Как найти эдс физика 10 класс

Неотъемлемым элементом любой самодостаточной электрической цепи является источник (генератор) тока. Он разделяет электрические заряды, благодаря чему напряжение поддерживается в приемлемом диапазоне значений. Без этого электрический ток с точно заданными характеристиками в цепи существовать не может. Если мы поставим в цепь, например, конденсатор (пусть даже очень ёмкий), ток в ней возникнет, но через некоторое, как правило, очень непродолжительное время, он закончится. Электрическое поле переместит все имеющиеся свободные заряды, и конденсатор разрядится.

Электродвижущая сила

Определение

Электродвижущей силой источника тока называют силы не электростатического происхождения, действующие внутри указанных устройств и перемещающие электрические заряды против электростатического поля, которое создаёт необходимую разность потенциалов.

Природа у электродвижущих сил может быть самой разной. В гальванических источниках электрического тока они возникают благодаря энергии, высвобождающейся в химических реакциях между веществом электродов и электролитов. В генераторах постоянного тока они создаются энергией магнитного поля и механической энергией вращения якоря.

Формула расчета ЭДС в электрических цепях, состоящих из замкнутых контуров

Работа электростатических сил равна нулю, ведь заряды (электроны) приходят практически в то же место откуда вышли. Не равна нулю только результирующая работа электродвижущих сил цепи. 

Её величина определяется формулой электродвижущей силы:

Формула

Формула ЭДС:

[varepsilon=frac{A}{q}].

Именно этому равна электродвижущая сила. A – работа сторонних сил, т. е. ЭДС.

Обратите внимание, направлением ЭДС считается направление, в котором внутри источника перемещаются именно положительные заряды. Часто оно противоположно направлению перемещения реальных носителей заряда, в качестве которых в подавляющем большинстве случаев выполняют электроны.

Если источник тока только один, то направление ЭДС в цепи такое же, как у него.

Размерность электродвижущей силы не равна размерности силы или работы. В системе СИ величина ЭДС измеряется в вольтах. Это мера разности потенциалов, которая создаётся на зажимах при разомкнутом генераторе.

Электродвижущая сила цепи и напряжение

Представим электрическое поле. Рассмотрим в нём произвольную кривую, соединяющую между собой точки A и B. Для дальнейшего объяснения на выбранной линии следует указать положительное направление.

Напряжение на этой кривой будет равняться:

[U=int_{l} E d l]

Под напряжённостью поля, как известно, понимают силу, действующую на помещённый в него единичный положительный заряд. Интеграл в данном случае – работа по перемещению заряда по кривой.

Значение напряжения станет равно разности потенциалов на концах нашей линии: U = φ1 – φ2.

Какую форму имеет кривая, совершенно безразлично. Важны лишь её начальные и конечные точки.

Давайте подробнее изучим циркуляцию вектора напряжённости по замкнутому контуру L.

Выделим на указанном контуре точки A и B. Они разделят его на два криволинейных незамкнутых отрезка. Учитывая предыдущие формулы, имеем.

[oint_{L} E d l=oint_{A}^{B} E d l=varphi 1-varphi 2=varphi 2-varphi 1=0]

Из этого легко сделать вывод, что циркуляция вектора напряжённости по контуру, если он замкнут, равняется нулю. E и dl – векторные величины.

Определение

Электродвижущей силой в теории электричества принято считать циркуляцию вектора напряжённости по произвольному замкнутому контуру.

[varepsilon=oint_{L} E d l=0]

Если поле электростатическое, то ЭДС замкнутого контура (каким бы он ни был) равна нулю.

Закон Ома для участка цепи с электродвижущей силой тока

Рассмотрим один из самых простых случаев – электрическую цепь с химическим источником ЭДС, элементом Вольта. Он состоит из двух электродов (медного и цинкового), погружённых в раствор кислоты.

Электродвижущая сила в этом случае создаётся следующим образом: цинк при растворении в кислоте теряет положительно заряженные атомы, приобретая тем самым отрицательный потенциал, а медь становится положительно заряженной. В результате возникает сторонняя ЭДС. Находится она в очень тонком слое, отделяющем электролит от цинкового и медного электродов. Когда цепь замыкают, на сопротивлениях двух частей цепи (внешней и внутренней) возникает разность потенциалов и начинает течь ток I.

Для простоты расчётов будем исходить из того, что сопротивления на всех участках цепи распределены равномерно по всему контуру L.

Из закона сохранения энергии следует, что работа, совершаемая электрическим полем при движении заряда q по внешней цепи и в электролите будет равняться

Aq = (φ1 – φ2)*q + (φ3 – φ4)*q 

Общую работу сторонних сил можно записать как

 Ɛq= Ast = (φ3 – φ2)*q + (φ1 – φ4)*q

Приравняв обе части двух предыдущих выражений, получим

Aq= Ast

Формула явно указывает на то, что работа сторонних сил и работа электрического поля равны между собой.

Из закона Ома следует, что

φ1 – φ2 = I*R, а φ3 – φ4 = I*r 

От сюда следующий вид закона Ома с электродвижущей силой.

Ɛ = I*(R + r)

Справедлив он только для замкнутой цепи.

О втором правиле Кирхгофа

Полученная формула говорит, что электродвижущая сила равна сложенным друг с другом произведениям силы тока на все сопротивления, составляющих замкнутую цепь.

Ɛ = I*R + I*r

Это очень важное утверждение. Часто его именуют Вторым правилом Кирхгофа. Оно относится ко всем замкнутым цепям, какими бы они ни были.

Важно

По-другому это правило можно сформулировать так – в любом электрическом замкнутом контуре алгебраическая сумма произведений сил токов на сопротивления, через которые они протекают равняется ЭДС в указанном контуре.

Сопротивления могут считаться не только положительными, но и отрицательными. Если направление тока совпадает с выбранным направлением обхода контура, то сопротивление признают положительным. Если не совпадает – отрицательным.

Электродвижущая сила тока считается положительной, в том случае, если в его источнике произошёл переход от отрицательного полюса к положительному.

Когда в направлении токов нельзя быть уверенным, его можно выбрать произвольно. Из-за этого после вычислений может получиться отрицательное число. Это признак того что на самом деле ток идёт в противоположную сторону.

Впрочем, здесь всё условно. У многих ток ассоциируется с бегущими по проводнику отрицательно заряженными электронами. Тем не менее за направление тока всегда принимают именно направление положительных движущихся зарядов. Расчётам и пониманию сути физических явлений, относящихся к этому разделу физики подобное никак не мешает. Разве что в самом начале, пока не появилась привычка.

Формула

Математическая запись правила Кирхгофа выглядит следующим образом:

[sum_{m=1}^{N} varepsilon m=sum_{m=1}^{N} I m R m].

N – число участков, на которые мы разбили контур.

Данная формула позволяет очень легко рассчитывать достаточно сложные цепи, т. к. получаем систему независимых уравнений, легко решаемую с математической точки зрения. То что самостоятельно, на листе бумаги расчёты будут громоздкими – не проблема. Даже простейший не очень мощный компьютер с вычислениями может справиться весьма быстро.

Формула

Количество независимых контуров определяется по формуле:

[n2 = p – m + 1].

p – общее количество ветвей в цепи, m – общее количество узлов в цепи.

ЭДС. Закон Ома для полной цепи

  • Темы кодификатора ЕГЭ: электродвижущая сила, внутреннее сопротивление источника тока, закон Ома для полной электрической цепи.

  • Сторонняя сила

  • Закон Ома для полной цепи

  • КПД электрической цепи

  • Закон Ома для неоднородного участка

Автор статьи — профессиональный репетитор, автор учебных пособий для подготовки к ЕГЭ Игорь Вячеславович Яковлев

Темы кодификатора ЕГЭ: электродвижущая сила, внутреннее сопротивление источника тока, закон Ома для полной электрической цепи.

До сих пор при изучении электрического тока мы рассматривали направленное движение свободных зарядов во внешней цепи, то есть в проводниках, подсоединённых к клеммам источника тока.

Как мы знаем, положительный заряд q:

• уходит во внешнюю цепь с положительной клеммы источника;

• перемещается во внешней цепи под действием стационарного электрического поля, создаваемого другими движущимися зарядами;

• приходит на отрицательную клемму источника, завершая свой путь во внешней цепи.

Теперь нашему положительному заряду q нужно замкнуть свою траекторию и вернуться на положительную клемму. Для этого ему требуется преодолеть заключительный отрезок пути — внутри источника тока от отрицательной клеммы к положительной. Но вдумайтесь: идти туда ему совсем не хочется! Отрицательная клемма притягивает его к себе, положительная клемма его от себя отталкивает, и в результате на наш заряд внутри источника действует электрическая сила vec{F_E}, направленная против движения заряда (т.е. против направления тока).

к оглавлению ▴

Сторонняя сила

Тем не менее, ток по цепи идёт; стало быть, имеется сила, «протаскивающая» заряд сквозь источник вопреки противодействию электрического поля клемм (рис. 1).

Рис. 1. Сторонняя сила

Эта сила называется сторонней силой; именно благодаря ей и функционирует источник тока. Сторонняя сила vec{F_{CT}} не имеет отношения к стационарному электрическому полю — у неё, как говорят, неэлектрическое происхождение; в батарейках, например, она возникает благодаря протеканию соответствующих химических реакций.

Обозначим через A_{CT} работу сторонней силы по перемещению положительного заряда q внутри источника тока от отрицательной клеммы к положительной. Эта работа положительна, так как направление сторонней силы совпадает с направлением перемещения заряда. Работа сторонней силы A_{CT} называется также работой источника тока.

Во внешней цепи сторонняя сила отсутствует, так что работа сторонней силы по перемещению заряда во внешней цепи равна нулю. Поэтому работа сторонней силы по перемещению заряда q вокруг всей цепи сводится к работе по перемещению этого заряда только лишь внутри источника тока. Таким образом, A_{CT} — это также работа сторонней силы по перемещению заряда по всей цепи.

Мы видим, что сторонняя сила является непотенциальной — её работа при перемещении заряда по замкнутому пути не равна нулю. Именно эта непотенциальность и обеспечивает циркулирование электрического тока; потенциальное электрическое поле, как мы уже говорили ранее, не может поддерживать постоянный ток.

Опыт показывает, что работа A_{CT} прямо пропорциональна перемещаемому заряду q. Поэтому отношение A_{CT}/q уже не зависит от заряда и является количественной характеристикой источника тока. Это отношение обозначается mathcal E:

mathcal E = frac{displaystyle A_{CT}}{displaystyle q vphantom{1^a}}. (1)

Данная величина называется электродвижущей силой (ЭДС) источника тока. Как видим, ЭДС измеряется в вольтах (В), поэтому название «электродвижущая сила» является крайне неудачным. Но оно давно укоренилось, так что приходится смириться.

Когда вы видите надпись на батарейке: «1,5 В», то знайте, что это именно ЭДС. Равна ли эта величина напряжению, которое создаёт батарейка во внешней цепи? Оказывается, нет! Сейчас мы поймём, почему.

к оглавлению ▴

Закон Ома для полной цепи

Любой источник тока обладает своим сопротивлением r, которое называется внутренним сопротивлением этого источника. Таким образом, источник тока имеет две важных характеристики: ЭДС и внутреннее сопротивление.

Пусть источник тока с ЭДС, равной mathcal E, и внутренним сопротивлением r подключён к резистору R (который в данном случае называется внешним резистором, или внешней нагрузкой, или полезной нагрузкой). Всё это вместе называется полной цепью (рис. 2).

Рис. 2. Полная цепь

Наша задача — найти силу тока I в цепи и напряжение U на резисторе R.

За время t по цепи проходит заряд q = It. Согласно формуле (1) источник тока совершает при этом работу:

A_{CT} = Eq = EIt. (2)

Так как сила тока постоянна, работа источника целиком превращается в теплоту, которая выделяется на сопротивлениях R и r. Данное количество теплоты определяется законом Джоуля–Ленца:

Q = I^2Rt + I^2rt = I^2(R + r)t. (3)

Итак, A_{CT} = Q, и мы приравниваем правые части формул (2) и (3):

mathcal E It = I^2(R + r)t.

После сокращения на It получаем:

mathcal E = I(R + r).

Вот мы и нашли ток в цепи:

I = frac{displaystyle mathcal E}{displaystyle R + r vphantom{1^a}}. (4)

Формула (4) называется законом Ома для полной цепи.

Если соединить клеммы источника проводом пренебрежимо малого сопротивления (R = 0), то получится короткое замыкание. Через источник при этом потечёт максимальный ток — ток короткого замыкания:

I_{K3} = frac{displaystyle mathcal E}{displaystyle r vphantom{1^a}}.

Из-за малости внутреннего сопротивления ток короткого замыкания может быть весьма большим. Например, пальчиковая батарейка разогревается при этом так, что обжигает руки.

Зная силу тока (формула (4)), мы можем найти напряжение на резисторе R с помощью закона Ома для участка цепи:

U = IR = frac{displaystyle mathcal E R}{displaystyle R + r vphantom{1^a}}. (5)

Это напряжение является разностью потенциалов между точками a и b (рис. 2). Потенциал точки a равен потенциалу положительной клеммы источника; потенциал точки b равен потенциалу отрицательной клеммы. Поэтому напряжение (5) называется также напряжением на клеммах источника.

Мы видим из формулы (5), что в реальной цепи будет Utextless mathcal E — ведь mathcal E умножается на дробь, меньшую единицы. Но есть два случая, когда U = mathcal E.

1. Идеальный источник тока. Так называется источник с нулевым внутренним сопротивлением. При r = 0 формула (5) даёт U = mathcal E.

2. Разомкнутая цепь. Рассмотрим источник тока сам по себе, вне электрической цепи. В этом случае можно считать, что внешнее сопротивление бесконечно велико: R = infty. Тогда величина R + r неотличима от R, и формула (5) снова даёт нам U = mathcal E.

Смысл этого результата прост: если источник не подключён к цепи, то вольтметр, подсоединённый к полюсам источника, покажет его ЭДС.

к оглавлению ▴

КПД электрической цепи

Нетрудно понять, почему резистор R называется полезной нагрузкой. Представьте себе, что это лампочка. Теплота, выделяющаяся на лампочке, является полезной, так как благодаря этой теплоте лампочка выполняет своё предназначение — даёт свет.

Количество теплоты, выделяющееся на полезной нагрузке R за время t, обозначим Q_{polezn}.

Если сила тока в цепи равна I, то

Q_{polezn} = I^2Rt.

Некоторое количество теплоты выделяется также на источнике тока:

Q_{ist} = I^2rt.

Полное количество теплоты, которое выделяется в цепи, равно:

Q_{poln} = Q_{polezn} + Q_{ist} = I^2Rt + I^2rt = I^2(R + r)t.

КПД электрической цепи — это отношение полезного тепла к полному:

eta = frac{displaystyle Q_{polezn}}{displaystyle Q_{poln} vphantom{1^a}} = frac{displaystyle I^2Rt}{displaystyle I^2(R+r)t vphantom{1^a}} = frac{displaystyle R}{displaystyle R+r vphantom{1^a}}.

КПД цепи равен единице лишь в том случае, если источник тока идеальный (r = 0).

к оглавлению ▴

Закон Ома для неоднородного участка

Простой закон Ома U = IR справедлив для так называемого однородного участка цепи — то есть участка, на котором нет источников тока. Сейчас мы получим более общие соотношения, из которых следует как закон Ома для однородного участка, так и полученный выше закон Ома для полной цепи.

Участок цепи называется неоднородным, если на нём имеется источник тока. Иными словами, неоднородный участок — это участок с ЭДС.

На рис. 3  показан неоднородный участок, содержащий резистор R и источник тока. ЭДС источника равна mathcal E, его внутреннее сопротивление считаем равным нулю (если внутреннее сопротивление источника равно r, можно просто заменить резистор R на резистор R + r).

Рис. 3. ЭДС «помогает» току: varphi_a - varphi_b + mathcal E = IR

Сила тока на участке равна I, ток течёт от точки a к точке b. Этот ток не обязательно вызван одним лишь источником mathcal E. Рассматриваемый участок, как правило, входит в состав некоторой цепи (не изображённой на рисунке), а в этой цепи могут присутствовать и другие источники тока. Поэтому ток I является результатом совокупного действия всех источников, имеющихся в цепи.

Пусть потенциалы точек a и b равны соответственно varphi_a и varphi_b. Подчеркнём ещё раз, что речь идёт о потенциале стационарного электрического поля, порождённого действием всех источников цепи — не только источника, принадлежащего данному участку, но и, возможно, имеющихся вне этого участка.

Напряжение на нашем участке равно: U = varphi_a - varphi_b. За время t через участок проходит заряд q = It, при этом стационарное электрическое поле совершает работу:

A_{POL} = Uq = UIt.

Кроме того, положительную работу совершает источник тока (ведь заряд q прошёл сквозь него!):

A_{CT} = mathcal Eq = mathcal EIt.

Сила тока постоянна, поэтому суммарная работа по продвижению заряда q, совершаемая на участке стационарным электрическим полем и сторонними силами источника, целиком превращается в тепло: A_{POL} + A_{CT} = Q.

Подставляем сюда выражения для A_{POL}, A_{CT} и закон Джоуля–Ленца:

UIt + mathcal EIt = I^2Rt.

Сокращая на It, получаем закон Ома для неоднородного участка цепи:

U + mathcal E = IR, (6)

или, что то же самое:

varphi a - varphi b + mathcal E = IR. (7)

Обратите внимание: перед mathcal E стоит знак «плюс». Причину этого мы уже указывали — источник тока в данном случае совершает положительную работу, «протаскивая» внутри себя заряд q от отрицательной клеммы к положительной. Попросту говоря, источник «помогает» току протекать от точки a к точке b.

Отметим два следствия выведенных формул (6) и (7).

1. Если участок однородный, то mathcal E = 0. Тогда из формулы (6) получаем U = IR — закон Ома для однородного участка цепи.

2. Предположим, что источник тока обладает внутренним сопротивлением r. Это, как мы уже упоминали, равносильно замене R на R + r:

varphi_a - varphi_b + mathcal E = I(R + r).

Теперь замкнём наш участок, соединив точки a и b. Получим рассмотренную выше полную цепь. При этом окажется, что varphi_a = varphi_b, и предыдущая формула превратится в закон Ома для полной цепи:

mathcal E = I(R + r).

Таким образом, закон Ома для однородного участка и закон Ома для полной цепи оба вытекают из закона Ома для неоднородного участка.

Может быть и другой случай подключения, когда источник mathcal E «мешает» току идти по участку. Такая ситуация изображена на рис. 4. Здесь ток, идущий от a к b, направлен против действия сторонних сил источника.

Рис. 4. ЭДС «мешает» току: varphi_a - varphi_b - mathcal E = IR

Как такое возможно? Очень просто: другие источники, имеющиеся в цепи вне рассматриваемого участка, «пересиливают» источник на участке и вынуждают ток течь против mathcal E. Именно так происходит, когда вы ставите телефон на зарядку: подключённый к розетке адаптер вызывает движение зарядов против действия сторонних сил аккумулятора телефона, и аккумулятор тем самым заряжается!

Что изменится теперь в выводе наших формул? Только одно — работа сторонних сил станет отрицательной:

A_{CT} = mathcal E q = mathcal EIt.

Тогда закон Ома для неоднородного участка примет вид:

varphi_a - varphi_b - mathcal E = IR, (8)

или:

U - mathcal E = IR,

где по-прежнему U = varphi_a - varphi_b — напряжение на участке.

Давайте соберём вместе формулы (7) и (8) и запишем закон Ома для участка с ЭДС следующим образом:

varphi_a - varphi_b pm mathcal E = IR.

Ток при этом течёт от точки a к точке b. Если направление тока совпадает с направлением сторонних сил, то перед mathcal E ставится «плюс»; если же эти направления противоположны, то ставится «минус».

Повторим основные понятия и определения по теме «Закон Ома».

Напомним, что напряжение измеряется в вольтах.

Сила тока измеряется в амперах.

Сопротивление измеряется в омах. Эта единица измерения названа в честь Георга Симона Ома, открывшего взаимосвязь между напряжением, сопротивлением цепи и силой тока в этой цепи.

Основные определения, которые мы используем в решении задач:

Источник тока – это устройство, способное создавать необходимую для существования тока разность потенциалов.

Можно сказать, что источник тока действует, как насос. Он «качает» электроны по проводникам, как водяной насос воду по трубам. Эту аналогию можно продолжить. При этом источник тока совершает работу, за счёт химических реакций, происходящих внутри него.

Если эту работу разделить на переносимый источником заряд q (суммарный заряд всех проходящих через источник электронов), то мы получим величину, которую называют электродвижущей силой или сокращённо ЭДС.

Измеряется эта ЭДС, как и разность потенциалов, в вольтах и имеет примерно тот же смысл.

По определению, сила тока равна отношению суммарного заряда электронов, проходящих через сечение проводника, ко времени прохождения. Измеряется сила тока в амперах (А).

Свойство проводника препятствовать прохождению по нему тока характеризуется величиной, которую назвали электрическим сопротивлением – R. Проходя через проводник, электрический ток нагревает его.

Сопротивление измеряют в омах (Ом).

Сам источник тока тоже обладает сопротивлением. Такое сопротивление принято называть внутренним сопротивлением источника  r (Ом).

Именно немецкому учёному Георгу Ому удалось установить, от чего может зависеть электрическое сопротивление проводника. Проведя многочисленные эксперименты, Ом сделал следующие выводы:

  1. Сопротивление проводника тем больше, чем больше его длина.
  2. Сопротивление проводника тем больше, чем меньше его толщина или площадь поперечного сечения.

Кроме того, Ом выяснил, что каждый материал обладает своим электрическим сопротивлением. Величина, которая показывает, каким сопротивлением будет обладать проводник единичной длины и единичной площади сечения из данного материала, называется удельным электрическим сопротивлением:  (Ом*мм2/м). Эта величина справочная. Таким образом, получается, что электрическое сопротивление проводника равно:

Рассмотрим задачи ЕГЭ по теме «Закон Ома» для полной цепи.

Задача 1. На ри­сун­ке приведён гра­фик за­ви­си­мо­сти на­пря­же­ния на кон­цах же­лез­но­го про­во­да пло­ща­дью по­пе­реч­но­го се­че­ния 0,05 мм2 от силы тока в нём. Чему равна длина провода? Ответ дайте в метрах. Удельное сопротивление железа 0,1 Ом*мм2/м.

Решение:

Из закона Ома для проводника или участка цепи без источника следует:

displaystyle I=frac{U}{R};

displaystyle R=frac{U}{I}.

По графику: при U=60 B, I=3 B.

Из формулы сопротивления выражаем и находим длину проводника:

Ответ: 10.

Задача 2. Через по­пе­реч­ное се­че­ние про­вод­ни­ков за 8 с про­шло 1020 элек­тро­нов. Ка­ко­ва сила тока в про­вод­ни­ке? Ответ дайте в амперах.

Решение:

По определению силы тока:

displaystyle I=frac{q}{t}.

Заряд всех электронов: q=Ncdot e, где е — модуль заряда электрона, e=1,6cdot 10^{-19} Кл.

Тогда displaystyle I=frac{Ncdot e}{t}=frac{10^{20}cdot 1,6cdot 10^{-19}}{8}=2 A.

Ответ: 2.

Задача 3. Иде­аль­ный ам­пер­метр и три ре­зи­сто­ра общим со­про­тив­ле­ни­ем 66 Ом вклю­че­ны по­сле­до­ва­тель­но в элек­три­че­скую цепь, со­дер­жа­щую ис­точ­ник с ЭДС рав­ной 5 В, и внут­рен­ним со­про­тив­ле­ни­ем r=4 Ом. Ка­ко­вы по­ка­за­ния ам­пер­мет­ра? (Ответ дайте в ам­пе­рах, округ­лив до сотых.)

Решение:

По закону Ома для полной цепи:

Тогда displaystyle I=frac{5}{66+4}=0,07 A.

Ответ: 0,07.

Задача 4. ЭДС источника тока равна 1,5 В. Определите сопротивление внешней цепи, при котором сила тока будет равна 0,6 А, если сила тока при коротком замыкании равна 2,5 А. Ответ дайте в Ом, округлив до десятых.

Решение:

Сила тока короткого замыкания определяется следующим образом:

Отсюда выражаем и находим внутреннее сопротивление источника:

При внешнем сопротивлении, не равном нулю, сила тока в цепи определяется законом Ома для полной цепи:

Отсюда выражаем сопротивление резистора и находим его:

Ответ: 1,9.

Задача 5. На ри­сун­ке изоб­ра­же­на схема элек­три­че­ской цепи, со­сто­я­щей из ис­точ­ни­ка по­сто­ян­но­го на­пря­же­ния с ЭДС 5 В и пре­не­бре­жи­мо малым внут­рен­ним со­про­тив­ле­ни­ем, ключа, ре­зи­сто­ра с со­про­тив­ле­ни­ем 2 Ом и со­еди­ни­тель­ных про­во­дов. Ключ за­мы­ка­ют. Какой заряд про­те­чет через ре­зи­стор за 10 минут? Ответ дайте в ку­ло­нах.

Решение:

Выражаем время в секундах: t = 10 минут = 600 с.

Определяем силу тока по закону Ома для полной цепи:

Внутреннее сопротивление пренебрежимо мало, поэтому r = 0.

По определению силы тока:

displaystyle I=frac{q}{t}.

Отсюда q=Icdot t=2,5cdot 600=1500 Кл.

Ответ: 1500.

Если вам нравятся наши материалы — записывайтесь на курсы подготовки к ЕГЭ по физике онлайн

Спасибо за то, что пользуйтесь нашими материалами.
Информация на странице «ЭДС. Закон Ома для полной цепи» подготовлена нашими авторами специально, чтобы помочь вам в освоении предмета и подготовке к экзаменам.
Чтобы успешно сдать необходимые и поступить в ВУЗ или техникум нужно использовать все инструменты: учеба, контрольные, олимпиады, онлайн-лекции, видеоуроки, сборники заданий.
Также вы можете воспользоваться другими статьями из разделов нашего сайта.

Публикация обновлена:
08.05.2023

Урок

решение
задач по теме:

«Электродвижущая
сила. Закон Ома для замкнутой цепи»

10
класс.

Задача
1 (956)

Какова
ЭДС источника, если сторонние силы совершают 20 Дж работы при перемещении 10
Кл  электричества от одного полюса к другому?

 

Задача
2 (960)

Каково
внутреннее сопротивление элемента, если его ЭДС равна 1,2 В и при внешнем
сопротивлении 5,0 Ом сила тока равна 0,20 А?

Решение:

1.       Закон Ома для замкнутой цепи             ;  

  =IR +Ir ;     ;

r =;

 Вычисления: r = =1 Ом

Ответ: r =1, 0  Ом

 

Дано:                                 

R =5,0  Ом

I  =
0,20 А

r =?

Задача 3 (965)

К полюсам источника с ЭДС  2,0 В  и внутренним
сопротивлением 0,80  Ом  присоединен кусок  никелинево  проволоки длиной 2,1 м
и сечнием 0,21 мм2. Каково напряжение  на зажимах источника?

 

Задача 4 (967)

К полюсам источника тока  присоединяют
поочередно резисторы 4,5 Ом и 10 Ом. При этом сила тока в цепи оказывается
равной 0,2 и 0,1 А соответственно. Найти ЭДС источника  и внутреннее сопротивление.

Задача 5 (961)

ЭДС батарейки от карманного фонаря равна
3,7 В , а внутреннее сопротивление

 1,5 Ом. Батарейка замкнута на
сопротивление 11,7 Ом. Каково напряжение на зажимах батарейки?

Решение:

1.      Используя
закон Ома для замкнутой цепи, находим силу тока вцепи.

2.      Из 
первой формулы находим ЭДС.

 = I∙R + I
∙ r;    U = I∙R;
 = U + I ∙
r;

3.       Из
последней формулы находим напряжение на зажимах.

 U
=
 — I
r;

4.Производим
вычисления: 

U
=
В – 0,28 А∙1,5 Ом
≈3,3 В

Ответ:
U  ≈3,3 В  или

 

Дано:

r = 1, 5 Ом

R=11,7 
O
м

U =?

Задача  6  (973)

Дано

 =100 В
 = 75 В

= 0,15 Ом

= 2,0 Ом

= 0,35 Ом

t=  5 ч =18000 c

 

 Генератор с ЭДС, равной 100  В , и внутренним
сопротивлением 2,0 Ом в течение пяти часов заряжает батарею аккумуляторов. ЭДС
батареи 75 В , внутреннее сопротивление 0,15 Ом. Сопротивление проводящих
проводов 0,35 Ом. Найти напряжение на зажимах гене­ратора и напряжение на
зажимах аккумуля­торной батареи во время зарядки. Какое коли­чество
электричества проходит через аккумуля­торную батарею за 5 ч?

                                                      
UГ
=?  
Uб
=?   
q =?

Решение:

1.      Находим
силав тока в генераторе по закону Ома для замкнутой цепи

 , где  R
=
Rп
+
rб
;

2.      Находим
напряжение на зажимах генгратора  по закону Ома для участка цепи

;   .

3.      Находим
силав тока батарее по закону Ома для замкнутой цепи

 , где  R
=
Rп
+
rб
;

4.Изменение силы тока в замкнутой
цепи ∆
I =Iг
I

 I
=40 А –30 А =10 А

4.      Находим
потерии напряжения на проводящих проводов  ∆
U
=∆
IRп

 ∆U
=10А∙0,35 Ом = 3,5 В.

Находим напряжение на зажимах батареии

 

5.      Находим
количества электричества проходящийся через аккумуляторную батарею за 5ч.

q 
= ∆
I
t;    
q
= 10
A
∙18000
c
= 1, 8∙ 105 Кл.

Ответ: 80 В;   76,5 В; 1,
8∙ 105 Кл.

Задача  7  (974)

ЭДС источника 2,0 В, его внутреннее
сопротивление 1,0 Ом. Какая сила тока в цепи, если мощность тока во внешней
цепи 0,75 Вт? Объяснить смысл двух ответов.

4. Решаем уравнерие (3)  относительно 
силы тока.   
 

 (4);

5.Подставим  значения   в (4) получим
квадратное уравнение отгосительно
I.

.   I1
=0,5( A); I2 = 1,5 (A)

R1 =;    R2 =;

Ответ: I1
=0,5 A
при R1
;    I2 = 1,5
A
при R2
;

С увеличением внешнего сопротивления сила
тока уменьшается, а с уменьшением внешнего сопротивления сила тока
увеличивается при  постоянной мощности внешней цепи.

Задача  8  (979)

ЭДС
батареи (рис.) 3,0 В, ее внут­реннее сопротивление 1,0 Ом, сопротивления
резисторов:
R1 = R2 = 1, 75 Ом, R3 = 2,0  Ом, R4 = 6,0 Ом.   Какова сила тока
в резисторе
I4?

Решение:

1)    R0
=2 R1 +R34 ;

2)    ;

3)    R0
=2 R1 +
;

4)  R0
=2∙1,75+
;

5)   ;  I =

6)    I1
= I2 =I34 = 0,5 A;

7)  R34
=1,5
;

8)     U34
= I∙R34 ;

9)  U34
= 0,5 A∙1,5
  =0,75B

10)                      
;

11)           
;

Ответ: I4
= 0,125A

 

                                                           

 Литература

1.      Учебник
физика 10 класс  Г.Я. Мякишева, Б.Б. Буцховцева,Н.Н. Сотского

2.      Сборник
задач по физике   В.П.Демкович, М.П.Демкович 8-10 классов

Задачи №1-3 ,№5 Базовый уровень

Задачи №4,№6-8 для учащихся интересованной
физикой.

Как вы знаете, для существования электрического тока,
необходимо наличие электрического поля. Причем, это поле должно постоянно
поддерживаться неким источником тока. Сегодня мы поговорим об основной характеристике
источника тока, которая называется электродвижущей силой (или, сокращенно, ЭДС).
Для начала рассмотрим простой опыт: возьмем два противоположно заряженных
шарика и соединим их проводником. В этом случае, в проводнике возникнет электрический
ток, но он будет очень кратковременным. Дело в том, что очень скоро произойдет
перераспределение заряда, и потенциалы шариков уравняются. Значит, перестанет
существовать электрическое поле.

Из этого можно сделать вывод, что для поддержания
постоянного тока необходимо наличие неких сил неэлектрического происхождения,
чтобы эти силы могли перемещать заряды против поля. Такие силы называются
сторонними силами. То есть, сторонние силы — это любые силы, которые
действуют на электрические заряды, но при этом не являются силами электрического
происхождения
. Например, это могут быть силы, действующие на заряды со
стороны магнитного поля — это используется в генераторах.

В батареях или аккумуляторах работу по разделению
электрических зарядов выполняют химические реакции.

Еще один аргумент, который мы можем привести — это то,
что работа кулоновских сил при перемещении заряда по замкнутому контуру,
равна нулю
. А это значит, что какие-то другие силы должны обеспечивать
ненулевую работу для поддержания разности потенциалов.

Устройство для поддержания электрического
тока, называется источником тока.
В любом источнике тока
сторонние силы действуют на заряды, совершая работу против кулоновских сил.
Стало быть, характеристикой источника должна быть величина, не зависящая от
величины заряда. Эта величина называется электродвижущей силой. Электродвижущая
сила равна отношению работы сторонних сил при перемещении заряда по замкнутому
контуру, к величине этого заряда:

Из формулы видно, что электродвижущая сила, как и напряжение,
измеряется в вольтах:

Теперь, когда мы познакомились с ЭДС, мы можем перейти
к изучению закона Ома для полной цепи. Полной цепью называется замкнутая
цепь, включающая в себя источник тока.
Для удобства, мы рассмотрим простейшую
электрическую цепь, состоящую только из источника тока, резистора и
соединительных проводов:

Как мы уже сказали, источник тока характеризуется ЭДС.
Тем не менее, любой источник тока обладает определенным сопротивлением, которое
называется внутренним сопротивлением. Закон Ома для полной цепи
представляет собой связь между ЭДС, внутренним и внешним сопротивлением и силой
тока в цепи. Для того, чтобы установить эту связь, воспользуемся законом
сохранения энергии. Запишем, что работа сторонних сил равна произведению ЭДС
источника и величины заряда:

Как вы знаете, каждый участок цепи выделяет то или
иное количество теплоты. По закону Джоуля-Ленца, это количество теплоты
вычисляется по формуле:

Исходя из закона сохранения энергии, мы можем
приравнять это количество теплоты к работе сторонних сил:

Закон Ома для полной цепи звучит так: сила
тока в замкнутой цепи равна отношению ЭДС источника к полному сопротивлению
цепи:

Вывести закон Ома для полной цепи можно, рассуждая несколько
иначе. Как мы знаем, при последовательном соединении полное напряжение цепи
равно сумме падений напряжений на всех участках цепи:

Мы видим, что произведение силы тока и сопротивления
резистора есть не что иное, как напряжение на этом резисторе. А произведение
силы тока и внутреннего сопротивления — это падение напряжения на самом
источнике:

Надо сказать, что внутреннее сопротивление источника
во многих случаях пренебрежимо мало по сравнению с сопротивлением внешней части
цепи. В этом случае, мы можем считать, что напряжение на зажимах источника
примерно равно ЭДС (то есть падение напряжения на источнике считается
приблизительно равным нулю):

Тем не менее, именно внутренним сопротивлением
определяется сила тока в цепи при коротком замыкании. Напомним, что при
коротком замыкании, внешнее сопротивление становится почти нулевым, поэтому в
цепи резко возрастает сила тока:

Рассмотрим теперь цепь, содержащую несколько
последовательно соединенных источников тока.

В этом случае, ЭДС всей цепи равна алгебраической
сумме ЭДС отдельных источников.

В таких случаях необходимо выбрать так называемое
«направление обхода тока». Это направление выбирается условно (в нашем случае —
против часовой стрелки). Тогда, ,поскольку
они стремятся вызвать ток в направлении обхода.

А,поскольку
они стремятся вызвать ток в направлении, противоположном направлению обхода.
Отрицательная ЭДС означает, что сторонние силы внутри источника совершают отрицательную
работу. Таким образом, ЭДС нашей цепи будет равна:

В соответствии с правилами последовательного
соединения, суммарное сопротивление цепи равно сумме внешнего сопротивления и
внутренних сопротивлений всех источников тока:

Пример решения задачи.

Задача. К источнику тока с
внутренним сопротивлением 1 Ом подключили резистор с сопротивлением 15 Ом.
После этого в цепь включили амперметр, который показал, что сила тока равна 5
А. Найдите работу сторонних сил внутри источника, совершенную за 2 минуты.

Как понять ЭДС

Что такое ЭДС (электродвижущая сила) в физике? Электрический ток понятен далеко не каждому. Как космическая даль, только под самым носом. Вообще, он и ученым понятен не до конца. Достаточно вспомнить Николу Тесла с его знаменитыми экспериментами, на века опередившими свое время и даже в наши дни остающимися в ореоле тайны. Сегодня мы не разгадываем больших тайн, но пытаемся разобраться в том, что такое ЭДС в физике.

Определение ЭДС в физике

ЭДС – электродвижущая сила.  Обозначается буквой E или маленькой греческой буквой эпсилон.

Электродвижущая сила — скалярная физическая величина, характеризующая работу сторонних сил (сил неэлектрического происхождения), действующих в электрических цепях переменного и постоянного тока.

ЭДС, как и напряжение, измеряется в вольтах. Однако ЭДС и напряжение – явления разные.

Напряжение (между точками А и Б) – физическая величина, равная работе эффективного электрического поля, совершаемой при переносе единичного пробного заряда из одной точки в другую.

Объясняем суть ЭДС  «на пальцах»

Чтобы разобраться в том, что есть что, можно привести пример-аналогию. Представим, что у нас есть водонапорная башня, полностью заполненная водой. Сравним эту башню с батарейкой.

Схема водонапорной башни

Схема водонапорной башни

Вода оказывает максимальное давление на дно башни, когда башня заполнена полностью. Соответственно,  чем меньше воды в башне, тем слабее давление и напор вытекающей из крана воды. Если открыть кран, вода будет постепенно вытекать сначала под сильным напором, а потом все медленнее, пока напор не ослабнет совсем. Здесь напряжение – это то давление, которое вода оказывает на дно. За уровень нулевого напряжения примем само дно башни.

Водокачка

Водокачка

То же самое и с батарейкой. Сначала мы включаем наш источник тока (батарейку) в цепь, замыкая ее. Пусть это будут часы или фонарик. Пока уровень напряжения достаточный и батарейка не разрядилась, фонарик светит ярко, затем постепенно гаснет, пока не потухнет совсем.

Но как сделать так, чтобы напор не иссякал? Иными словами, как поддерживать в башне постоянный уровень воды, а на полюсах источника тока – постоянную разность потенциалов. По примеру башни ЭДС представляется как бы насосом, который обеспечивает приток в башню новой воды.

Советская батарейка

Советская батарейка

Природа ЭДС

Причина возникновения ЭДС в разных источниках тока разная. По природе возникновения различают следующие типы:

  •  Химическая ЭДС.  Возникает в батарейках и аккумуляторах вследствие  химических реакций.
  • Термо ЭДС.  Возникает, когда находящиеся при разных температурах контакты  разнородных проводников соединены.
  • ЭДС индукции. Возникает в генераторе при  помещении вращающегося проводника в магнитное поле. ЭДС будет наводиться в проводнике, когда проводник  пересекает силовые линии постоянного магнитного поля или когда магнитное поле изменяется по величине.
  • Фотоэлектрическая ЭДС. Возникновению этой ЭДС способствует явление  внешнего или внутреннего фотоэффекта.
  • Пьезоэлектрическая ЭДС. ЭДС возникает при растяжении или сдавливании веществ.

Дорогие друзья, сегодня мы рассмотрели тему «ЭДС для чайников». Как видим, ЭДС  –  сила неэлектрического происхождения, которая поддерживает протекание электрического тока в цепи. Если Вы хотите узнать, как решаются задачи с ЭДС, советуем обратиться к нашим авторам – скрупулезно отобранным и проверенным специалистам, которые быстро и доходчиво разъяснят ход решения любой тематической задачи.  И по традиции в конце предлагаем Вам посмотреть обучающее видео. Приятного просмотра и успехов в учебе!

Иван

Иван Колобков, известный также как Джони. Маркетолог, аналитик и копирайтер компании Zaochnik. Подающий надежды молодой писатель. Питает любовь к физике, раритетным вещам и творчеству Ч. Буковски.

Понравилась статья? Поделить с друзьями:
  • Как составить обращение в районный суд
  • Как найти счастливый клевер
  • Как исправить кислый рассол в банке с огурцами
  • Как составить интервальное распределение выборки с шагом h
  • Как найти площадь прямоугольного пятиугольника