1 и −3. Их сумма равняется второму коэффициенту с противоположным знаком, а значит решение верное.
    2 + 4x + 3 = 0″ height=»52″ src=»https://lh5.googleusercontent.com/VzGPXO9B0ZYrr9v0DpJfXwuzeZtjYnDxE_ma76PUC8o7jVWwa8kZjTJhq2Lof0TiJXAp_ny3yRwI_OyRzeucv9xUZ63yoozGPP4xd4OxvElVT7Pt-d6xL5w17e_mQNs5qZJQiwfG» width=»125″>

    Произведение корней −1 и −3 по теореме Виета должно равняться свободному члену, то есть числу 3. Это условие также выполняется:
    2 + 4x + 3 = 0″ height=»52″ src=»https://lh4.googleusercontent.com/Cq-LCFmY3YGNSan1VF3l3CqIeojoJYAvGAiTBWnzyoZu_xJFrF5NfQ3xCe59apJklw6uYbmQ4lAkBTeC-TJmEGicN3rgGtsezhuqdNiOWjZT39NziOB5uOmQr3cr9-5fNnepdZDo» width=»112″>

    Результат проделанных вычислений в том, что мы убедились в справедливости выражения:

    Когда дана сумма и произведение корней квадратного уравнения, принято начинать подбор подходящих корней. Теорема, обратная теореме Виета, при таких условиях может быть главным помощником. Вот она:

    Обратная теорема Виета

    Если числа x1 и x2 таковы, что их сумма равна второму коэффициенту уравнения x 2 + bx + c = 0, взятому с противоположным знаком, а их произведение равно свободному члену, то эти числа и есть корни x 2 + bx + c = 0.

    Обычно вся суть обратных теорем в том самом выводе, которое дает первая теорема. Так, при доказательстве теоремы Виета стало понятно, что сумма x1 и x2 равна −b, а их произведение равно c. В обратной теореме это и есть утверждение.

    Пример 1. Решить при помощи теоремы Виета: x 2 − 6x + 8 = 0.

      Для начала запишем сумму и произведение корней уравнения. Сумма будет равна 6, так как второй коэффициент равен −6. А произведение корней равно 8.

    2 − 6x + 8 = 0″ height=»59″ src=»https://user84060.clients-cdnnow.ru/uploads/5fc101ce2e346034751939.png» width=»117″>

    Когда у нас есть эти два равенства, можно подобрать подходящие корни, которые будут удовлетворять обоим равенствам системы.

    Чтобы проще подобрать корни, нужно их перемножить. Число 8 можно получить путем перемножения чисел 4 и 2 либо 1 и 8. Но значения x1 и x2 надо подбирать так, чтобы они удовлетворяли и второму равенству тоже.

    Можно сделать вывод, что значения 1 и 8 не подходят, так как они не удовлетворяют равенству x1 + x2 = 6. А значения 4 и 2 подходят обоим равенствам:

    Значит числа 4 и 2 — корни уравнения x 2 − 6x + 8 = 0. p>

    Упрощаем вид квадратных уравнений

    Если мы ходили в школу всегда одной тропинкой, а потом вдруг обнаружили путь короче — это значит теперь у нас есть выбор: упростить себе задачу и сократить время на дорогу или прогуляться по привычному маршруту.

    Так же и при вычислении корней квадратного уравнения. Ведь проще посчитать уравнение 11x 2 — 4 x — 6 = 0, чем 1100x 2 — 400x — 600 = 0.

    Часто упрощение вида квадратного уравнения можно получить через умножение или деление обеих частей на некоторое число. Например, в предыдущем абзаце мы упростили уравнение 1100x 2 — 400x — 600 = 0, просто разделив обе части на 100.

    Такое преобразование возможно, когда коэффициенты не являются взаимно простыми числами. Тогда принято делить обе части уравнения на наибольший общий делитель абсолютных величин его коэффициентов.

    Покажем, как это работает на примере 12x 2 — 42x + 48 = 0. Найдем наибольший общий делитель абсолютных величин его коэффициентов: НОД (12, 42, 48) = 6. Разделим обе части исходного квадратного уравнения на 6, и придем к равносильному уравнению 2x 2 — 7x + 8 = 0. Вот так просто.

    А умножение обеих частей квадратного уравнения отлично помогает избавиться от дробных коэффициентов. Умножать в данном случае лучше на наименьшее общее кратное знаменателей его коэффициентов. Например, если обе части квадратного уравнения

    умножить на НОК (6, 3, 1) = 6, то оно примет более простой вид x 2 + 4x — 18 = 0.

    Также для удобства вычислений можно избавиться от минуса при старшем коэффициенте квадратного уравнения — для этого умножим или разделим обе части на −1. Например, удобно от квадратного уравнения −2x 2 — 3x + 7 = 0 перейти к решению 2x 2 + 3x — 7 = 0.

    Связь между корнями и коэффициентами

    Мы уже запомнили, что формула корней квадратного уравнения выражает корни уравнения через его коэффициенты:

    Из этой формулы, можно получить другие зависимости между корнями и коэффициентами.

    Например, можно применить формулы из теоремы Виета:

    Для приведенного квадратного уравнения сумма корней равна второму коэффициенту с противоположным знаком, а произведение корней — свободному члену. Например, по виду уравнения 3x 2 — 7x + 22 = 0 можно сразу сказать, что сумма его корней равна 7/3, а произведение корней равно 22/3.

    Можно активно использовать уже записанные формулы и с их помощью получить ряд других связей между корнями и коэффициентами квадратного уравнения. Таким образом можно выразить сумму квадратов корней квадратного уравнения через его коэффициенты:

    Квадратные уравнения

    Квадратное уравнение – уравнение вида , где

    Числа называются коэффициентами квадратного уравнения.

    Квадратное уравнение может иметь два действительных корня, один действительный корень или ни одного.

    Количество корней квадратного уравнения зависит от знака выражения, которое называется дискриминант.

    Дискриминант квадратного уравнения: .

    Если > 0, квадратное уравнение имеет два корня: и .

    Если = 0, квадратное уравнение имеет единственный корень .

    В этом уравнении , , .

    Дискриминант уравнения равен > 0. Уравнение имеет два корня.

    В этом уравнении .

    Дискриминант уравнения равен . Уравнение имеет единственный корень.

    Заметим, что в левой части уравнения находится выражение, которое называют полным квадратом. В самом деле, . Мы применили формулу сокращенного умножения.

    Уравнение имеет единственный корень .

    В этом уравнении .

    Дискриминант уравнения равен .

    Дискриминант уравнения равен > 0.

    Уравнение имеет два корня.

    Полезная теорема для решения квадратных уравнений – теорема Виета.

    Если и – корни уравнения , то , .

    Например, в нашем уравнении сумма корней равна , а произведение корней равно .

    Квадратное уравнение можно решить несколькими способами. Можно вычислять дискриминант, или воспользоваться теоремой Виета, а иногда можно просто угадать один из корней. Или оба корня.

    Неполные квадратные уравнения

    Квадратное уравнение, в котором один из коэффициентов b или с (или они оба) равны нулю, называется неполным. В таких случаях искать дискриминант не обязательно. Можно решить проще.

    1) Рассмотрим уравнение .

    В этом уравнении и . Очевидно, – единственный корень уравнения.

    2) Рассмотрим уравнение . Здесь , а другие коэффициенты нулю не равны.

    Проще всего разложить левую часть уравнения на множители по формуле разности квадратов. Получим:

    Произведение двух множителей равно нулю тогда и только тогда, когда хотя бы один из них равен нулю.

    3) Вот похожее уравнение:
    .

    Поскольку , уравнение можно записать в виде:

    4) Пусть теперь не равно нулю и .

    Его левую часть можно разложить на множители, вынеся за скобки. Получим:

    Произведение двух множителей равно нулю тогда и только тогда, когда хотя бы один из них равен нулю.

    Разложение квадратного трехчлена на множители

    Здесь и – корни квадратного уравнения .

    Запомните эту формулу. Она необходима для решения квадратичных и дробно-рациональных неравенств.

    Например, наше уравнение
    .

    Полезные лайфхаки для решения квадратных уравнений.

    1) Намного проще решать квадратное уравнение, если коэффициент а, который умножается на х², положителен. Кажется, что это мелочь, да? Но сколько ошибок на ЕГЭ возникает из-за того, что старшеклассник игнорирует эту «мелочь».

    Намного проще умножить его на – 1, чтобы коэффициент а стал положительным. Получим:
    .

    Дискриминант этого уравнения равен
    .

    2)Прежде чем решать квадратное уравнение, посмотрите на него внимательно. Может быть, можно сократить обе его части на какое-нибудь не равное нулю число?

    Вот, например, уравнение
    .

    Можно сразу посчитать дискриминант и корни. А можно заметить, что все коэффициенты и делятся на 17. Поделив обе части уравнения на 17, получим:

    Здесь можно и не считать дискриминант, а сразу угадать первый корень: . А второй корень легко находится по теореме Виета.

    3)Работать с дробными коэффициентами неудобно. Например, уравнение
    .

    Вы уже догадались, что надо сделать. Умножить обе части уравнения на 100! Получим:

    Квадратное уравнение. Дискриминант. Теорема Виета.

    теория по математике 📈 уравнения

    Уравнение вида ax 2 +bx+c=0, где a,b,c – любые числа, причем a≠0, называют квадратным уравнением. Числа a,b,c принято называть коэффициентами, при этом a – первый коэффициент, b – второй коэффициент, c – свободный член.

    Квадратное уравнение может иметь не более двух корней. Решить такое уравнение – это значит найти все его корни или доказать, что их нет.

    Дискриминант

    Количество корней квадратного уравнения зависит от такого элемента, как дискриминант (обозначают его буквой D).

    Нахождение корней квадратного уравнения

    Дискриминант – это такой математический инструмент, который позволяет нам определять количество корней. Он выражается определенной формулой:

    D=b 2 –4ac

      Если D>0, то уравнение имеет два различных

    Корень — осевой, обычно подземный вегетативный орган высших сосудистых растений, обладающий неограниченным ростом в длину и положительным геотропизмом. Корень осуществляет закрепление растения в почве и обеспечивает поглощение и проведение воды с растворёнными минеральными веществами к стеблю и листьям.

    Пример №1. Решить уравнение х 2 –2х–3=0. Определяем коэффициенты: а=1, b=–2, c=–3. Находим дискриминант: D=b 2 –4ac=(–2) 2 –41(–3)=4+12=16. Видим, что дискриминант положительный, значит, уравнение имеет два различных корня, находим их:

    Пример №2. Решить уравнение 5х 2 +2х+1=0. Определяем коэффициенты: а=5, b=2, c=1. D=b 2 –4ac=2 2 –4=4–20=–16, D 2 –6х+9=0. Определяем коэффициенты: а=1, b=–6, c=9.

    D=b 2 –4ac=(–6) 2 –4=36–36=0, D=0, 1

    Корень — осевой, обычно подземный вегетативный орган высших сосудистых растений, обладающий неограниченным ростом в длину и положительным геотропизмом. Корень осуществляет закрепление растения в почве и обеспечивает поглощение и проведение воды с растворёнными минеральными веществами к стеблю и листьям.

    Теорема Виета

    Среди квадратных уравнений встречаются такие, у которых первый коэффициент равен 1 (обратим внимание на пример 1 и 3), такие уравнения называются приведенными.

    Приведенные квадратные уравнения можно решать не только с помощью дискриминанта, но и с помощью теоремы Виета.

    Сумма корней приведенного квадратного уравнения равна второму коэффициенту, взятому с противоположным знаком; произведение корней равно третьему коэффициенту.

    Корни с помощью данной теоремы находятся устно способом подбора. Рассмотрим это на примерах.

    Пример №4. Решить уравнение х 2 –10х+21=0. Выпишем коэффициенты: а=1, b=–10, c=21. Применим теорему Виета:

    Начинаем с произведения корней, которое является положительным числом, значит оба корня либо отрицательные, либо положительные. Предполагаем, что это могут быть либо 3 и 7, либо противоположные им числа. Теперь смотрим на сумму, она является положительным числом, поэтому нам подходит пара чисел 3 и 7. Проверяем: 3+7=10, 37=21. Значит, корнями данного уравнения являются числа 3 и 7.

    Пример №5. Решить уравнение: х 2 +5х+4=0. Выпишем коэффициенты: а=1, b=5, c=4. По теореме Виета:

    Видим, что произведение корней равно 4, значит оба корня либо отрицательные, либо положительные. Видим, что сумма отрицательная, значит, будем брать два отрицательных числа, нам подходят –1 и –4. Проверим:

    Данное уравнение является квадратным. Но в его условии присутствует квадратный

    Корень — осевой, обычно подземный вегетативный орган высших сосудистых растений, обладающий неограниченным ростом в длину и положительным геотропизмом. Корень осуществляет закрепление растения в почве и обеспечивает поглощение и проведение воды с растворёнными минеральными веществами к стеблю и листьям.

    Записываем обязательно в начале решения, что подкоренное выражение может быть только равным нулю или положительным числом (правило извлечения квадратного

    Корень — осевой, обычно подземный вегетативный орган высших сосудистых растений, обладающий неограниченным ростом в длину и положительным геотропизмом. Корень осуществляет закрепление растения в почве и обеспечивает поглощение и проведение воды с растворёнными минеральными веществами к стеблю и листьям.

    Решаем полученное неравенство: − х ≥ − 5 , отсюда х ≤ 5 . Следовательно, для ответа мы будем выбирать значения, которые меньше или равны 5.

    Решаем наше квадратное уравнение, перенося все слагаемые из правой части в левую, изменяя при этом знаки на противоположные и приводя подобные слагаемые (выражения с квадратным корнем взаимоуничтожаются):

    х 2 − 2 х + √ 5 − х − √ 5 − х − 24 = 0

    Получим приведенное квадратное уравнение, корни которого можно найти подбором по теореме Виета:

    х 2 − 2 х − 24 = 0

    Итак, корнями уравнения х 2 − 2 х − 24 = 0 будут числа -4 и 6.

    Теперь выбираем корень, обращая внимание на наше ограничение на х, т.е. корень должен быть меньше или равен 5. Таким образом, запишем, что 6 – это посторонний корень, так как 6 н е ≤ 5 , а число минус 4 записываем в ответ нашего уравнения, так как − 4 ≤ 5 .

    pазбирался: Даниил Романович | обсудить разбор | оценить

    источники:

    http://ege-study.ru/kvadratnye-uravneniya/

    http://spadilo.ru/kvadratnoe-uravnenie-i-diskriminant/

    Понравилась статья? Поделить с друзьями:
  • Как исправить ошибку в декларации на недвижимость
  • Как найти домашнюю сеть вай фай
  • Как найти пункт система
  • Как найти давление на тело под водой
  • Как найти сохраненную ссылку в андроиде