Как найти экспериментальную погрешность

Какие бывают погрешности

Любое число, которое выдает нам эксперимент, это результат измерения. Измерение производится прибором, и это либо непосредственные показания прибора, либо результат обработки этих показаний. И в том, и в другом случае полученный результат измерения неидеален, он содержит погрешности. И потому любой грамотный физик должен не только предъявить численный результат измерения, но и обязан указать все сопутствующие погрешности. Не будет преувеличением сказать, что численный экспериментальный результат, предъявленный без указания каких-либо погрешностей, бессмыслен.

В физике элементарных частиц к указанию погрешностей относятся исключительно ответственно. Экспериментаторы не только сообщают погрешности, но и разделяют их на разные группы. Три основных погрешности, которые встречаются чаще всего, это статистическая, систематическая и теоретическая (или модельная) погрешности. Цель такого разделения — дать четкое понимание того, что именно ограничивает точность этого конкретного измерения, а значит, за счет чего эту точность можно улучшить в будущем.

Статистическая погрешность связана с разбросом значений, которые выдает эксперимент после каждой попытки измерить величину.

(Подробнее о статистической погрешности)

Систематическая погрешность характеризует несовершенство самого измерительного инструмента или методики обработки данных, а точнее, недостаточное знание того, насколько «сбоит» инструмент или методика.

(Подробнее о систематической погрешности)

Теоретическая/модельная погрешность — это неопределенность результата измерения, которая возникла потому, что методика обработки данных была сложная и в чем-то опиралась на теоретические предположения или результаты моделирования, которые тоже несовершенны. Впрочем, иногда эту погрешность считают просто разновидностью систематических погрешностей.

(Подробнее о погрешности теории и моделирования)

Наконец, в отдельный класс, видимо, можно отнести возможные человеческие ошибки, прежде всего психологического свойства (предвзятость при анализе данных, ленность при проверке того, как результаты зависят от методики анализа). Строго говоря, они не являются погрешностью измерения, поскольку могут и должны быть устранены. Зачастую это избавление от человеческих ошибок может быть вполне формализовано. Так называемый дважды слепой эксперимент в биомедицинских науках — один тому пример. В физике частиц есть похожие приемы (см. заметку Что означает «слепой анализ» при поиске новых частиц?).

Что означает погрешность

Стандартный вид записи измеренной величины с погрешностью знаком всем. Например, результат взвешивания какого-то предмета может быть 100 ± 5 грамм. Это означает, что мы не знаем абсолютно точно массу, она может быть и 101 грамм, и 96 грамм, а может быть и все 108 грамм. Но уж точно не 60 и не 160 грамм. Мы говорим лишь, сколько нам показывают весы, и из каких-то соображений определяем тот примерный разброс, который измерение вполне могло бы дать.

Тут надо подчеркнуть две вещи. Во-первых, в бытовой ситуации значение 100 ± 5 грамм часто интерпретируется так, словно истинная масса гарантированно лежит в этом диапазоне и ни в коей мере не может быть 94 или 106 грамм. Научная запись подразумевает не это. Она означает, что истинная масса скорее всего лежит в этом интервале, но в принципе может случиться и так, что она немножко выходит за его пределы. Это становится наиболее четко, когда речь идет о статистических погрешностях; см. подробности на страничке Что такое «сигма»?.

Во-вторых, надо четко понимать, что погрешности — это не ошибки эксперимента. Наоборот, они являются показателем качества эксперимента. Погрешности характеризуют объективный уровень несовершенства прибора или неидеальности методики обработки. Их нельзя полностью устранить, но зато можно сказать, в каких рамках результату можно доверять.

Некоторые дополнительные тонкости, связанные с тем, что именно означают погрешности, описаны на странице Тонкости анализа данных.

Как записывают погрешности

Указанный выше способ записи не уточняет, что это за погрешность перед нами. В физике элементарных частиц при предъявлении результатов источники погрешностей принято уточнять. В результате запись результата может иногда принять пугающий своей сложностью вид. Таких выражений не надо бояться, просто нужно внимательно посмотреть, что там указано.

В самом простом случае экспериментально измеренное число записывается так: результат и две погрешности одна за другой:

μ = 1,33 ± 0,14 ± 0,15.

Тут вначале всегда идет статистическая, а за ней — систематическая погрешность. Если же измерение не прямое, а в чем-то опирается на теорию, которая тоже не идеально точна, то следом за ними приписывается теоретическая погрешность, например:

μ = 1,33 ± 0,14 ± 0,15 ± 0,11.

Иногда для пущей понятности явно указывают, что есть что, и тогда погрешностей может быть даже больше. Это делается вовсе не для того, чтобы запутать читателя, а с простой целью: упростить в будущем расчет уточенного результата, если какой-то один из источников погрешностей будет уменьшен. Вот пример из статьи arXiv:1205.0934 коллаборации LHCb:

Означает эта длинная строка следующее. Тут записана измеренная детектором вероятность выписанного распада Bs-мезона, которая равна [1,83 ± четыре вида погрешностей] · 10–5. В перечислении погрешностей вначале идет статистическая погрешность, потом систематическая погрешность, затем погрешность, связанная с плохим знанием некоторой величины fs/fd (неважно, что это такое), и наконец, погрешность, связанная с плохим знанием вероятности распада B0-мезона (потому что измерение Bs-распада косвенно опирается на B0-распад).

Нередки также случаи, когда погрешности в сторону увеличения и уменьшения разные. Тогда это тоже указывается явно (пример из статьи hep-ex/0403004):

И наконец, совсем экзотический случай: когда величина настолько плохо определена, что погрешность пишут не к самому числу, а к показателю степени. Например, 1012 ± 2 означает, что величина вполне может лежать где-то между 10 миллиардами и 100 триллионами. В этом случае обычно нет большого смысла разделять погрешности на разные типы.

Величина со всеми явно указанными погрешностями часто не очень удобна для работы, например при сравнении теории и эксперимента. В этом случае погрешности суммируют. Эти слова ни в коем случае нельзя воспринимать как простое сложение! Как правило, речь идет о сложении в квадратах: если все три типа погрешностей обозначить как Δxstat., Δxsys., Δxtheor., то глобальная погрешность обычно вычисляется по формуле

Стоит еще добавить, что в других разделах физики нередко используют иную запись: вместо символа «±» погрешность просто помещают в скобках. Тогда ее понимают так: это погрешность, выраженная в единицах последней значащей цифры. Например, 100(5) означает 100 ± 5, а 1,230(15) означает 1,230 ± 0,015. В этом случае принципиально важно писать правильное число нулей в результате измерения, ведь запись 1,23(15) уже будет означать вдесятеро большую погрешность: 1,23 ± 0,15.

Рис. 1. Два вида изображения погрешностей у экспериментальных данных. Слева: «усы» показывают полные погрешности; справа: засечки показывают статистические, а длина «усов» — полные погрешности

Как изображают погрешности

Когда экспериментально измеренные значения наносятся на график, погрешности тоже приходится указывать. Это обычно делают в виде «усов», как на рисунке слева. Такие «усы» с засечками относятся к глобальной погрешности. Если же хочется разделить статистические и систематические погрешности, то делают так, как показано на рисунке справа. Здесь засечки показывают только статистические погрешности, а полные усы во всю длину отвечают глобальным погрешностям. Другой вариант: выделение полных погрешностей цветом, как это показано, например, на рисунке с данными ATLAS по хиггсовскому бозону.

Наконец, когда экспериментальная точка имеет отдельные погрешности по обеим осям, то их тоже наносят, и результат выглядит в виде крестика.

Погрешность
измерения – отклонение результата
измерения X от истинного значения
измеряемой величины Q.

Δ
= X – Q.

Экспериментальные
методы выявления и оценки погрешностей
позволяют выявлять любые (систематические,
случайные и грубые) погрешности измерений,
независимо от их характера. Отличительной
особенностью этих методов является
работа с фиксированными результатами,
а следовательно и фиксированными
погрешностями измерений. Индивидуально
непредсказуемые («неопределенные»)
случайные и грубые погрешности после
их реализации можно оценивать
количественно.Очевидно, что результаты
с грубыми погрешностями следует исключать
из рассмотрения, поскольку они могут
существенно исказить оценки собственно
результатов измерений, а также
систематических и случайных
погрешностей.Экспериментальные методы
выявления и оценки погрешностей включают:

1.
Определение значения погрешности по
результатам измерения точной меры.

2.
Определение значения погрешности по
результатам измерения той же физической
величины с использованием заведомо
более точной МВИ.

3.
Анализ массива результатов многократных
наблюдений при измерении одной физической
величины.

Метод
определения значения погрешности по
результатам измерения точной меры
применяют для оценки всей реализуемой
погрешности измерений или для оценки
инструментальной составляющей (если
погрешности от остальных источников
удается свести к пренебрежимо малым
значениям, можно считать погрешность
прибора практически равной погрешности
измерения). Значение погрешности
измерения можно найти только в том
случае, если погрешность измеряемой
«точной» меры Δм пренебрежимо мала
по сравнению с искомой погрешностью Δ.

Искомая
погрешность Δ определяется из зависимости:

Δ
= X – Хм ,

где
Х – результат измерения меры,

Хм
– «точное» значение меры (номинальное
значение меры или значение меры с
поправкой по аттестату), для которого
можно записать

Δм
<< Δ, или Δм ≈ 0.

Сравнительные
измерения одной и той же физической
величины с использованием разных МВИ
позволяют оценить погрешности измерений
испытуемой МВИ при условии пренебрежимо
малой погрешности «точной» МВИ по
сравнению с испытуемой. Пример применения
такого метода: проверка показаний часов
по сигналам точного времени.

10. Обработка результатов измерений. Определение грубых погрешностей и нахождение необходимого количества параллельных измерений.

Обработка
результатов измерений статистическими
методами применяется на практике для
решения следующих задач:

1)определение
погрешности средств измерений;

2)определение
соответствия параметров технологического
процесса заданной точности изделия;

3)установление
технологического допуска при обработке;

4)определение
точностных характеристик установочных
и выборочных партий деталей, с целью
контроля и управления качеством
продукции;

5)установление
рассеяния показателей качества однотипных
изделий и др.

Результаты
измерений получаются путём соответствующей
обработки результатов наблюдений,
показаний полученных с помощью средств
измерений.При
этом вводятся следующие понятия:

результат
наблюдения — значение величины отсчёта
показаний средства измерений, полученное
при отдельном измерении;

результат
измерения — значение величины, полученное
после обработки результатов наблюдений.При
изготовлении партии деталей неизбежно
происходит рассеяние их геометрических
и физико-механических параметров.
Поэтому результаты измерения параметров
каждой отдельной детали являются
случайными величинами. Тоже самое
происходит при многократном измерении
одной детали с помощью конкретного
средства измерений.

Могут
быть два варианта решения поставленного
вопроса в зависимости от того, учитываются
или не учитываются неисключенные
систематические по-грешности.

Когда
не исключенная систематическая
погрешность мала, т.е. суммарная
погрешность определяется случайными
погрешностями, число параллельных
определений п, которые необходимо
выполнить для получения результата с
погрешностью, не превышающей ±е,
определяется следующим образом.

1. Задаются
необходимой степенью надежности оценки
погрешности. Для технических расчетов
обычно принимают а = 0,95.

2. Оценивают
среднее квадратическое отклонение
ожидаемого резуль¬тата наблюдения. Для
определений по методике с известным
относитель¬ным средним квадратическим
отклонением (sr )

s
= sr*X.

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]

  • #
  • #
  • #
  • #
  • #
  • #
  • #
  • #
  • #
  • #
  • #

Результаты
опытов обычно не являются точными. По
различным причинам результаты любых
двух параллельных опытов отличаются
друг от друга, за исключением случайных
совпадений. Экспериментатор, в какой
бы области он не работал, почти всегда
придерживается более или менее регулярной
последовательности: вначале производится
планирование, затем приобретается
оборудование, после этого производятся
испытания и наконец выполняется анализ
и составляется отчет. При планировании
и приобретении оборудования анализ
ошибок должен быть на одном из первых
мест.

Под
точностью эксперимента понимают его
качество, отражающее близость полученных
результатов к истинному значению искомой
величины. Точность эксперимента тем
выше, чем меньше его погрешность.

Абсолютная
погрешность
– это разностьx
между результатом эксперимента x и
истинным значением искомой величины
х*:

(1.1)

Относительная
погрешность

(1.2)

Следует
заметить, что истинное значение величины,
определяемой в результате эксперимента,
всегда остается неизвестным, поэтому
и погрешности эксперимента могут быть
оценены лишь приближенно.

Приведенной
погрешностью
называют отношение
абсолютной погрешностиx
к нормирующему значению xн,
выраженному в процентах:

(1.2a)

В
качестве нормирующего значения используют
условно принятое значение измеряемой
величины, выраженное в тех же единицах,
в качестве которых, как правило, используют
абсолютные значения разности верхнего
и нижнего пределов шкалы.

При
проведении эксперимента его погрешности
принято условно разделять на
систематические, случайные и грубые
(промахи).

Систематическойназывается погрешность, которая при
повторных экспериментах остается
постоянной или изменяется закономерно.
Наличие систематических погрешностей
может быть обнаружено путем анализа
условий измерения одного и того же
значения измеряемой величины разными
методами или приборами. Примером
переменной систематической погрешности
может быть погрешность от измерения
(закономерного) напряжения источника
питания, если результат измерения
зависит от напряжения (например,
потенциометр).Систематические
погрешности нельзя уменьшить увеличением
числа параллельных опытов. Должны
устраняться вызывающие их причины.
Общим методом выявления причин
систематических погрешностей является
калибровка (поверка), которая представляет
собой поверку прибора во всем диапазоне
измеряемой величины с помощью известного
эталона. Прибор может давать очень малый
разброс показаний, но результат будет
неверным вследствие наличия систематической
ошибки. Пример: пирометр излучения дает
показания,0С: 950, 952, 948, 950,
951 при истинном значении 10000С
(рис.1.2). Можно выделить следующие
источники систематических погрешностей.

Рис. 1.2.Пример
данных, иллюстрирующий различие между
случайной и систематической погрешностями:
1 – измерения характеризуются наличием
случайной погрешности; 2 – измерения
характеризуются наличием систематической
погрешности.

  • инструментальные
    (приборные или аппаратурные) погрешности
    средств измерений называются такие,
    которые принадлежат данному средству
    измерений, они могут быть определены
    при его испытаниях и занесены в его
    паспорт. Принято различатьосновную
    погрешность
    средств измерений, т.е.
    погрешность в условиях, принятых за
    нормальные, идополнительную
    погрешность
    , вызванную отклонением
    влияющих параметров за пределы области
    нормальных значений (вибрации, влажности
    среды, инерцией и т.п.);

  • методические
    погрешности – это погрешности,
    которые не могут быть приписаны данному
    прибору, не смогут быть указаны в его
    паспорте, т.е. связаны не с самим прибором,
    а с методикой проведения измерений.
    Очень часто причиной возникновения
    методической погрешности является то,
    что организуя измерения, измеряют или
    вынуждены измерять не ту величину,
    которую в принципе требуется измерять,
    а некоторую другую, близкую, но не равную
    ей. Например, для измерения температуры
    поверхности тела по его тепловому
    излучению, зависящего не только от этой
    температуры, но и приведенной степени
    чернотыпр
    (q=прC0Т4).
    (Определение температурного поля
    термически массивного тела по температуре
    его поверхности).

Отличительной
особенностью методических погрешностей
является то, что они могут быть определены
лишь путем создания математической
модели исследуемого объекта и не смогут
быть найдены сколь угодно тщательным
исследованием лишь самого измерительного
прибора. Действительно, определить
температурное поле тела по температуре
его поверхности можно только располагая
математической моделью нагрева металла,
а определить температуру поверхности
по показаниям радиационного пирометра
только при заданной (рассчитанной)
степени черноты этого тела.

  • субъективные
    погрешности, обусловленные особенностями
    исследователя (совпадение яркости
    накала лампы и излучаемого тела в
    оптических пирометрах, определяемое
    наблюдателем, и т.п.).

Следует
иметь ввиду, что полностью исключить
систематические погрешности невозможно,
так как методы и средства, с помощью
которых обнаруживаются и оцениваются
систематические погрешности, сами имеют
свои погрешности.

Случайнойназывается погрешность, обусловленная
действием ряда причин, меняющихся
случайным образом от эксперимента к
эксперименту. Значение этой погрешности
не может быть определено в каждом
эксперименте и на нее невозможно оказать
влияние. В то же время в результате
большого числа экспериментов могут
быть выявлены некоторые закономерности,
присущие этому типу погрешностей. К
случайным относятся непостоянные
погрешности, причины возникновения
которых неизвестны. Эти погрешности,
как правило, вызываются сложной
совокупностью изменяющихся факторов,
обычно неизвестные экспериментатору
и трудно поддающиеся анализу. Таким
образом,случайные погрешности
представляют собой беспорядочные
флуктуации показаний прибора относительно
истинного значения измеряемой величины.
Для исследования случайных погрешностей,
возникающих при проведении эксперимента,
широко используются математическая
статистика и теория вероятностей.

Грубыепогрешности (промахи) возникают вследствие
непредвиденного изменения условий
эксперимента, качества измерений,
поломок прибора, неправильной записи
в рабочих журналах, механических ударах
прибора, неправильном отчете показаний
прибора, отключении источника питания
и т.п. Результат, содержащий грубую
ошибку, резко отличается по величине
от остальных измерений. Такие результаты
должны быть исключены из рассмотрения
до математической обработки результатов
эксперимента.

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]

  • #
  • #
  • #
  • #
  • #
  • #
  • #
  • #
  • #
  • #
  • #

Какие бывают погрешности

Любое число, которое выдает нам эксперимент, это результат измерения. Измерение производится прибором, и это либо непосредственные показания прибора, либо результат обработки этих показаний. И в том, и в другом случае полученный результат измерения неидеален, он содержит погрешности. И потому любой грамотный физик должен не только предъявить численный результат измерения, но и обязан указать все сопутствующие погрешности. Не будет преувеличением сказать, что численный экспериментальный результат, предъявленный без указания каких-либо погрешностей, бессмыслен.

В физике элементарных частиц к указанию погрешностей относятся исключительно ответственно. Экспериментаторы не только сообщают погрешности, но и разделяют их на разные группы. Три основных погрешности, которые встречаются чаще всего, это статистическая, систематическая и теоретическая (или модельная) погрешности. Цель такого разделения — дать четкое понимание того, что именно ограничивает точность этого конкретного измерения, а значит, за счет чего эту точность можно улучшить в будущем.

Статистическая погрешность связана с разбросом значений, которые выдает эксперимент после каждой попытки измерить величину.

(Подробнее о статистической погрешности)

Систематическая погрешность характеризует несовершенство самого измерительного инструмента или методики обработки данных, а точнее, недостаточное знание того, насколько «сбоит» инструмент или методика.

(Подробнее о систематической погрешности)

Теоретическая/модельная погрешность — это неопределенность результата измерения, которая возникла потому, что методика обработки данных была сложная и в чем-то опиралась на теоретические предположения или результаты моделирования, которые тоже несовершенны. Впрочем, иногда эту погрешность считают просто разновидностью систематических погрешностей.

(Подробнее о погрешности теории и моделирования)

Наконец, в отдельный класс, видимо, можно отнести возможные человеческие ошибки, прежде всего психологического свойства (предвзятость при анализе данных, ленность при проверке того, как результаты зависят от методики анализа). Строго говоря, они не являются погрешностью измерения, поскольку могут и должны быть устранены. Зачастую это избавление от человеческих ошибок может быть вполне формализовано. Так называемый дважды слепой эксперимент в биомедицинских науках — один тому пример. В физике частиц есть похожие приемы (см. заметку Что означает «слепой анализ» при поиске новых частиц?).

Что означает погрешность

Стандартный вид записи измеренной величины с погрешностью знаком всем. Например, результат взвешивания какого-то предмета может быть 100 ± 5 грамм. Это означает, что мы не знаем абсолютно точно массу, она может быть и 101 грамм, и 96 грамм, а может быть и все 108 грамм. Но уж точно не 60 и не 160 грамм. Мы говорим лишь, сколько нам показывают весы, и из каких-то соображений определяем тот примерный разброс, который измерение вполне могло бы дать.

Тут надо подчеркнуть две вещи. Во-первых, в бытовой ситуации значение 100 ± 5 грамм часто интерпретируется так, словно истинная масса гарантированно лежит в этом диапазоне и ни в коей мере не может быть 94 или 106 грамм. Научная запись подразумевает не это. Она означает, что истинная масса скорее всего лежит в этом интервале, но в принципе может случиться и так, что она немножко выходит за его пределы. Это становится наиболее четко, когда речь идет о статистических погрешностях; см. подробности на страничке Что такое «сигма»?.

Во-вторых, надо четко понимать, что погрешности — это не ошибки эксперимента. Наоборот, они являются показателем качества эксперимента. Погрешности характеризуют объективный уровень несовершенства прибора или неидеальности методики обработки. Их нельзя полностью устранить, но зато можно сказать, в каких рамках результату можно доверять.

Некоторые дополнительные тонкости, связанные с тем, что именно означают погрешности, описаны на странице Тонкости анализа данных.

Как записывают погрешности

Указанный выше способ записи не уточняет, что это за погрешность перед нами. В физике элементарных частиц при предъявлении результатов источники погрешностей принято уточнять. В результате запись результата может иногда принять пугающий своей сложностью вид. Таких выражений не надо бояться, просто нужно внимательно посмотреть, что там указано.

В самом простом случае экспериментально измеренное число записывается так: результат и две погрешности одна за другой:

μ = 1,33 ± 0,14 ± 0,15.

Тут вначале всегда идет статистическая, а за ней — систематическая погрешность. Если же измерение не прямое, а в чем-то опирается на теорию, которая тоже не идеально точна, то следом за ними приписывается теоретическая погрешность, например:

μ = 1,33 ± 0,14 ± 0,15 ± 0,11.

Иногда для пущей понятности явно указывают, что есть что, и тогда погрешностей может быть даже больше. Это делается вовсе не для того, чтобы запутать читателя, а с простой целью: упростить в будущем расчет уточенного результата, если какой-то один из источников погрешностей будет уменьшен. Вот пример из статьи arXiv:1205.0934 коллаборации LHCb:

Означает эта длинная строка следующее. Тут записана измеренная детектором вероятность выписанного распада Bs-мезона, которая равна [1,83 ± четыре вида погрешностей] · 10–5. В перечислении погрешностей вначале идет статистическая погрешность, потом систематическая погрешность, затем погрешность, связанная с плохим знанием некоторой величины fs/fd (неважно, что это такое), и наконец, погрешность, связанная с плохим знанием вероятности распада B0-мезона (потому что измерение Bs-распада косвенно опирается на B0-распад).

Нередки также случаи, когда погрешности в сторону увеличения и уменьшения разные. Тогда это тоже указывается явно (пример из статьи hep-ex/0403004):

И наконец, совсем экзотический случай: когда величина настолько плохо определена, что погрешность пишут не к самому числу, а к показателю степени. Например, 1012 ± 2 означает, что величина вполне может лежать где-то между 10 миллиардами и 100 триллионами. В этом случае обычно нет большого смысла разделять погрешности на разные типы.

Величина со всеми явно указанными погрешностями часто не очень удобна для работы, например при сравнении теории и эксперимента. В этом случае погрешности суммируют. Эти слова ни в коем случае нельзя воспринимать как простое сложение! Как правило, речь идет о сложении в квадратах: если все три типа погрешностей обозначить как Δxstat., Δxsys., Δxtheor., то глобальная погрешность обычно вычисляется по формуле

Стоит еще добавить, что в других разделах физики нередко используют иную запись: вместо символа «±» погрешность просто помещают в скобках. Тогда ее понимают так: это погрешность, выраженная в единицах последней значащей цифры. Например, 100(5) означает 100 ± 5, а 1,230(15) означает 1,230 ± 0,015. В этом случае принципиально важно писать правильное число нулей в результате измерения, ведь запись 1,23(15) уже будет означать вдесятеро большую погрешность: 1,23 ± 0,15.

Рис. 1. Два вида изображения погрешностей у экспериментальных данных. Слева: «усы» показывают полные погрешности; справа: засечки показывают статистические, а длина «усов» — полные погрешности

Как изображают погрешности

Когда экспериментально измеренные значения наносятся на график, погрешности тоже приходится указывать. Это обычно делают в виде «усов», как на рисунке слева. Такие «усы» с засечками относятся к глобальной погрешности. Если же хочется разделить статистические и систематические погрешности, то делают так, как показано на рисунке справа. Здесь засечки показывают только статистические погрешности, а полные усы во всю длину отвечают глобальным погрешностям. Другой вариант: выделение полных погрешностей цветом, как это показано, например, на рисунке с данными ATLAS по хиггсовскому бозону.

Наконец, когда экспериментальная точка имеет отдельные погрешности по обеим осям, то их тоже наносят, и результат выглядит в виде крестика.

Погрешности измерений, представление результатов эксперимента

  1. Шкала измерительного прибора
  2. Цена деления
  3. Виды измерений
  4. Погрешность измерений, абсолютная и относительная погрешность
  5. Абсолютная погрешность серии измерений
  6. Представление результатов эксперимента
  7. Задачи

п.1. Шкала измерительного прибора

Шкала – это показывающая часть измерительного прибора, состоящая из упорядоченного ряда отметок со связанной с ними нумерацией. Шкала может располагаться по окружности, дуге или прямой линии.

Примеры шкал различных приборов:

п.2. Цена деления

Цена деления измерительного прибора равна числу единиц измеряемой величины между двумя ближайшими делениями шкалы. Как правило, цена деления указана на маркировке прибора.

Алгоритм определения цены деления
Шаг 1. Найти два ближайшие пронумерованные крупные деления шкалы. Пусть первое значение равно a, второе равно b, b > a.
Шаг 2. Посчитать количество мелких делений шкалы между ними. Пусть это количество равно n.
Шаг 3. Разделить разницу значений крупных делений шкалы на количество отрезков, которые образуются мелкими делениями: $$ triangle=frac{b-a}{n+1} $$ Найденное значение (triangle) и есть цена деления данного прибора.

Пример определения цены деления:

Пример определения цены деления Определим цену деления основной шкалы секундомера.
Два ближайших пронумерованных деления на основной шкале:a = 5 c
b = 10 cМежду ними находится 4 средних деления, а между каждыми средними делениями еще 4 мелких. Итого: 4+4·5=24 деления.

Цена деления: begin{gather*} triangle=frac{b-a}{n+1}\ triangle=frac{10-5}{24+1}=frac15=0,2 c end{gather*}

п.3. Виды измерений

Вид измерений

Определение

Пример

Прямое измерение

Физическую величину измеряют с помощью прибора

Измерение длины бруска линейкой

Косвенное измерение

Физическую величину рассчитывают по формуле, куда подставляют значения величин, полученных с помощью прямых измерений

Определение площади столешницы при измеренной длине и ширине

п.4. Погрешность измерений, абсолютная и относительная погрешность

Погрешность измерений – это отклонение измеренного значения величины от её истинного значения.

Составляющие погрешности измерений

Причины

Инструментальная погрешность

Определяется погрешностью инструментов и приборов, используемых для измерений (принципом действия, точностью шкалы и т.п.)

Погрешность метода

Определяется несовершенством методов и допущениями в методике.

Погрешность теории (модели)

Определяется теоретическими упрощениями, степенью соответствия теоретической модели и реальности.

Погрешность оператора

Определяется субъективным фактором, ошибками экспериментатора.

Инструментальная погрешность измерений принимается равной половине цены деления прибора: $$ d=frac{triangle}{2} $$

Если величина (a_0) — это истинное значение, а (triangle a) — погрешность измерения, результат измерений физической величины записывают в виде (a=a_0pmtriangle a).

Абсолютная погрешность измерения – это модуль разности между измеренным и истинным значением измеряемой величины: $$ triangle a=|a-a_0| $$

Отношение абсолютной погрешности измерения к истинному значению, выраженное в процентах, называют относительной погрешностью измерения: $$ delta=frac{triangle a}{a_0}cdot 100text{%} $$

Относительная погрешность является мерой точности измерения: чем меньше относительная погрешность, тем измерение точнее. По абсолютной погрешности о точности измерения судить нельзя.
На практике абсолютную и относительную погрешности округляют до двух значащих цифр с избытком, т.е. всегда в сторону увеличения.

Значащие цифры – это все верные цифры числа, кроме нулей слева. Результаты измерений записывают только значащими цифрами.

Примеры значащих цифр:
0,403 – три значащих цифры, величина определена с точностью до тысячных.
40,3 – три значащих цифры, величина определена с точностью до десятых.
40,300 – пять значащих цифр, величина определена с точностью до тысячных.

В простейших измерениях инструментальная погрешность прибора является основной.
В таких случаях физическую величину измеряют один раз, полученное значение берут в качестве истинного, а абсолютную погрешность считают равной инструментальной погрешности прибора.
Примеры измерений с абсолютной погрешностью равной инструментальной:

  • определение длины с помощью линейки или мерной ленты;
  • определение объема с помощью мензурки.

Пример получения результатов прямых измерений с помощью линейки:

Пример получения результатов прямых измерений с помощью линейки Измерим длину бруска линейкой, у которой пронумерованы сантиметры и есть только одно деление между пронумерованными делениями.
Цена деления такой линейки: begin{gather*} triangle=frac{b-a}{n+1}= frac{1 text{см}}{1+1}=0,5 text{см} end{gather*} Инструментальная погрешность: begin{gather*} d=frac{triangle}{2}=frac{0,5}{2}=0,25 text{см} end{gather*} Истинное значение: (L_0=4 text{см})
Результат измерений: $$ L=L_0pm d=(4,00pm 0,25) text{см} $$ Относительная погрешность: $$ delta=frac{0,25}{4,00}cdot 100text{%}=6,25text{%}approx 6,3text{%} $$
Пример получения результатов прямых измерений с помощью линейки Теперь возьмем линейку с n=9 мелкими делениями между пронумерованными делениями.
Цена деления такой линейки: begin{gather*} triangle=frac{b-a}{n+1}= frac{1 text{см}}{9+1}=0,1 text{см} end{gather*} Инструментальная погрешность: begin{gather*} d=frac{triangle}{2}=frac{0,1}{2}=0,05 text{см} end{gather*} Истинное значение: (L_0=4,15 text{см})
Результат измерений: $$ L=L_0pm d=(4,15pm 0,05) text{см} $$ Относительная погрешность: $$ delta=frac{0,05}{4,15}cdot 100text{%}approx 1,2text{%} $$

Второе измерение точнее, т.к. его относительная погрешность меньше.

п.5. Абсолютная погрешность серии измерений

Измерение длины с помощью линейки (или объема с помощью мензурки) являются теми редкими случаями, когда для определения истинного значения достаточно одного измерения, а абсолютная погрешность сразу берется равной инструментальной погрешности, т.е. половине цены деления линейки (или мензурки).

Гораздо чаще погрешность метода или погрешность оператора оказываются заметно больше инструментальной погрешности. В таких случаях значение измеренной физической величины каждый раз немного меняется, и для оценки истинного значения и абсолютной погрешности нужна серия измерений и вычисление средних значений.

Алгоритм определения истинного значения и абсолютной погрешности в серии измерений
Шаг 1. Проводим серию из (N) измерений, в каждом из которых получаем значение величины (x_1,x_2,…,x_N)
Шаг 2. Истинное значение величины принимаем равным среднему арифметическому всех измерений: $$ x_0=x_{cp}=frac{x_1+x_2+…+x_N}{N} $$ Шаг 3. Находим абсолютные отклонения от истинного значения для каждого измерения: $$ triangle_1=|x_0-x_1|, triangle_2=|x_0-x_2|, …, triangle_N=|x_0-x_N| $$ Шаг 4. Находим среднее арифметическое всех абсолютных отклонений: $$ triangle_{cp}=frac{triangle_1+triangle_2+…+triangle_N}{N} $$ Шаг 5. Сравниваем полученную величину (triangle_{cp}) c инструментальной погрешностью прибора d (половина цены деления). Большую из этих двух величин принимаем за абсолютную погрешность: $$ triangle x=maxleft{triangle_{cp}; dright} $$ Шаг 6. Записываем результат серии измерений: (x=x_0pmtriangle x).

Пример расчета истинного значения и погрешности для серии прямых измерений:
Пусть при измерении массы шарика с помощью рычажных весов мы получили в трех опытах следующие значения: 99,8 г; 101,2 г; 100,3 г.
Инструментальная погрешность весов d = 0,05 г.
Найдем истинное значение массы и абсолютную погрешность.

Составим расчетную таблицу:

№ опыта 1 2 3 Сумма
Масса, г 99,8 101,2 100,3 301,3
Абсолютное отклонение, г 0,6 0,8 0,1 1,5

Сначала находим среднее значение всех измерений: begin{gather*} m_0=frac{99,8+101,2+100,3}{3}=frac{301,3}{3}approx 100,4 text{г} end{gather*} Это среднее значение принимаем за истинное значение массы.
Затем считаем абсолютное отклонение каждого опыта как модуль разности (m_0) и измерения. begin{gather*} triangle_1=|100,4-99,8|=0,6\ triangle_2=|100,4-101,2|=0,8\ triangle_3=|100,4-100,3|=0,1 end{gather*} Находим среднее абсолютное отклонение: begin{gather*} triangle_{cp}=frac{0,6+0,8+0,1}{3}=frac{1,5}{3}=0,5 text{(г)} end{gather*} Мы видим, что полученное значение (triangle_{cp}) больше инструментальной погрешности d.
Поэтому абсолютная погрешность измерения массы: begin{gather*} triangle m=maxleft{triangle_{cp}; dright}=maxleft{0,5; 0,05right} text{(г)} end{gather*} Записываем результат: begin{gather*} m=m_0pmtriangle m\ m=(100,4pm 0,5) text{(г)} end{gather*} Относительная погрешность (с двумя значащими цифрами): begin{gather*} delta_m=frac{0,5}{100,4}cdot 100text{%}approx 0,050text{%} end{gather*}

п.6. Представление результатов эксперимента

Результат измерения представляется в виде $$ a=a_0pmtriangle a $$ где (a_0) – истинное значение, (triangle a) – абсолютная погрешность измерения.

Как найти результат прямого измерения, мы рассмотрели выше.
Результат косвенного измерения зависит от действий, которые производятся при подстановке в формулу величин, полученных с помощью прямых измерений.

Погрешность суммы и разности
Если (a=a_0+triangle a) и (b=b_0+triangle b) – результаты двух прямых измерений, то

  • абсолютная погрешность их суммы равна сумме абсолютных погрешностей

$$ triangle (a+b)=triangle a+triangle b $$

  • абсолютная погрешность их разности также равна сумме абсолютных погрешностей

$$ triangle (a-b)=triangle a+triangle b $$

Погрешность произведения и частного
Если (a=a_0+triangle a) и (b=b_0+triangle b) – результаты двух прямых измерений, с относительными погрешностями (delta_a=frac{triangle a}{a_0}cdot 100text{%}) и (delta_b=frac{triangle b}{b_0}cdot 100text{%}) соответственно, то:

  • относительная погрешность их произведения равна сумме относительных погрешностей

$$ delta_{acdot b}=delta_a+delta_b $$

  • относительная погрешность их частного также равна сумме относительных погрешностей

$$ delta_{a/b}=delta_a+delta_b $$

Погрешность степени
Если (a=a_0+triangle a) результат прямого измерения, с относительной погрешностью (delta_a=frac{triangle a}{a_0}cdot 100text{%}), то:

  • относительная погрешность квадрата (a^2) равна удвоенной относительной погрешности

$$ delta_{a^2}=2delta_a $$

  • относительная погрешность куба (a^3) равна утроенной относительной погрешности

$$ delta_{a^3}=3delta_a $$

  • относительная погрешность произвольной натуральной степени (a^n) равна

$$ delta_{a^n}=ndelta_a $$

Вывод этих формул достаточно сложен, но если интересно, его можно найти в Главе 7 справочника по алгебре для 8 класса.

п.7. Задачи

Задача 1. Определите цену деления и объем налитой жидкости для каждой из мензурок. В каком случае измерение наиболее точно; наименее точно?
Задача 1

Составим таблицу для расчета цены деления:

№ мензурки a, мл b, мл n (triangle=frac{b-a}{n+1}), мл
1 20 40 4 (frac{40-20}{4+1}=4)
2 100 200 4 (frac{200-100}{4+1}=20)
3 15 30 4 (frac{30-15}{4+1}=3)
4 200 400 4 (frac{400-200}{4+1}=40)

Инструментальная точность мензурки равна половине цены деления.
Принимаем инструментальную точность за абсолютную погрешность и измеренное значение объема за истинное.
Составим таблицу для расчета относительной погрешности (оставляем две значащих цифры и округляем с избытком):

№ мензурки Объем (V_0), мл Абсолютная погрешность
(triangle V=frac{triangle}{2}), мл
Относительная погрешность
(delta_V=frac{triangle V}{V_0}cdot 100text{%})
1 68 2 3,0%
2 280 10 3,6%
3 27 1,5 5,6%
4 480 20 4,2%

Наиболее точное измерение в 1-й мензурке, наименее точное – в 3-й мензурке.

Ответ:
Цена деления 4; 20; 3; 40 мл
Объем 68; 280; 27; 480 мл
Самое точное – 1-я мензурка; самое неточное – 3-я мензурка

Задача 2. В двух научных работах указаны два значения измерений одной и той же величины: $$ x_1=(4,0pm 0,1) text{м}, x_2=(4,0pm 0,03) text{м} $$ Какое из этих измерений точней и почему?

Мерой точности является относительная погрешность измерений. Получаем: begin{gather*} delta_1=frac{0,1}{4,0}cdot 100text{%}=2,5text{%}\ delta_2=frac{0,03}{4,0}cdot 100text{%}=0,75text{%} end{gather*} Относительная погрешность второго измерения меньше. Значит, второе измерение точней.
Ответ: (delta_2lt delta_1), второе измерение точней.

Задача 3. Две машины движутся навстречу друг другу со скоростями 54 км/ч и 72 км/ч.
Цена деления спидометра первой машины 10 км/ч, второй машины – 1 км/ч.
Найдите скорость их сближения, абсолютную и относительную погрешность этой величины.

Абсолютная погрешность скорости каждой машины равна инструментальной, т.е. половине деления спидометра: $$ triangle v_1=frac{10}{2}=5 (text{км/ч}), triangle v_2=frac{1}{2}=0,5 (text{км/ч}) $$ Показания каждого из спидометров: $$ v_1=(54pm 5) text{км/ч}, v_2=(72pm 0,5) text{км/ч} $$ Скорость сближения равна сумме скоростей: $$ v_0=v_{10}+v_{20}, v_0=54+72=125 text{км/ч} $$ Для суммы абсолютная погрешность равна сумме абсолютных погрешностей слагаемых. $$ triangle v=triangle v_1+triangle v_2, triangle v=5+0,5=5,5 text{км/ч} $$ Скорость сближения с учетом погрешности равна: $$ v=(126,0pm 5,5) text{км/ч} $$ Относительная погрешность: $$ delta_v=frac{5,5}{126,0}cdot 100text{%}approx 4,4text{%} $$ Ответ: (v=(126,0pm 5,5) text{км/ч}, delta_vapprox 4,4text{%})

Задача 4. Измеренная длина столешницы равна 90,2 см, ширина 60,1 см. Измерения проводились с помощью линейки с ценой деления 0,1 см. Найдите площадь столешницы, абсолютную и относительную погрешность этой величины.

Инструментальная погрешность линейки (d=frac{0,1}{2}=0,05 text{см})
Результаты прямых измерений длины и ширины: $$ a=(90,20pm 0,05) text{см}, b=(60,10pm 0,05) text{см} $$ Относительные погрешности (не забываем про правила округления): begin{gather*} delta_1=frac{0,05}{90,20}cdot 100text{%}approx 0,0554text{%}approx uparrow 0,056text{%}\ delta_2=frac{0,05}{60,10}cdot 100text{%}approx 0,0832text{%}approx uparrow 0,084text{%} end{gather*} Площадь столешницы: $$ S=ab, S=90,2cdot 60,1 = 5421,01 text{см}^2 $$ Для произведения относительная погрешность равна сумме относительных погрешностей слагаемых: $$ delta_S=delta_a+delta_b=0,056text{%}+0,084text{%}=0,140text{%}=0,14text{%} $$ Абсолютная погрешность: begin{gather*} triangle S=Scdot delta_S=5421,01cdot 0,0014=7,59approx 7,6 text{см}^2\ S=(5421,0pm 7,6) text{см}^2 end{gather*} Ответ: (S=(5421,0pm 7,6) text{см}^2, delta_Sapprox 0,14text{%})

Понравилась статья? Поделить с друзьями:
  • Как правильно составить карту путешествия
  • Как найти собственника для прописки
  • Как найти количество вспомогательных рабочих
  • Как найти длины прямоугольника когда известно площадь
  • Как по коду окз найти код окпдтр