Как найти эксцентриситет орбиты икара

Решебник по астрономии 11 класс на урок №8 (рабочая тетрадь) — Законы Кеплера

1. Сформулируйте законы Кеплера.

Первый закон Кеплера Все планеты движутся по эллипсам, в одном из фокусов которых находится Солнце
Второй закон Кеплера Радиус-вектор планеты в равные промежутки времени описывают равновеликие площади
Третий закон Кеплера Квадраты сидерических периодов обращений планет вокруг Солнца пропорциональны кубам больших полуосей их эллиптических орбит

2. На рисунке 8.1 укажите точки афелия и перигелия.

3. Выведите формулы для вычисления перигелийного и афелийного расстояний по известным эксцентриситету и значению большой полуоси.

Перигелийное расстояние ПС = q; афелийное расстояние СА = Q. АП = 2a; ПО = ОА = a. Тогда: q = ОП — СО; e = СО/ОП; СО = e · a; Q = ОА + СО; q = a — ea = a(1 — e); Q = a + ea = a(1 + e).

4. Определите афелийное расстояние астероида Минск, если большая полуось его орбиты а = 2,88 а. е., а эксцентриситете = 0,24.

Решение.

5. Определите перигелийное расстояние астероида Икар, если большая полуось его орбиты а = 160 млн км, а эксцентриситет е = 0,83.

Решение.

6. Выполните задание.

Вариант 1.

1. На рисунке 8.1, а укажите точки орбиты, в которых:

а) скорость планеты максимальна;
б) потенциальная энергия максимальна;
в) кинетическая энергия минимальна.

2. Как изменяется скорость планеты при ее движении от афелия к перигелию? (Увеличится)

Вариант 2.

1. На рисунке 8.1, б укажите точки орбиты, в которых:

а) скорость планеты минимальна;
б) потенциальная энергия минимальна;
в) кинетическая энергия максимальна.

2. Как изменяется скорость Луны при ее движении от перигея к апогею? (Уменьшится)

7. Решите задачи.

Вариант 1.

1. Определите период обращения астероида Белоруссия, если большая полуось его орбиты а = 2,40 а. е.

2. Звездный период обращения Юпитера вокруг Солнца Т = 12 лет. Каково среднее расстояние от Юпитера до Солнца?

Вариант 2.

1. Период обращения малой планеты Шагал вокруг Солнца Т = 5,6 года. Определите большую полуось ее орбиты.

2. Большая полуось орбиты астероида Тихов а = 2,71 а. е. За какое время этот астероид обращается вокруг Солнца?

Призрачно все в этом мире бушующем,
Есть только миг, за него и держись,
Есть только миг между прошлым и будущим.
Именно он называется жизнь.
Вечный покой сердце вряд ли обрадует.
Вечный покой для седых пирамид.
А для звезды, что сорвалась и падает,
Есть только миг, ослепительный миг.
А. Зацепин
 

Урок 16

презентация

Тема: Астероиды и метеориты.   фотогалерея Астероиды 

Цель: Познакомить с закономерностями в расстояниях планет от Солнца (Правило Тициуса-Боде). Рассмотреть понятие астероида, первые открытия, их характеристиками и пояса. Исследование астероидов КА. Дать представление о метеорите, их классификацию, изучение и значимость, а также угрозе Земле.

Задачи:
1. Обучающая:  Дать представление о закономерностях в удаленности планет от Солнца, продолжить формирование понятий: астероид, метеориты. Ввести понятия: метеорное тело, метеорит, метеоритный кратер, пояса астероидов и астероидной опасности.
2. Воспитывающая: Показать несостоятельность суеверий, связанных с метеорами, метеоритами, а также всякого рода пророчеств о якобы возможной гибели Земли вследствие столкновения с астероидом, необыкновенные небесные явления, к числу которых издавна относили «падающие звезды», получили естественное научное объяснение, и их исследование имеет важное значение для разработки проблем происхождения Солнечной системы. Акцентировать внимание учащихся на том, что метеоритные кратеры, обнаруженные в настоящее время на Луне, спутниках Марса, Юпитера, Сатурна, Урана, а также на всех планетах земной группы, свидетельствуют об интенсивной метеоритной бомбардировке, которой подвергались эти небесные тела в период их формирования. На примере исследования астероида Эрос показать необходимость и плодотворность международного сотрудничества ученых.
3. Развивающая: Выделить главное в изучаемом материале: основные сведения, касающиеся природы метеорных тел, метеоритов, астероидов.  Для развития познавательных интересов и способностей учащихся затронуть вопрос о гипотезах, связывающих с кометами зарождение жизни на Земле.  Для развития наиболее подготовленных учащихся предусмотреть подготовку ими рефератов о современных исследованиях астероидов.

Знать:
1-й уровень (стандарт) – правило Тициуса-Боде, понятие астероида, первое их открытие, основные пояса. Понятие метеорита, результат его действия, значимость с научной точки зрения, их классификацию
2-й уровень — правило Тициуса-Боде, понятие астероида, первое их открытие, основные пояса. Понятие метеорита, результат его действия, значимость с научной точки зрения, их классификацию.
Уметь:
1-й уровень (стандарт) – вести простой расчет орбиты астероида.
2-й уровень – вести простой расчет орбиты астероида, находить в «Red Shift 5.1» астероиды и получать о них информацию для любого времени.

Оборудование: Таблица “Солнечная система”, кометы и метеоры. В/ф «Астрономия», часть 2, фр.3  «Малые тела». Д/ф “Малые тела Солнечной системы”, “Происхождение и развитие небесных тел”,фотографии, диапозитивы, видеофильм «Астрономия». CD- «Red Shift 5.1» экскурсии= Кометы и астероиды; лекции = Кометы и астероиды. Фотографии и иллюстрации астрономических объектов из мультимедийного диска «Мультимедиа библиотека по астрономии».

Межпредметные связи: природоведение (первоначальные сведения о малых телах Солнечной системы), физика (спектральный анализ, флуоресценция), обществоведение (необходимость разоблачения религиозных суеверий), математика (вычислительные навыки, степень числа).

 Ход урока

1. Повторение изученного (15 мин).
а)У доски

  1. Общая характеристика планет земной группы.
  2. Общая характеристика планет гигантов.
  3. Рассказ об одной из планет (по усмотрению ученика)

б) Один-трое — «Red Shift 5.1» – найти любую планету и описать ее характеристики, показать фотографии, условия видимости и так далее.
в) Трое по карточкам

V-1
  1. Большая полуось Марса 1,5 а.е. Чему равен звездный период его обращения вокруг Солнца? (по 3-му закону Кеплера, взяв вторым телом Землю. Т2м / Т2з= а3м / а3з  , тогда  Т2 / 1= 1,53 / 1, получаем Т ≈ 1,84 лет)
  2. Чему равен угловой диаметр Фобоса наблюдаемого с Марса с расстояния 6000 км, если его диаметр 20 км. (из D = 206265.r/p получим p≈ 688″=11’28»)
V-2
  1. Большая полуось Венеры 0,7 а.е. Чему равен ее звездный период его обращения вокруг Солнца? (Т ≈ 0,59 лет)
  2. С какого расстояния астронавт в ходе путешествия на КК мог бы увидеть невооруженным глазом Большое Красное пятно на Юпитере, если его диаметр 15000 км, а разрешаемость глаза равна 2´. (из D = 206265.r/p получим D≈ 25,78 млн.км)
V-3
  1. Большая полуось орбиты Юпитера 5 а.е. Чему равен звездный период его обращения вокруг Солнца? (Т ≈ 11,2 лет)
  2. На каком расстоянии находится КА от Венеры, если она видна под углом 0,5о при линейном диаметре 12100 км? (из D = 206265.r/p получим D≈ 13,87 млн.км)

г) Остальные самостоятельно

  1. Используя данные Приложения  (табл. IХ) определить минимальное и максимальное удаление планеты от Солнца (по выбору ученика). Решение amin, max=a±c, где с=а.е
  2. Найдите ошибки в описании полета КК.

КК после долгого полета мягко приземлился на поверхность Юпитера. На поверхности было жарко, ярко светило Солнце и слегка дул ветерок. Астронавты, ступив на поверхность планеты, сняли скафандры чтобы насладиться свежим воздухом. (Ошибки подчеркнуты). 

 2. Новый материал (20 мин)

 1. Закономерность в расстояниях планет от Солнца.
     В 18-м веке, когда еще Гершель не открыл в 1781г Уран, в 1766г немецкий математик Иоганн Даниэль ТИЦИУС (1729-1796) первым находит закономерность в расстояниях планет (видимых невооруженным глазом) от Солнца, выразив формулой r=0,3.n+0,4 ( где n номер присвоенный им планете: 0-Меркурий, 1-Венера, 2-Земля, 4-Марс, 8— (неизвестная планета), 16 – Юпитер, 32 –Сатурн)
    Уточняя данную формулу немецкий астроном Иоганн БОДЕ (1747-1826) в 1772г публикует уточненную формулу в виде r=0,3.2n +0,4 (формула получила название правило Тициуса-Боде, где n номер присвоенный им планете: -∞-Меркурий, 0-Венера, 1-Земля, 2-Марс, 3— (неизвестная), 4-Юпитер, 5-Сатурн)

13 марта 1781г английский астроном Уильям (Вильям) Гершель (1738-1822) открывает Уран (проверьте для n=6, сравните с таблицей – подходит, кстати не подходит формула этих закономерностей для Нептуна и Плутона).
    А теперь возьмем n=3, получим расстояние 2,8 а.е. Значит на таком расстоянии надо искать планету, которой даже дали заблаговременно название Фаэтон. 
2. Астероиды
     Только астрономы Европы запланировав, начали c 21 сентября 1800г интенсивный поиск Фаэтона, как неожиданно Джузеппе ПИАЦЦИ (1746-1826, Италия) астроном в новогоднюю ночь 1 января 1801г в Палермо открыл первую малую планету — самый крупный астероид Церера (диаметр 960х932 км) и дал ей название — “малые звезды” (название астероиды — греч. «звездообразный» дал У. Гершель). До недавнего времени это был самый большой астероид (но с 24.08.2006 года решением МАС отнесен к разряду карликовых планет); его орбита лежит в главном поясе астероидов на расстоянии 2,77а.е. от Солнца. Его масса равна 1,17×1021 кг, что составляет около трети всей массы пояса астероидов. По яркости он достигает максимальной звездной величины 6,9, причем его альберо составляет только 9%. Период вращения равен 9 час, и в течение этого времени цвет и яркость изменяются очень незначительно (наводя на мысль, что он имеет почти сферическую форму и однородно серый цвет). Спектр Цереры указывает, что ее поверхность по химическому составу может быть подобна углистым хондритам.
    Немецкий математик К.Ф. Гаусс определил его орбиту по трем точкам, применив разработанный им в 1801г метод расчета орбит, используемый и сейчас. Астероид был потерян и снова обнаружен в 1802г сперва Ксаверием фон Цах 2 января, а чуть позже Генрих Вильгельм Ольберс
        Хроника открытий астероидов.
    Вторую малую планету — (2) Pallas (Паллада) — удалось обнаружить 28 марта 1802 года немецкому астроному Г.В.Ольберсу (H.V.Olbers). Третью — (3) Juno (Юнона) — открыл 1 сентября 1804 года немецкий астроном К.Гардинг (K.Harding). Четвертую — (4) Vesta (Веста) — открыл 29 марта 1807 года все тот же Г.В.Ольберс.
Затем наступил перерыв на 38 лет, когда астрономам не удавалось сделать новых открытий. Лишь 8 декабря 1845 года немцу К.Л.Хенке(K.L.Hencke) удалось отыскать на звездном небе астероид (5) Astraea. Дальше открытия посыпались как из рога изобилия. В 1847 году были открыты малые планеты (6) Hebe, (7) Iris и (8) Flora, в 1848 году — (9) Metis, в 1849 году — (10) Hugiea, в 1850 году — (11) Parthenope, (12) Victoria и (13) Egeria, в 1851 году — (14) Irene и (15) Eunomia, и так далее с нарастающими темпами. Первый с помощью фотографии был открыт 20 декабря 1891г №323 (Бруция)
     К 1 января 1901 года число открытых астероидов составило 463. В минувшем веке темпы открытий еще более увеличились. За первое десятилетие были открыты 270 малых планет, за второе — 245, за третье — 340, за четвертое — 627. К 1 января 1951 года количество найденных астероидов составило 2153. Сколько открытий удалось сделать за вторую половину ХХ века, легко подсчитать. Причем 2/3 новых астероидов удалось обнаружить за последние три года.
     На 2 октября 2001г астрономы всего мира наблюдали 146.677 астероидов. Орбиты 30.716 из них определены и они получили собственные номера. Имена присвоены 8.914 астероидам.
       Распределение астероидов.
    Большинство орбит астероидов сконцентрировано в поясе астероидов между орбитами Марса и Юпитера на расстояниях от 2,0 до 3,3 а.е. от Солнца. Имеются, однако, и астероиды, чьи орбиты лежат ближе к Солнцу, типа группы Амура, группы Аполлона и группы Атена. Кроме того, имеются и более далекие от Солнца, типа центавров. На орбите Юпитера находятся в точках Лагранжа (гравитационной ловушке) троянцы (отстающие на угол 60о такие как: Приам, Эней, Троил и др.) и греки (опережающие на угол 60о такие как: Ахилл, Аякс, Одиссей и др.). За Нептуном находится пояс Койпера. Первым свидетельством существования пояса Герарда Койпера (предсказанного в 1951г) было открытие в 1992г слабого объекта 1992 QB1, находящегося на квазикруговой орбите на расстоянии около 50 а.е. от Солнца. В настоящее время астрономам известно уже свыше 1 тыс. транснептуновых объектов (на 01.09.2006г), однако самый маленький из них имеет в поперечнике около 25 км. В 2006 году открыт еще один пояс —  троянцы у Нептуна (первый астероид открыт в 2001г).
     Классификация астероидов.
     Астероиды могут быть классифицированы по спектру отраженного солнечного света: 75% из них очень темные углистые астероиды типа С, 15% — сероватые кремнистые астероиды типа S, а оставшиеся 10% включают астероиды типа М (металлические) и ряд других редких типов. Классы астероидов связаны с известными типами метеоритов. Имеется много доказательств, что астероиды и метеориты имеют сходный состав, так что астероиды могут быть теми телами, из которых образуются метеориты. Самые темные астероиды отражают 3 — 4% падающего на них солнечного света, а самые яркие — до 40%. Многие астероиды регулярно меняют яркость при вращении. Вообще говоря, астероиды имеют неправильную форму. Самые маленькие астероиды вращаются наиболее быстро и очень сильно различаются по форме.
      Астероидная опасность Земли. 
     Путешествуя по своим орбитам, астероид под воздействием силы тяготения планеты (особенно массивного Юпитера) могут менять орбиту, а потому могут близко подойти к Земле и даже столкнуться с ней. Столкновение с астероидом более 1 км диаметром может быть катастрофическим для Земли. Подсчитано, что в среднем раз в 100000 лет такое столкновение происходит.
Так эпоха динозавров закончилась 65,5 млн.лет назад в результате падения на Землю гигантской железокаменной глыбы диаметром более 5 км на о. Ютакан (Мексика –воронка в 120км подтверждена КА). Произошел раскол земной коры, извержение вулканов, землетрясения и серьезные климатические изменения. Огромное количество пыли преградило путь солнечному свету в результате чего все живое с массой более 30кг было на Земле уничтожено. На Земле наступил ледниковый период.  Небесные тела, упавшие 250 и 65,5 миллионов лет назад имеют одну важную общую черту: их воздействие на Землю носило глобальный характер и изменило ход истории.
 

     По состоянию на 28 января 2002 года общее число пролетающих мимо Земли астероидов составляет 1743, в том числе 587 из них имеют размеры более 1 км. В 2001 году было открыто 433 околоземные малые планеты, причем 103 из них имеют размеры более 1 км.
         Туринская шкала астероидной опасности (Подробнее)

     В 1995г NASA организует службу NEAT (Near Earth Asteroid Tracking – слежения за околоземными астероидами). Подсчитано, что на расстоянии до 48 млн. к Земле приближается 1200 – 2200 (это не более 20%) астероидов с диаметром более 1 км. Степень опасности в настоящее время оценивается по Туринской шкале, принятой в 1999 году.
     До июня 1999г использовался этой службой единственный 1м телескоп BBC США(Маунт-Хэйлакала в Калифорнии) на Гавайских островах. Сейчас систем слежения постоянно расширяется. Имеются системы слежения: LINEAR — автоматизированная система наблюдений в Массачусетском технологическом институте, LONEOS-в Обсерватории Ловелла, Spacewatch — Обсерватории Китт-Пик, автоматизированная система NEAT в Паломарской обсерватории и другие.

3. Метеориты
     Это обнаруженный фрагмент метеороида, который «пережил» прохождение сквозь атмосферу Земли. Метеориты обычно называются по имени места, где они упали. Изучение траекторий небольшого числа метеоритов, которые наблюдались как болиды и были обнаружены впоследствии, показывает, что они двигались по траекториям, берущим свое начало в поясе астероидов. При движении в атмосфере впереди метеорного тела образуется ударная волна внутри которой температура достигает порядка 10-100 тысяч градусов. Разрушение и испарение летящего тела сопровождается звуком. Достигает земной поверхности в среднем один их 40000 метеорных тел. Их возраст оценивается в 4,39-4,59 млрд лет. Химический и минералогический состав метеоритов изучается очень внимательно, так как они, по-видимому, являются образцами населения удаленных частей Солнечной системы и поэтому дают ключ к пониманию ее происхождения и эволюции. Вот почему любой найденный метеорит является достоянием государства и имеет большую научную ценность. Особенно ценны метеориты с Луны и Марса. Африканский охотник за метеоритами нашел два чрезвычайно ценных метеорита в 2001 году: один с Луны, а другой с Марса. Лунный метеорит (15 из открытых лунных метеоритов) весом в 1 кг был найден в Алжире, в то время как марсианский метеорит (17 из открытых марсианских) имеет вес 28 грамм и найден был в Марокко.
     Метеориты подразделяются на три основных класса: железные (сидериты), железо-каменные (сидеролиты или литосидериты) и каменные (аэролиты). Каменные метеориты в свою очередь разделяются на два важных подкласса: хондриты и ахондриты. Хондриты характеризуются наличием хондр — небольших сферических включений, которые могут состоять из металлов, силикатов или сульфидов. В ахондритах хондр нет.  СПИСОК
     История собрания метеоритов в России началась в 1749 году в Сибири, недалеко от Красноярска возле село Убей, где казак Медведев нашел необычную железную глыбу – железокаменный метеорит (палласит) весом 687 кг. По распоряжению академика Петра Палласа она была доставлена в Петербург. Назван Палласово Железо (Pallas Iron).
     Основная коллекция метеоритов России находится в Институте геохимии и аналитической химии имени В.И.Вернадского РАН (ГЕОХИ) и является частью Метеоритной коллекции РАН. В 1999 году коллекции исполнилось 250 лет. Она содержит примерно 180 отечественных и свыше 800 зарубежных метеоритов (более 16 тысяч образцов) практически всех типов из 45 стран мира. Общий вес коллекции более 30 тонн. Кроме того существуют на территории нынешней Российской Федерации еще 8 музеев в которых хранятся метеориты, в том числе и в г. Новосибирск — Сибирское отделение РАН (Центральный Сибирский геологический музей).
     У нас в рамках нынешних границ Новосибирской области найдены также метеориты. Вот некоторые:

  1. Метеорит Новосибирск каменный, хондрит (11,41 кг), найден весной 1978г на окраине г. Новосибирска, в районе Гусинобродского шоссе. Метеорит нашли во время земляных работ на глубине 1,5 м.
  2. Метеорит Орловка каменный, хондрит (40,543 кг), найден в 1928 году в Кыштовском районе.
  3. Метеорит Крутиха каменный, хондрит (845,2 гр) найден в июле 1907 года в Кыштовском районе.
  4. Метеорит Венгерово каменный, хондрит (2 экземпляра общим весом 9,3 кг), падение 11.10.1950г в 17 ч. 46 м. возле села Ново-Кулики, Венгеровского района. 
  5. Метеорит Кузнецово  каменный, хондрит.  Падение 26 мая 1932 года в 17-18 ч., Татарский район. Метеоритный дождь, собрано 6 экземпляров общим весом (предпол.) около 7 кг, сохранилось  5 целых и расколотых экземпляров общим весом около 4кг.
  6. Метеорит Маслянино железный (октаэдрит, тонкозернистый с силикатными включениями, 26 кг), найден 25 мая 1992 года между Маслянино и селом Петушиха,  Маслянинского района.

3 Закрепление материала [10 мин]

  1. Самостоятельная работа №8
  2. Дополнительно: Вычислите эксцентриситет самого яркого астероида Веста, если он в максимуме приближается к Солнцу на расстояние 2,2а.е., а удаляется на 2,6а.е. (е=с/а или е=((аап)/2) / ((аап)/2)  тогда получим е=0,2/2,4 ≈ 0,083)
  3. Каковы периоды обращения астероидов, отстоящих от Солнца на 2,2 а.е.? 3,6 а.е.? (Из третьего закона Кеплера Т1 = 3,3 года, Т2 = 6,8 лет).
  4. Найдите эксцентриситет орбиты Икара, зная, что его расстояние от Солнца в перигелии и афелии равно 0,18 а.е. и 1,97 а.е. соответственно. Изобразите в масштабе орбиты Меркурия, Венеры, Земли, Марса, Юпитера и Икара. (Большая полуось , эксцентриситет 0,97).
  5. Все ли небесные тела, входящие в состав Солнечной системы, шарообразны? ( Нет, не все; астероиды, малые спутники планет, ядра комет и, наконец, метеориты часто имеют неправильную форму).
  6. Какие небесные тела ученые уже сейчас могут исследовать в земных лабораториях? (Метеориты, кометная пыль и лунный грунт; эти исследования позволяют, в частности, точно определить возраст астероидов и лунных пород, а также подтверждают единство химического состава небесных тел, движущихся вокруг Солнца).

 Итог:

  1. Что описывает правило Тициуса-Боде?
  2. Что такое астероид? Кто и когда открыл первый?
  3. Что такое метеорит?
  4. Оценки

Домашнее задание: §16, вопросы стр. 95, Найти в печати пример падения какого либо метеорита на Землю. Изучение астероидов КА.

Изменен 09.12.2009 года

«Планетарий»  410,05 мб Ресурс позволяет установить на компьютер учителя или учащегося полную версию инновационного учебно-методического комплекса «Планетарий». «Планетарий» —  подборка тематических статей — предназначены для использования учителями и учащимися на уроках физики, астрономии или естествознания в 10-11 классах.  При установке комплекса рекомендуется использовать только английские буквы в именах папок.
Демонстрационные материалы 13,08 мб Ресурс представляет собой демонстрационные материалы инновационного учебно-методического комплекса «Планетарий».
Планетарий 2,67 мб Данный ресурс представляет собой интерактивную модель «Планетарий», которая позволяет изучать звездное небо посредством работы с данной моделью. Для полноценного использования ресурса необходимо установить Java Plug-in
Урок Тема урока Разработки уроков в коллекции ЦОР Статистическая графика из ЦОР
Урок 16 Астероиды и метеориты   Большие полуоси орбит планет хорошо следуют правилу Тициуса-Боде 139,2 кб
Астероиды 244,7 кб
Пояс астероидов 197,3 кб
Местоположение 8777 астероидов в полночь 1 января 2000 года 249,7 кб
Греки и Троянцы 153,9 кб
Карликовые планеты и астероиды пояса Койпера 180,2 кб
Пояс Койпера (1) 152,5 кб
Пояс Койпера (2) 183,2 кб
Плутон и Харон 242,8 кб
Сравнительные размеры Земли и малых планет 447,5 кб
Сравнительные размеры Земли, Плутона и Квавара 140 кб
Сравнительные размеры Луны и крупных астероидов 135,4 кб
Орбита карликовой планеты Эрис 165,4 кб
Четыре крупнейших планеты из пояса астероидов 156,2 кб
Тела пояса Койпера 138,1 кб
< Крупные тела пояса Койпера 209,4 кб
Орбиты объектов пояса Койпера 129,1 кб
Орбиты астероидов 160,5 кб
Облако Оорта 338 кб
Население пояса Койпера и облака Оорта 192,9 кб
Орбиты Эриды и Плутона 181,8 кб
Астероид Веста 155 кб
Астероиды Гаспра, Матильда, Ида 142,1 кб
Метеориты 417,9 кб
Железные метеориты 392,3 кб
Железо-каменные метеориты 405,4 кб
Каменные метеориты 370,8 кб
Местоположение известных ударных кратеров на Земле 146,7 кб
Падение метеорита 505,9 кб
Образование кратеров 153,3 кб

Сегодня речь пойдет о конфигурации планет.

Конфигурация — характерное взаимное положение Солнца, планет, других небесных тел Солнечной системы на небесной сфере.

Будем называть планеты нижними, если они расположены ближе к Солнцу, чем Земля. Остальные планеты будут верхними – они расположены дальше нашей планеты от Солнца.

Планета может расположиться так, что Земля, Солнце и указанная планета находятся на одной линии. При этом может оказаться, что Солнце расположилось между Землей и рассматриваемой планетой. Такое расположение будем называть верхним соединением. Если же планета оказалась между Землей и Солнцем – то это уже нижнее соединение. Также может быть, что Земля находится между верхней планетой и Солнцем – тогда речь пойдет о противостоянии, или оппозиции.

Элонгация — одна из конфигураций планет, такое положение планеты, при котором её угловое расстояние от Солнца максимально для земного наблюдателя. Различают восточную и западную элонгацию (планета находится, соответственно, к востоку и к западу от Солнца). Об элонгации имеет смысл говорить только для Венеры и Меркурия; наилучшие условия для наблюдения этих планет наступают именно вблизи элонгаций. Из-за того, что орбиты планет не вполне круговые, угловое расстояние от Солнца в момент элонгации может быть разным, для Меркурия — от Расчет эксцентриситетов и больших полуосей орбит. Сидерический и синодический периоды. до Расчет эксцентриситетов и больших полуосей орбит. Сидерический и синодический периоды., для Венеры — около Расчет эксцентриситетов и больших полуосей орбит. Сидерический и синодический периоды..

конфигурация

Квадратура — в астрономии такая конфигурация Луны или верхней планеты (то есть планеты, более удалённой от Солнца, чем Земля) относительно Земли и Солнца, когда угол планета-Земля-Солнце равен Расчет эксцентриситетов и больших полуосей орбит. Сидерический и синодический периоды.. Если светило при этом находится к востоку от Солнца, конфигурация называется восточной квадратурой, к западу — западной квадратурой.

Сидерический период — это время совершения полного оборота какого-либо тела (планеты, кометы, астероида или искусственного спутника) вокруг главного тела (Солнца или др. планеты для спутника планеты) относительно неподвижных звёзд. Сидерический период также называют годом. Например, Меркурианский год, Юпитерианский год, и т. п.

Синодический же период — это время наблюдения с Земли совершения полного оборота планеты вокруг Солнца или Луны (искусственного спутника) вокруг Земли относительно Солнца ; промежуток времени между двумя последовательными соединениями Луны или какой-нибудь планеты Солнечной системы с Солнцем при наблюдении за ними с Земли. При этом соединения планет с Солнцем должны происходить в фиксированном линейном порядке, что существенно для внутренних планет: например, это будут последовательные верхние соединения, когда планета проходит за Солнцем.

Будем помнить также и о том, что орбиты планет не круговые. Это эллипсы, причем Солнце находится в одном из главных фокусов орбиты планеты.

Перигелий — ближайшая к Солнцу точка орбиты планеты или иного небесного тела Солнечной системы.

Антонимом перигелия является афелий (апогелий) — наиболее удалённая от Солнца точка орбиты. Воображаемую линию между афелием и перигелием называют линией апсид.

Названия апоцентров меняются: эти точки получают конкретные наименования но названию центрального тела, и некоторые из них приведены в нижеследующей таблице:

Задача 9.

Центральное тело Греческое название Наименование перицентра Наименование апоцентра
Солнце Гелиос перигелий афелий
Земля Гея перигей апогей
Венера Геспер перигесперий апогесперий
Марс Арес периарий апоарий
Сатурн Кронос перикроний апокроний
Луна Селена периселений апоселений

Теперь обратимся к математике и разберемся, что же такое эксцентрисистет. Будем говорить об эксцентриситете эллипса, поскольку нас пока больше интересуют орбиты планет.

Эксцентриситетом эллипса называется отношение рас­стояния между фокусами этого эллипса к длине его большой оси; обозначив эксцентриситет буквой Расчет эксцентриситетов и больших полуосей орбит. Сидерический и синодический периоды. , получаем:

Расчет эксцентриситетов и больших полуосей орбит. Сидерический и синодический периоды.

Так как Расчет эксцентриситетов и больших полуосей орбит. Сидерический и синодический периоды., то Расчет эксцентриситетов и больших полуосей орбит. Сидерический и синодический периоды., т. е. эксцентриситет каждого эллипса меньше единицы. Заметим, что Расчет эксцентриситетов и больших полуосей орбит. Сидерический и синодический периоды., поэтому

Расчет эксцентриситетов и больших полуосей орбит. Сидерический и синодический периоды.

Или

Расчет эксцентриситетов и больших полуосей орбит. Сидерический и синодический периоды.

И

Расчет эксцентриситетов и больших полуосей орбит. Сидерический и синодический периоды.

Следовательно, эксцентриситет определяется отношением осей эллипса, а отношение осей, в свою очередь, опреде­ляется эксцентриситетом. Таким образом, эксцентриситет характеризует форму эллипса. Чем ближе эксцентриситет к единице, тем меньше Расчет эксцентриситетов и больших полуосей орбит. Сидерический и синодический периоды., тем меньше, следовательно, отношение  Расчет эксцентриситетов и больших полуосей орбит. Сидерический и синодический периоды.; значит, чем больше эксцентриситет, тем более эллипс вытянут. В случае окружности Расчет эксцентриситетов и больших полуосей орбит. Сидерический и синодический периоды. и  Расчет эксцентриситетов и больших полуосей орбит. Сидерический и синодический периоды..

Радиус перигелия рассчитывается по формуле:

Расчет эксцентриситетов и больших полуосей орбит. Сидерический и синодический периоды.

где:

Расчет эксцентриситетов и больших полуосей орбит. Сидерический и синодический периоды. — большая полуось;

Расчет эксцентриситетов и больших полуосей орбит. Сидерический и синодический периоды. — эксцентриситет орбиты.

Скорость в перигелии рассчитывается по формуле:

Расчет эксцентриситетов и больших полуосей орбит. Сидерический и синодический периоды.

где:

Расчет эксцентриситетов и больших полуосей орбит. Сидерический и синодический периоды. — гравитационная постоянная;

Расчет эксцентриситетов и больших полуосей орбит. Сидерический и синодический периоды. — масса Солнца;

Расчет эксцентриситетов и больших полуосей орбит. Сидерический и синодический периоды. — большая полуось;

Расчет эксцентриситетов и больших полуосей орбит. Сидерический и синодический периоды. — эксцентриситет орбиты.

Афелийное расстояние рассчитывается по формуле

Расчет эксцентриситетов и больших полуосей орбит. Сидерический и синодический периоды.

Следовательно, большая полуось орбиты планеты является средним  ее расстоянием от Солнца

Расчет эксцентриситетов и больших полуосей орбит. Сидерический и синодический периоды.

Cидерические периоды обращения Расчет эксцентриситетов и больших полуосей орбит. Сидерический и синодический периоды. и Расчет эксцентриситетов и больших полуосей орбит. Сидерический и синодический периоды. двух планет связаны с их средними расстояниями Расчет эксцентриситетов и больших полуосей орбит. Сидерический и синодический периоды. и Расчет эксцентриситетов и больших полуосей орбит. Сидерический и синодический периоды. от Солнца третьим законом Кеплера

Расчет эксцентриситетов и больших полуосей орбит. Сидерический и синодический периоды.

Если Расчет эксцентриситетов и больших полуосей орбит. Сидерический и синодический периоды. дается в годах   и   Расчет эксцентриситетов и больших полуосей орбит. Сидерический и синодический периоды. — в   астрономических единицах, то, принимая для Земли Расчет эксцентриситетов и больших полуосей орбит. Сидерический и синодический периоды. год и Расчет эксцентриситетов и больших полуосей орбит. Сидерический и синодический периоды. а. е., получим для любой планеты

Расчет эксцентриситетов и больших полуосей орбит. Сидерический и синодический периоды.

Средняя орбитальная, или круговая, скорость планеты

Расчет эксцентриситетов и больших полуосей орбит. Сидерический и синодический периоды.

всегда выражается в км/с. Так как обычно Расчет эксцентриситетов и больших полуосей орбит. Сидерический и синодический периоды. задается в астрономических единицах (1 а. е.= Расчет эксцентриситетов и больших полуосей орбит. Сидерический и синодический периоды. км) и T— в годах (1 год=Расчет эксцентриситетов и больших полуосей орбит. Сидерический и синодический периоды. с), то

Расчет эксцентриситетов и больших полуосей орбит. Сидерический и синодический периоды.

Подставляя Расчет эксцентриситетов и больших полуосей орбит. Сидерический и синодический периоды., получим:

Расчет эксцентриситетов и больших полуосей орбит. Сидерический и синодический периоды.

Где скорость планеты теперь выражена в км/с.

Средняя продолжительность синодического периода обращения Расчет эксцентриситетов и больших полуосей орбит. Сидерический и синодический периоды. планеты связана с сидерическим периодом Расчет эксцентриситетов и больших полуосей орбит. Сидерический и синодический периоды. уравнением синодического движения:  для  верхних планет

Расчет эксцентриситетов и больших полуосей орбит. Сидерический и синодический периоды.

для нижних планет

Расчет эксцентриситетов и больших полуосей орбит. Сидерический и синодический периоды.

где Расчет эксцентриситетов и больших полуосей орбит. Сидерический и синодический периоды. — сидерический период обращения Земли, равный 1 звездному году.

Задача 1.

Найти перигельное и афелийное расстояния, сидерический и синодический периоды обращения, а также круговую скорость малой планеты Поэзии, если большая полуось и эксцентриситет ее орбиты равны 3,12 а. е. и 0,144.

Перигельное расстояние, а.е.

Расчет эксцентриситетов и больших полуосей орбит. Сидерический и синодический периоды.

афелийное расстояние, а.е.

Расчет эксцентриситетов и больших полуосей орбит. Сидерический и синодический периоды.

Сидерический период обращения

Расчет эксцентриситетов и больших полуосей орбит. Сидерический и синодический периоды.

а так как Расчет эксцентриситетов и больших полуосей орбит. Сидерический и синодический периоды. а. е., то планета верхняя и поэтому ее синодический период обращения Расчет эксцентриситетов и больших полуосей орбит. Сидерический и синодический периоды. вычисляется по формуле

Расчет эксцентриситетов и больших полуосей орбит. Сидерический и синодический периоды.

при Расчет эксцентриситетов и больших полуосей орбит. Сидерический и синодический периоды. году:

Расчет эксцентриситетов и больших полуосей орбит. Сидерический и синодический периоды.

Круговая скорость, км/с:

Расчет эксцентриситетов и больших полуосей орбит. Сидерический и синодический периоды.

Задача 2.

Вычислить перигельное и афелийное расстояния планет Сатурна и Нептуна, если их средние расстояния от Солнца равны 9,54 а. е. и 30,07 а. е., а эксцентриситеты орбит— 0,054 и 0,008.

Перигельное расстояние Сатурна, а.е.

Расчет эксцентриситетов и больших полуосей орбит. Сидерический и синодический периоды.

афелийное расстояние Сатурна, а.е.

Расчет эксцентриситетов и больших полуосей орбит. Сидерический и синодический периоды.

Перигельное расстояние Нептуна, а.е.

Расчет эксцентриситетов и больших полуосей орбит. Сидерический и синодический периоды.

афелийное расстояние Нептуна, а.е.

Расчет эксцентриситетов и больших полуосей орбит. Сидерический и синодический периоды.

Ответ: Расчет эксцентриситетов и больших полуосей орбит. Сидерический и синодический периоды. а.е., Расчет эксцентриситетов и больших полуосей орбит. Сидерический и синодический периоды. а.е., Расчет эксцентриситетов и больших полуосей орбит. Сидерический и синодический периоды. а.е., Расчет эксцентриситетов и больших полуосей орбит. Сидерический и синодический периоды. а.е.

Задача 3.

Какая из двух планет — Нептун (а = 30,07 а.е., Расчет эксцентриситетов и больших полуосей орбит. Сидерический и синодический периоды.) или Плутон (а = 39,52 а. е., Расчет эксцентриситетов и больших полуосей орбит. Сидерический и синодический периоды.)    —     подходит ближе к Солнцу? В скобках даны большая полуось и эксцентриситет орбиты  планеты.

Нужно сравнить перигельные расстояния, причем для Нептуна мы его уже вычислили: Расчет эксцентриситетов и больших полуосей орбит. Сидерический и синодический периоды. а.е. Вычислим для Плутона:

Расчет эксцентриситетов и больших полуосей орбит. Сидерический и синодический периоды.

Таким образом, Плутон ближе подходит к Солнцу.

Задача 4.

Найти эксцентриситет орбиты и перигельное расстояние планеты Марса и астероида Адониса, если у Марса большая полуось орбиты равна 1,52 а. е. и наибольшее расстояние от Солнца 1,66 а. е., а у Адониса соответственно 1,97 а. е. и 3,50 а. е. Указать, какая из этих двух планет подходит ближе к Солнцу.

Опять определим перигельные расстояния. Наибольшие расстояния от Солнца нам известны – афелийные. Тогда для Марса

Расчет эксцентриситетов и больших полуосей орбит. Сидерический и синодический периоды.

Расчет эксцентриситетов и больших полуосей орбит. Сидерический и синодический периоды.

Следовательно, перигельное расстояние Марса равно

Расчет эксцентриситетов и больших полуосей орбит. Сидерический и синодический периоды.

Для Адониса

Расчет эксцентриситетов и больших полуосей орбит. Сидерический и синодический периоды.

Следовательно, перигельное расстояние Адониса равно

Расчет эксцентриситетов и больших полуосей орбит. Сидерический и синодический периоды.

Таким образом, Адонис подходит ближе к Солнцу.

Ответ: Расчет эксцентриситетов и больших полуосей орбит. Сидерический и синодический периоды., Расчет эксцентриситетов и больших полуосей орбит. Сидерический и синодический периоды. а.е. , Расчет эксцентриситетов и больших полуосей орбит. Сидерический и синодический периоды., Расчет эксцентриситетов и больших полуосей орбит. Сидерический и синодический периоды. а.е.

Задача 5.

На каком среднем и наибольшем гелиоцентрическом расстоянии движутся малые планеты Икар и Симеиза, если у Икара перигельное расстояние и эксцентриситет орбиты равны 0,187 а. е. и 0,827, а у Симеизы — 3,219 а. е. и 0,181? У какой из этих планет радиус-вектор изменяется в больших пределах, абсолютно и относительно?

Расчет эксцентриситетов и больших полуосей орбит. Сидерический и синодический периоды.

Расчет эксцентриситетов и больших полуосей орбит. Сидерический и синодический периоды.

Расчет эксцентриситетов и больших полуосей орбит. Сидерический и синодический периоды.

Расчет эксцентриситетов и больших полуосей орбит. Сидерический и синодический периоды.

Расчет эксцентриситетов и больших полуосей орбит. Сидерический и синодический периоды.

Так как афелийное расстояние у Симеизы больше, то радиус-вектор ее длиннее (абсолютно). Но, так как Расчет эксцентриситетов и больших полуосей орбит. Сидерический и синодический периоды., то относительно радиус-вектор Икара больше изменяется.

Задача 6.

Вычислить периоды обращения вокруг Солнца планеты Венеры и астероида Европы, у которых средние гелиоцентрические расстояния соответственно равны 0,723 а. е. и 3,10 а. е.

Сидерический период Венеры равен:

Расчет эксцентриситетов и больших полуосей орбит. Сидерический и синодический периоды.

Или 224,5 суток.

Сидерический период астероида Европы равен:

Расчет эксцентриситетов и больших полуосей орбит. Сидерический и синодический периоды.

Ответ: сидерический период Венеры равен 0,615 года или 224,5 суток, а у Европы 5,458 года.

Задача 7.

Определить периоды обращения вокруг Солнца малой планеты Аполлона и кометы Икейи, если обе они проходят вблизи Солнца почти на одинаковых расстояниях, равных у Аполлона 0,645 а. е., а у кометы 0,633 а. е., но их орбиты имеют эксцентриситеты 0,566 и 0,9933 соответственно.

Определим большие полуоси орбит Аполлона и кометы Икейи:

Расчет эксцентриситетов и больших полуосей орбит. Сидерический и синодический периоды.

Тогда сидерический период Аполлона

Расчет эксцентриситетов и больших полуосей орбит. Сидерический и синодический периоды.

Расчет эксцентриситетов и больших полуосей орбит. Сидерический и синодический периоды.

Тогда сидерический период Икейи

Расчет эксцентриситетов и больших полуосей орбит. Сидерический и синодический периоды.

Ответ: Расчет эксцентриситетов и больших полуосей орбит. Сидерический и синодический периоды. года, Расчет эксцентриситетов и больших полуосей орбит. Сидерический и синодический периоды. лет.

Задача 8.

Первый спутник планеты Юпитера — Ио обращается вокруг нее за 42ч28м на среднем расстоянии в 421 800 км. С какими периодами обращаются вокруг Юпитера его спутники Европа и Ганимед, большие полуоси орбит которых равны 671,1 тыс. км и 1070 тыс. км?

Для спутников справедлив закон Кеплера. Применим его для Европы:

Расчет эксцентриситетов и больших полуосей орбит. Сидерический и синодический периоды.

Период 42ч28м=Расчет эксцентриситетов и больших полуосей орбит. Сидерический и синодический периоды. ч.

Расчет эксцентриситетов и больших полуосей орбит. Сидерический и синодический периоды.

А теперь то же самое для Ганимеда:

Расчет эксцентриситетов и больших полуосей орбит. Сидерический и синодический периоды.

Ответ: Период Европы 85,23 ч, или 3д 55, период Ганимеда 171,59 ч, или 7д 15

Задача 9.

Найти средние расстояние от Сатурна его спутников Мимаса и Реи, обращающихся вокруг планеты с периодами в 22ч37м и 4д,518. Самый крупный спутник планеты — Титан, обращается за 15д,945 по орбите с большой полуосью в 1221 тыс. км.

Переведем периоды в часы: период Мимаса 22,62 ч, период Реи 108,43 ч, период Титана 382, 68 ч.

Применяем закон Кеплера для Титана и Мимаса:

Расчет эксцентриситетов и больших полуосей орбит. Сидерический и синодический периоды.

Расчет эксцентриситетов и больших полуосей орбит. Сидерический и синодический периоды.

То же для Реи:

Расчет эксцентриситетов и больших полуосей орбит. Сидерический и синодический периоды.

Ответ: большая полуось Мимаса 185,27 тыс. км, Реи 526,7 тыс. км.

Ответ:  Расстояние Икара от Солнца в перигелии: ≈ 0,6913 а.е.

Расстояние Икара от Солнца в афелии: ≈ 7,4415 а.е.

Объяснение:  Дано:

Период обращения Икара Ти = 8,2 года

Эксцентриситет орбиты Икара е = 0,83

Период обращения Земли Тз = 1 год

Большая полуось орбиты Земли Аз = 1 а.е.

Обозначим большую полуось орбиты Икара   — Аи

Найти расстояние Икара в перигелии и афелии Sп -?;    Sа — ?.

Вначале, применив третий закон Кеплера, найдем большую полуось (Аи) орбиты Икара. В соответствии с этим законом, отношение кубов больших полуосей орбит планет равно отношению квадратов периодов обращения планет вокруг Солнца. В нашем случае, имеем:  Аз³/Аи³ = Тз²/Ти².  

Из этого выражения   Аи³ =   Аз³Ти²/Тз².  

Отсюда Аи = ∛Аз³Ти²/Тз² = ∛1³8,2²/1² = ∛8,2² = 4,066 а.е.

Расстояние Икара от Солнца в перигелии:  Sп = Аи(1 — е) =

= 4,066(1 — 0,83) ≈ 0,6913 а.е.

Расстояние Икара от Солнца в афелии: Sа = Аи(1 + е) =

= 4,066(1 + 0,83) ≈ 7,4415 а.е.

Обучайтесь и развивайтесь всесторонне вместе с нами, делитесь знаниями и накопленным опытом, расширяйте границы знаний и ваших умений.

поделиться знаниями или
запомнить страничку

  • Все категории
  • экономические
    43,666
  • гуманитарные
    33,654
  • юридические
    17,917
  • школьный раздел
    611,992
  • разное
    16,906

Популярное на сайте:

Как быстро выучить стихотворение наизусть? Запоминание стихов является стандартным заданием во многих школах. 

Как научится читать по диагонали? Скорость чтения зависит от скорости восприятия каждого отдельного слова в тексте. 

Как быстро и эффективно исправить почерк?  Люди часто предполагают, что каллиграфия и почерк являются синонимами, но это не так.

Как научится говорить грамотно и правильно? Общение на хорошем, уверенном и естественном русском языке является достижимой целью. 

Понравилась статья? Поделить с друзьями:
  • Как найти учредителей акционерного общества
  • Как найти совершаемую работу в физике
  • Как исправить потолок после шпаклевки
  • Как правильно составить генеалогическое дерево 5 поколений
  • Как найти оборачиваемость активы