Как найти экстремум в эпюре момента

В этом уроке будем учиться строить эпюры для балок, работающих на поперечный изгиб — эпюры поперечных сил и изгибающих моментов. Важно уметь правильно построить и проанализировать эти эпюры, потому что большинство современных инженерных сооружений состоят из элементов, которые работают на изгиб.

В статье рассмотрим 2 примера: один попроще — консольная балка, загруженная сосредоточенными силами и моментом, другой посложнее — двухопорная балка, загруженная распределённой нагрузкой.

Чтобы освоить материал этого урока, уже нужно знать, как определяются опорные реакции. Умеешь — отлично, но если же нет, то можешь изучить этот урок.

Подробно рассматривать в этом уроке нахождения реакций не будем, я буду приводить только их расчёт.

Поперечные силы и изгибающие моменты

При поперечном изгибе, в поперечных сечениях балки, возникает два внутренних силовых фактора (ВСФ) – поперечная сила (Q) и изгибающий момент (Mизг).

Схема нагружения балки
Поперечные силы и изгибающие моменты в произвольном сечении балки

Наша задача, научиться определять их и строить эпюры. Чтобы потом, используя полученные эпюры, можно было проводить различные расчёты. Например, подбирать размеры поперечных сечений балки или проверять прочность балки, если эти размеры уже заданы и т. д.

Поперечные силы и изгибающие моменты определяются с помощью метода сечений. Когда балка мысленно рассекается на две части. Затем действие частей балки друг на друга заменяется внутренними силовыми факторами (ВСФ) – поперечными силами и изгибающими моментами. Потом путём рассмотрения равновесия одной из частей находятся ВСФ.

Если пока не очень понятно — это нормально, когда начнём это всё делать на практике, ты обязательно всё поймёшь!

Обозначения поперечных сил и изгибающих моментов

Теперь поговорим по поводу обозначений для поперечных сил и изгибающих моментов. Как правило, задачи в сопромате, и механике в целом, решаются относительно каких-то координатных осей. А поперечные силы и изгибающие моменты, имеют индексы в зависимости от выбранной системы координат.

Например, если выбрать следующие обозначения для координатных осей:

Обозначения поперечных сил и изгибающих моментов с привязкой к координатным осям

То, поперечная сила, будет обозначаться, как Qy (параллельна оси y), а изгибающий момент, как Mx (поворачивает относительно оси x). Это наиболее частый вариант. Однако, можно встретить обозначения – Qy, Mz или Qz, Mx. Самые ленивые, предпочитают подписывать данные величины, как просто Q и M. Как видишь, здесь всё зависит от предпочтений твоего преподавателя. Чтобы изучая этот урок, ты не привыкал (- а) к каким-то индексам, т. к. твой преподаватель тебя всё равно будет учить по-своему, я решил использовать в статье для поперечной силы, просто букву – Q, а для изгибающего момента – Mизг. Такое обозначение изгибающего момента, тоже используется часто, а сам индекс «изг» нужен, чтобы не путать внутренний – изгибающий момент, с внешними моментами, которые почти всегда подписываются просто буквой – M.

Расчётная схема балки

Также нужно понимать, что когда мы рассчитываем поперечные силы и изгибающие моменты, мы считаем их непросто для какой-то линии:

Простая схема балки, свободная от нагрузок

А подразумеваем, что мы рассчитываем некоторый элемент конструкции — балку, которая обязательно имеет некоторую форму, либо для которой впоследствии будет рассчитана эта форма, в зависимости от целей расчёта.

К примеру, балка может иметь прямоугольное поперечное сечение:

Балки имеющая прямоугольную форму поперечного сечения

Если в расчётах эпюр при растяжении (сжатии) или кручении, форма стержня указывалась явно, и в этом был определённый смысл, так как те стержня имели ступенчатую форму – разную жёсткость на участках. То здесь, как правило, балки имеют одинаковое сечение, по всей длине, поэтому для экономии времени, балку показывают в виде такой линии. Затем, после построения эпюр, традиционно, для балки либо подбирается поперечное сечение из условия прочности, либо проверяется прочность уже заданного сечения.

Правила знаков для поперечных сил и изгибающих моментов

В этом разделе поговорим о правилах знаков для поперечных сил и изгибающих моментов. Для примера возьмём самую простую расчётную схему — консольную балку, загруженную сосредоточенной силой (F).

Расчётная схема

Расчётная схема консольной балки загруженная сосредоточенным усилием

Предположим, что нужно определить поперечную силу и изгибающий момент в каком-то поперечном сечении. Пока не будем строить никаких эпюр, а просто поставим перед собой простейшую задачу — рассчитать внутренние силовые факторы (Q и Мизг) для одного, конкретного сечения. Например, рассмотрим сечение в заделке (А).

Чтобы вычислить внутренние силовые факторы для этого сечения, нужно учесть всю внешнюю нагрузку, либо справа от сечения, либо слева. Если учитывать нагрузку справа — нужно учесть силу F, а если учитывать нагрузку слева — нужно учесть тогда реакции в заделке. Чтобы не вычислять реакции, пойдём по короткому пути и учтём всю нагрузку — справа.

Правило знаков для поперечных сил

Поперечная сила в сечении будет равна алгебраической сумме всех внешних сил (с учётом знака) по одну сторону от рассматриваемого сечения.

А знаки внешних сил определяются следующим образом — если внешняя сила, относительно рассматриваемого сечения, стремится повернуть:
ПО часовой стрелке, то её нужно учесть с «плюсом»;

Правило – положительное значение поперечной силы

ПРОТИВ часовой стрелки — учитываем её с «минусом».

Правило – отрицательное значение поперечной силы

Таким образом, для нашего случая, поперечная сила в сечении A будет равна:

Правило знаков для изгибающих моментов

Изгибающий момент в сечении будет равен алгебраической сумме всех моментов внешних сил (с учётом знака) по одну сторону от рассматриваемого сечения.

Перед тем как поговорить о правилах знаков для изгибающих моментов. Необходимо понять ещё одну особенность — когда на балку действует какая-то внешняя нагрузка, балка деформируется. При деформации балки принято различать «верхние волокна» и «нижние волокна», относительно линии (нейтральной оси), проходящей через центр тяжести поперечного сечения балки.

Схема показывающая верхние и нижние волокна консольной балки

Одни волокна при поперечном изгибе, будут растягиваться, а другие сжиматься.

Схема деформированной балки с указанием растянутых и сжатых волокон

В нашем случае, «верхние волокна», как видишь, будут растянуты, а нижние – сжаты.

На основании этой особенности, часто используется следующее правило для изгибающих моментов — если момент силы стремится растянуть:
верхние волокна, то учитываем его с «минусом»

Правило – отрицательное значение изгибающего момента

нижние волокна, то нужно учесть его с «плюсом».

Правило – положительное значение изгибающего момента

Не забываем, что мы ведём расчёт моментов, поэтому все силы нужно умножать на соответствующие плечи.

Таким образом, в нашем случае, изгибающий момент в сечении A будет равен:

Если на балку действуют сосредоточенные моменты, то правило знаков аналогичное:

Отрицательное значение изгибающего момента – правило
Положительное значение изгибающего момента – правило

Сосредоточенные моменты, конечно, уже не нужно ни на что умножать. Например, для верхней схемы, изгибающий момент в сечении A будет равен:

Как построить эпюры поперечных сил и изгибающих моментов ?

В пределах участков, и эпюра Q и эпюра M меняются по определённому закону. Границами участков являются точки приложения сил, моментов, а также начало и конец распределённой нагрузки (будем рассматривать во второй задаче). Поэтому, чтобы построить эпюры в пределах участка, сначала необходимо написать уравнения, которые будут описывать изменение поперечных сил и изгибающих моментов в пределах участка. А затем, подставляя в уравнения координаты начала и конца участка, получить значения на эпюрах в характерных точках, и построить эпюры на участке. Рассчитав таким образом все участки, можно построить эпюры для балки.

Чувствую, опять перегрузил тебя информацией…давай лучше, наконец, посмотрим, как это всё делается на практике 😉

Построение эпюр для консольной балки

В качестве первого примера, возьмём консольную балку, жёстко закреплённую с левого торца и загруженной следующим образом:

Расчётная схема — консольной балки, загруженной силами и моментом

Будем рассчитывать балку справа налево.

Рассмотрим первый участок

Обозначим некоторое сечение 1-1 на расстоянии x1, от свободного торца балки, при этом x1 будет находиться в диапазоне: 0 ≤ x1 ≤ 4м.

Указание расчётного сечения на первом участке

Так как расчёт выполняется справа налево, то в уравнениях необходимо учесть всю нагрузку, которая находится правее рассматриваемого сечения. Как видишь, на этом участке действует всего лишь одна сила F. Её и будем учитывать.

Поперечные силы на первом участке

Сила F, относительно сечения 1-1, поворачивает ПО часовой стрелке, поэтому с учётом правила знаков, записываем её с «плюсом»:

Как видишь, поперечная сила будет постоянна на первом участке:

Уже можем отразить это на эпюре поперечных сил:

Построение эпюры поперечных сил на первом участке

Изгибающие моменты на первом участке

Теперь запишем уравнение для изгибающих моментов. Сила F растягивает верхние волокна, поэтому с учётом правила знаков, нужно учесть момент силы F со знаком «минус»:

Здесь уже изгибающие моменты будут меняться по линейному закону. Как я уже писал, чтобы построить эпюру изгибающих моментов на участке, нужно вычислить значения на границах участка:

Откладываем полученные значения:

Построение эпюры изгибающих моментов на первом участке

Расчёт второго участка

Переходим ко второму участку. Также будем рассматривать некоторое сечение 2-2, на расстоянии x2 от начала участка (0 ≤ x≤ 6м). Здесь также нужно учесть ВСЮ нагрузку, которая находится справа от сечения 2-2.

Указание второго расчётного сечения

Поперечные силы на втором участке

Теперь на участке будут действовать 2 силы (сосредоточенный момент — M, никак не влияет на эпюру поперечных сил), учитываем их с учётом правила знаков:

Теперь можем показать окончательную эпюру поперечных сил:

Построение окончательной эпюры поперечных сил

Изгибающие моменты на втором участке

Для изгибающих моментов, с учётом правила знаков, второе уравнение будет выглядеть следующим образом:

Вычисляем значения на границах второго участка:

Показываем окончательную эпюру изгибащих моментов:

Построение окончательной эпюры изгибающих моментов

Проверка построенных эпюр

Балку можно рассчитать и слева направо. При этом очевидно, должны получаться те же эпюры. Давай проверим себя и рассчитаем эту балку с другой стороны.

Определение реакций в жёсткой заделке

Первым делом, нам потребуется определить реакции в заделке:

Обозначение реакций в жёсткой заделке на расчётной схеме

Расчёт эпюр поперечных сил и изгибающих моментов

Рассчитываем все участки теперь слева направо:

Обозначение расчётных сечений для участков балки

Ожидаемо, получили те же эпюры поперечных сил и изгибающих моментов:

Построение эпюр изгибающих моментов для расчёта балки слева направо

Причём не обязательно считать все участки балки только слева направо или справа налево. Можно считать балку с разных сторон:

Схема демонстрирующая, что расчёт балки можно выполнять с двух сторон

Такой подход позволяет минимизировать расчёт: когда балка имеет много расчётных участков. Как раз так и будем считать вторую двухопорную балку.

Эпюра моментов со стороны растянутых или сжатых волокон

По построенной эпюре можно явно сказать, какие волокна балки будут растянуты, а какие сжаты. Это очень полезная информация, при проведении прочностных расчётов.

Причем сама эпюра была построенна со стороны растянутых волокон:

Эпюра изгибающих моментов построенная со стороны растянутых волокон

Однако, студентов некоторых специальностей учат строить эпюры, с другой стороны – со стороны сжатых волокон:

Эпюра изгибающих моментов построенная со стороны сжатых волокон

Как видишь, в первом случае, отрицательные значения на эпюре моментов откладываются выше нулевой линии, а во втором – ниже. При этом правила знаков для расчета эпюр и сами расчёты не меняются. Обычно эпюры «на растянутых волокнах» строят студенты — строители, а эпюры «на сжатых волокнах» строятся студентами машиностроительных специальностей. В конечном счёте с какой стороны ты будешь строить эпюры, будет зависеть от твоего преподавателя, как он учит. В своих уроках я буду строить эпюры моментов со стороны растянутых волокон.

Учёт распределённой нагрузки

Перед тем как пойдём дальше и рассмотрим вторую задачу – двухопорную балку, нужно научиться работать с распределённой нагрузкой.

Давай рассмотрим ещё одну простенькую схему — консольную балку, загруженную распределённой нагрузкой:

Расчётная схема консольной балки, загруженной распределённой нагрузкой

Определение поперечной силы и изгибающего момента в сечении A

Чтобы определить поперечную силу в сечении A, первым делом нужно «свернуть» распределённую нагрузку (q) до сосредоточенной силы. Для этого нужно интенсивность нагрузки (q) умножить на длину участка действия нагрузки.

После чего получим силу — ql, приложенную ровно посередине участка, на котором действует распределённая нагрузка:

Сворачивание распределённой нагрузки до сосредоточенной силы

Тогда поперечная сила QA будет равна:

Изгибающий момент Mизг, A будет равен:

Расчёт эпюр поперечных сил и изгибающих моментов

Для написания уравнений для расчёта эпюр рассмотрим сечение 1-1:

Обозначение расчётного сечения для написания уравнений

Уравнение для поперечных сил будет следующее:

Рассчитаем значения на эпюре поперечных сил:

Построение эпюры поперечных сил для консольной балки от распределённой нагрузки

Уравнение для изгибающих моментов будет следующее:

Тогда значения на эпюре будут такими:

Откладывание ординат для построения эпюры изгибающих моментов

На участке с распределённой нагрузкой, на эпюре изгибающих моментов всегда будет либо выпуклость, либо вогнутость. Так как эпюра на этом участке будет меняться по квадратичному закону.

Если эпюра моментов откладывается со стороны растянутых волокон, распределённая нагрузка будет направлена «внутрь вогнутости» (выпуклости) эпюры изгибающих моментов:

Построение эпюры изгибающих моментов со стороны растянутых волокон для консольной балки от распределённой нагрузки

Если же эпюра моментов откладывается со стороны сжатых волокон, то наоборот:

Построение эпюры изгибающих моментов со стороны сжатых волокон для консольной балки от распределённой нагрузки

Построение эпюр для двухопорной балки

А теперь давай рассмотрим более сложную схему – двухопорную балку, загруженную всеми типами нагрузок:

Расчётная схема двухопорной балки

Определим реакции опор:

Расчётная схема двухопорной балки с обозначением реакций в опорах

Рассчитываем первый участок:

Строим эпюры на первом участке:

Построение эпюр сил и моментов на первом участке

Определение экстремума на эпюре моментов

Так как эпюра поперечных сил пересекает нулевую линию на первом участке, это значит, что в месте пересечения — на эпюре изгибающих моментов будет экстремум — точка, в которой эпюра моментов часто имеет наибольшее значение. Это значение, обязательно следует рассчитывать, потому — что экстремумы часто являются не только максимальными значениями в пределах участка, но и для всей балки в целом. Поэтому так важно, вычислять это значение, для дальнейшего проведения прочностных расчётов.

Чтобы найти экстремум, сначала нужно найти координату, где эпюра поперечных сил пересекает нулевую линию. Для этого уравнение для поперечных сил нужно приравнять к нулю:

Отсюда найти значение координаты:

Затем подставить это значение в уравнение для изгибающих моментов:

Теперь можем указать экстремум на эпюре:

Указание экстремума на эпюре изгибающих моментов

Расчет эпюр на остальных участках

Расчёты остальных участков не вижу смысла комментировать, потому что здесь будет применяться всё то, о чём я уже рассказывал по ходу урока. Поэтому просто приведу решение:

Определение экстремума:

Построение эпюр поперечных сил и изгибающих моментов для двухопорной балки

Оценка правильности построенных эпюр поперечных сил и изгибающих моментов

И напоследок хочу рассказать как можно проверить себя – оценить правильность построенных эпюр визуально. Собственно так, как проверяют эпюры — преподаватели, ведь они не проверяют у всех студентов каждое уравнение, каждый знак или цифру, т.к. это бы занимало слишком много времени.

Вот несколько признаков, правильно построенных эпюр:

  • На эпюре поперечных сил, в местах приложения сосредоточенных сил, должны быть скачки на величину этих сил.
  • На эпюре изгибающих моментов, в местах приложения сосредоточенных моментов, должны быть скачки на величину этих моментов.
  • Эпюра поперечных сил, на участках без распределённой нагрузки, должна быть постоянна. А на участках, где действует распределённая нагрузка – меняться по линейному закону.
  • Эпюра изгибающих моментов, на участках без распределённой нагрузки, должна меняться по линейному закону или быть постоянна (если действуют только сосредоточенные моменты). А на участках, где действует распределённая нагрузка – иметь вогнутость или выпуклость.

Пример решения задачи на построение эпюры внутренних изгибающих моментов Mx для стальной консольной балки нагруженной сосредоточенной силой F, моментом m и равномерно распределенной нагрузкой q.

Задача

Рассмотрим порядок построения эпюры изгибающих моментов Mx для консольной балки закрепленной в жесткой заделке.

Другие примеры решений >
Помощь с решением задач >

Пример решения

Ранее для данной балки уже были рассмотрены примеры определения опорных реакций и построения эпюры поперечных сил Qy.

Покажем найденные опорные реакции и выбранную систему координат.

Для построения эпюры изгибающих моментов Mx запишем их выражение по каждому силовому участку и рассчитаем их значения на границах участков. При этом воспользуемся методом сечений.

Наш видеоурок построения эпюр внутренних силовых факторов для балки:

Другие видео

Нумерацию силовых участков балки, сечения и другие вспомогательные обозначения примем из расчета эпюры Qy.

Рассмотрим I силовой участок:

Выбрав левую часть балки, отбросим ненадолго правую, и запишем имеющиеся данные.

I с.у. (AB) 0 ≤ z1≤ 0,5м

Внутренний изгибающий момент в указанном сечении равен сумме всех внешних моментов, воздействующих на рассматриваемую часть балки.

Здесь на момент в рассматриваемом сечении влияют только опорные реакции M и R, то есть сумма моментов состоит из двух слагаемых.

По правилу знаков момент, который стремится сжать верхние слои балки, принимается положительным, следовательно:

MxI=Σmi=M+R∙z1=30+60z1

В выражении переменная z1 в первой степени, поэтому эпюра Mx на первом участке будет иметь вид прямой линии.

Рассчитаем значения MxI на границах участка, т.е. при z1=0 и при z1=0,5м

MxI (z1=0)=30кНм
MxI (z1=0,5м)=60кНм

Переходим на второй силовой участок:

Рассекаем балку в произвольном месте участка и рассматриваем её правую часть.

Эта часть балки изгибается силой F и распределенной нагрузкой q.

II с.у. (BC) 0 ≤ z2 ≤ 1м
MxII=Σmi=-q∙z2(z2/2)+F∙z2= -50∙z22+40∙z2

Получено выражение с переменной z2 во второй степени, значит, эпюра Mx на втором участке будет иметь вид параболы.

Видео про построение эпюр:

Другие видео

Для построения параболы требуется как минимум три точки. Этими точками будут значения Mx на границах и в середине II силового участка, то есть при z2=0, z2=1м и z2=0,5м.

MxII(z2=0)=0
MxII(z2=0,5м)=7,5кНм
MxII(z2=1м)= -10кНм

По полученным данным строим эпюру изгибающих моментов Mx (готовую эпюру Qy перенесем из ранее рассмотренной задачи)

I с.у. (AB) 0 ≤ z1 ≤ 0,5м.
MxI=30+60z1 (прямая)
MxI(z1=0)=30кНм
MxI(z1=0,5м)=60кНм

II с.у. (BC) 0 ≤ z2 ≤ 1м
MxII= -50z22+40z2 (парабола)
MxII(z2=0)=0
MxII(z2=0,5м)=7,5кНм
MxII(z2=1м)= -10кНм

Прежде чем соединять отмеченные точки эпюры параболой, обратите внимание на эпюру поперечных сил Qy.

Qy — первая производная от Mx. Поэтому в том месте, где Qy пересекает базовую линию (т.е. Qy=0) на эпюре Mx будет экстремум.

Видео про расчет экстремума эпюры:

Другие видео

Рассчитаем значение экстремума эпюры Mx на II участке балки.

Для этого:

  1. Выражение QyII приравняем к нулю
    QyII=100z2-40=0
  2. Выразим из него z2
    z2=40/100=0,4м
  3. Подставим z2 в выражение для MxII
    MxIIэкстр(z2=0,4м)= -50∙0,42+40∙0,4=8кНм

Отметив эту точку в области эпюры где Qy=0 соединим ее с тремя другими параболой.

Эпюра изгибающих моментов построена. Проверка эпюры Mx.

Расчеты на прочность >
Другие примеры решения задач >

Из уравнения
равновесия отсеченной части балки (рис.
8.7б)
находим

.

Как видно,
график-эпюра

прямая линия, а

– квадратичная парабола. Полагая

и
,
находим значения усилий в этих точках.

При

значения внутренних усилий

а при



Отметим, что в шарнирах моменты всегда
равны нулю. На эпюре

при

перерезывающая сила
.
Это признак экстремума на эпюре моментов.
Вычислим при

максимум изгибающего момента

Откладываем
полученное значение на графике-эпюре
и проводим через три точки параболу. По
правилу зонтика и дождика выпуклость
параболы обращена к верху, а на перевернутой
эпюре моментов –
к низу. Эпюра моментов напоминает
изогнутую ось балки, изображенную на
рис. 8.7в
пунктиром.

6.
Построить эпюры

для балки (рис.
8.8а)
и подобрать стандартное двутавровое
поперечное сечение, если

Решение

1. Определение
опорных реакций

Из уравнений
равновесия

находим

Для статической
проверки правильности найденных реакций
составляем третье зависимое уравнение
равновесия для параллельной системы
сил:

.

Подставляя численные
значения сил, получим

.

Следовательно,
опорные реакции найдены верно.

Рис. 8.8

2. Определение

методом
сечения и построение эпюр

Балка состоит из
трех участков, на которых внутренние
усилия имеют различные аналитические
выражения. Методом сечений (рис. 8.8б)
находим

На первом участке

эпюра перерезывающих сил – прямая
линия, эпюра моментов – квадратичная
парабола, обращенная выпуклостью вверх
по правилу зонтика. Экстремум параболы
имеет место в сечении с
,
где
.
Максимальное значение момента
.

На первом участке
при

имеем
,
а при

На втором участке

эпюра

постоянна, а

− прямая линия, убывающая с ростом
,
т.к. по правилу Журавского угловой
коэффициент
.
При

.

На третьем участке

эпюра

постоянна, а эпюра моментов

− наклонная прямая, возрастающая с
ростом
,
т.к. по правилу Журавского угловой
коэффициент
.
При

.

3. Расчет на прочность

Из эпюры

находим в опасном сечении
.
Условие прочности записываем в виде

откуда

В таблице ГОСТ
8239-89 находим двутавр № 36, у которого
,
и двутавр № 40, для которого
.
Последний дает недонапряжение в 21,3%, а
первый – перенапряжение в 0,93%.

Тогда

это напряжение
превышает допустимое значения на 0,93%.

Следовательно,
выбираем двутавр № 36.

7.
Построить эпюры

для балки (рис.
8.9а).

Решение

Методом сечений
(рис. 8.9б)
находим

Поскольку

то эпюра

квадратичная парабола, а

кубическая.

Рис. 8.9

При
,
.
При

имеем
.
Эпюра

испытывает экстремум при
,
когда

Выпуклость эпюры

определяется знаком ее второй производной:

Так как вторая
производная возрастает, то выпуклость
направлена вниз.

Экстремум эпюры
моментов

имеет место в сечении, где
,
т.е. на конце консоли при
.
В этом сечении
.
Выпуклость кривой

определяется по знаку второй производной,
то есть по правилу зонтика:

В нашем случае
выпуклость направлена вверх.

8.
Построить
эпюры

для балки с внутренним шарниром
(рис.
8.10а)
и определить допускаемое значение
,
если

и поперечное сечение балки двутавр №
20.

Рис. 8.10

Like this post? Please share to your friends:
  • Как найти оптическую разность хода интерферирующих лучей
  • Пересолила суп что делать как исправить гороховый
  • Террария как найти орихалковую руду
  • Ошибка 065 меркурий 130ф как исправить ошибку
  • Как найти отрезки отсекаемые от осей координат