Как найти эквивалентное сопротивление конденсаторов

ESR  — оно же эквивалентное последовательное сопротивление — это очень важный параметр конденсаторов. Для чего он нужен и как его определить, об этом мы как раз и поговорим в нашей статье.

Реальные параметры конденсатора

Думаю, все вы в курсе, что в нашем бесшабашном мире нет ничего идеального. То же самое касается и электроники. Радиоэлементы, каскады, радиоузлы также частенько дают сбои. Можно даже вспомнить недавнюю историю с космическим кораблем «Прогресс». Сбой какого-то узла повлек гибель целого гиганта космической отрасли. Даже простой, на первый взгляд, радиоэлемент конденсатор, имеет в своем составе не только емкость, но и другие паразитные параметры. Давайте рассмотрим схему, из чего все-таки состоит наш реальный конденсатор?

ESR на реальной схеме конденсатора

где

r — это сопротивление диэлектрика  и корпуса между обкладками конденсатора

С — собственно сама емкость конденсатора

ESR — эквивалентное последовательное сопротивление

ESI (чаще его называют ESL)  — эквивалентная последовательная индуктивность

Вот на самом деле из чего состоит простой безобидный конденсатор, особенно электролитический. Рассмотрим эти параметры более подробно:

r — сопротивление диэлектрика. Диэлектриком может быть электролит в электролитических конденсаторах, бумага или еще какая-нибудь дрянь). Также между выводами конденсатора находится его корпус. Он тоже обладает каким-то сопротивлением и тоже сделан из диэлектрика и относится сюда же.

С — емкость конденсатора, которая написана на самом конденсаторе плюс-минус некоторые отклонения, связанные с погрешностью.

ESI(ESL) — последовательная индуктивность — это собственная индуктивность обкладок и выводов. На низких частотах можно не учитывать. Почему? Читаем статью катушка индуктивности в цепи постоянного и переменного тока.

Где «прячется» ESR в конденсаторе

ESR представляет из себя сопротивление выводов и обкладок

где в конденсаторе ESR

Как вы знаете, сопротивление проводника можно узнать по формуле:

ESR конденсатора

где

ρ — это удельное сопротивление проводника

l — длина проводника

S — площадь поперечного сечения проводника

Так что можете посчитать приблизительно сопротивление выводов конденсатора и заодно его обкладок ;-) Но, конечно же, так никто не делает. Для этого есть специальные приборы, которые умеют замерять этот самый параметр. Например, мой прибор с Алиэкспресса, который я недавно приобрел.

Почему вредно большое значение ESR

Раньше, еще когда только-только стали появляться первые электронные схемы, такой параметр, как ESR даже ни у кого не был на слуху. Может быть и знали, что есть это сопротивление, но оно никому не вредило. Но… с появлением первых импульсных блоков питания все чаще стали говорить о ESR. Чем же столь безобидное сопротивление не понравилось импульсным блокам питания?

На нулевой частоте (постоянный ток) и низких частотах, как вы помните из статьи конденсатор в цепи постоянного и переменного тока, конденсатор сам оказывает большое сопротивление электрическому току. В этом случае какие-то паразитные доли Ома сопротивления ESR не будут влиять на параметры электрической цепи. Все самое интересное начинается тогда, когда конденсатор работает в высокочастотных цепях (ВЧ).

Мы с вами знаем, что конденсатор пропускает через себя переменный ток. И чем больше частота, тем меньше сопротивление самого конденсатора. Вот вам формула, если позабыли:

ESR конденсатора

где, ХС  — это сопротивление конденсатора, Ом

П — постоянная и равняется приблизительно 3,14 

F — частота, измеряется в Герцах

С — емкость,  измеряется в Фарадах

Но, одно то мы не учли… Сопротивление выводов и пластин с частотой не меняется! Так… и если пораскинуть мозгами, то получается, что на бесконечной частоте сопротивление конденсатора будет равняться его ESRу? Получается, наш конденсатор превращается в резистор? А как ведет себя резистор в цепи переменного тока? Да точно также как и в цепи постоянного тока: греется! Следовательно на этом резисторе будет рассеиваться мощность P в окружающую среду. А как вы помните, мощность через сопротивление и силу тока выражается формулой:

P=I2xR

где

I — это сила тока, в Амперах

R — сопротивление резистора ESR, в Омах

Значит, если ESR будет больше, то и мощность рассеивания тоже будет больше! То есть этот резистор будет хорошенько нагреваться.

Догоняете о чем я вам толкую? ;-)

Из всего выше сказанного можно сделать простенький вывод: конденсатор с большим ESR в высокочастотных цепях с большими токами будет нагреваться. Ну да ладно, пусть себе греется… Резисторы и микросхемы тоже ведь греются и ничего! Но весь косяк заключается в том, что с увеличением температуры конденсатора меняется и его емкость! Есть даже такой интересный параметр конденсатора,  как ТКЕ или Температурный Коэффициент Емкости. Этот коэффициент показывает, насколько поменяется емкость при изменении температуры. А раз уже «плавает» емкость, то вслед за ней «плывет» и схема.

[quads id=1]

ESR электролитических конденсаторов

В основном параметр ESR касается именно электролитических конденсаторов. Электролит, который там есть, теряет часть своих свойств при нагреве и конденсатор меняет свою емкость, что, конечно же, нежелательно. После приличного нагрева конденсатор начинает тупить, вздувается и быстро стареет.

У вздувшихся конденсаторов в первую очередь как раз ESR и растёт, тогда как ёмкость до определённого времени может оставаться практически номинальной ( ну той, которая написана на самом конденсаторе)

ESR конденсатораESR конденсатора

Чаще всего они вспухают в импульсных блоках питания и на материнках, обычно рядом с процессором (там выше на них нагрузка, да и тепло от процессора, вероятно, свою роль играет). Один из характерных симптомов: техника (комп, монитор) начинает включаться всё хуже и хуже. Либо с паузой (до нескольких часов после включения в сеть), либо с -дцатой попытки.

Ещё симптом: если отрубить питание на некоторое время (сетевой фильтр выключить, или из розетки выдернуть) — то снова начинает включаться не с первой попытки, или после паузы. А если не выключать питание, то комп может включаться сразу (но это тоже до поры, до времени, разумеется). Но бывает, что конденсаторы не вспухли, а ESR уже в десятки раз выше нормы. Тогда, понятно, заменяем. По опыту — очень частая проблема. И весьма легко диагностируемая (особенно, при наличии чудо-приборчика от китайских товарищей).

Таблица ESR

Как я уже сказал, ESR в основном проверяют именно у электролитических конденсаторов, потому что они используются в импульсных блоках питания. Вот небольшая табличка для максимально допустимых значений ESR для новых электролитических конденсаторов в зависимости от их рабочего напряжения:

таблица esr

Как измерить ESR

Давайте замеряем некоторые наши китайские конденсаторы на ESR. Для этого берем наш многофункциональный универсальный R/L/C/Transistor-metr и проведем несколько замеров:

Первым в бой идет конденсатор на 22 мкФ х 25 Вольт:

ESR конденсатора

Емкость близка к номиналу. ESR=1,9 Ом. Если посмотреть по табличке, то максимальный ESR=2,1 Ом. Наш конденсатор вполне укладывается в этот диапазон. Значит его можно использовать в высокочастотных цепях.

Следующий конденсатор 100 мкФ х 16 Вольт

ESR конденсатора

ESR=0,49 Ом, смотрим табличку… 0,7 максимальный. Значит тоже все ОК. Можно тоже использовать в ВЧ цепях.

И возьмем конденсатор емкостью побольше 220 мкФ х 16 Вольт

esr метр

Максимальный ESR для него 0,33 Ом. У нас же высветило 0,42 Ома. Такой конденсатор уже не пойдет в ВЧ часть радиоаппаратуры. А в простые схемки, где гуляют низкие частоты (НЧ)  сгодится в самый раз! ;-).

Конденсаторы с низким ESR

В нашем бурно-развивающемся мире электроника все больше строится именно на ВЧ части. Импульсные блоки питания почти полностью одержали победу над громоздкими трансформаторными блоками питания. Это мы, радиолюбители, до сих пор пользуемся самопальными блоками питания, сделанные из трансформаторов, которые нашли на помойке.

Но раз почти вся техника уходит в ВЧ диапазон, то и разработчики радиокомпонентов тоже не спят. Они создают  конденсаторы, у которых низкий ESR и называются такие конденсаторы LOW ESR, что значит кондеры с низким ESR. На некоторых это пишут прямо на корпусе:

конденсаторы с низким esr

Отличительной чертой таких конденсаторов является то, что они вытянуты в длину. Также, по моим наблюдениям, на них чаще всего есть полоска золотого цвета:

конденсаторы с низким esr

Сейчас все чаще используют миниатюрные полимерные алюминиевые конденсаторы с низким ESR:

ESR конденсатора

Где же их можно чаще всего увидеть?  Конечно же, разобрав свой персональный компьютер. Можно найти их в блоке питания, а также на  материнской плате компьютера.

На фото ниже мы видим материнскую плату компа , которая сплошь утыкана  конденсаторами с LOW ESR, некоторые из них я отметил в красном прямоугольнике:

ESR конденсатора

Самым маленьким ESR обладают керамические и SMD-керамические конденсаторы

ESR конденсатора

ESR конденсатора

ESR конденсатораESR конденсатора

Интересное видео по теме:

Заключение

Ну что еще можно сказать про ESR? В настоящее время идет битва среди производителей за рынок. Кто предложит конденсатор с минимальным ESR и хорошей емкостью, тот молоток ;-). Не поленитесь также купить или собрать прибор ESR-метр. Особенно он будет очень актуален для ремонтников радиоэлектронной аппаратуры. Мультиметр может показать вам емкость и ток утечки, но вот внутреннее сопротивление покажет именно ESR-метр.

Бывало очень много случаев, когда аппаратура ну никак не хотела работать, хотя все элементы в ней были целые. В этом случае просто замеряли ESR-метром конденсаторы и выявляли их сопротивление. После замены дефектных конденсаторов  с большим ESR на конденсаторы с низким ESR (LOW ESR), аппаратура оживала и работала долго и счастливо.

Конденсаторы с маленьким ESR по ссылке.

ESR-метр тоже по ссылке на алиэкспресс.

Эквивалентное последовательное сопротивление конденсатора

Что такое ESR (ЭПС)?

Мы уже привыкли к основным параметрам конденсатора: ёмкости и рабочему напряжению. Но в последнее время не менее важным параметром стало его эквивалентное последовательное сопротивление (ЭПС). Что же это такое и на что оно влияет?

Так как ЭПС наиболее сильно влияет на работу алюминиевых электролитических конденсаторов, то в дальнейшем речь пойдёт именно о них. Сейчас мы разберём электролитический конденсатор по косточкам и узнаем, какие же тайны он скрывает.

Любой электронный компонент не идеален. Это относится и к конденсатору. Совокупность его свойств показывает условная схема.

Условная схема реального конденсатора

Как видим, реальный конденсатор состоит из ёмкости C, которую мы привыкли видеть на схемах в виде двух вертикальных полос. Далее резистор Rs, который символизирует активное сопротивление проволочных выводов, электролита и контактного сопротивления вывод – обкладка. На фото видно, как проволочные выводы крепятся к обкладкам методом заклёпочного соединения.

Крепление выводов к обкладкам конденсатора

Разобранный электролитический конденсатор

Так как любой, даже очень хороший диэлектрик имеет определённое сопротивление (до сотен мегаом), то параллельно обкладкам изображается резистор Rp. Именно через этот «виртуальный» резистор течёт так называемый ток утечки. Естественно, никаких резисторов внутри конденсатора нет. Это лишь для наглядности и удобного представления.

Из-за того, что обкладки у электролитического конденсатора скручиваются и устанавливаются в алюминиевый корпус, образуется индуктивность L.

Выводы электролитического конденсатора

Свои свойства эта индуктивность проявляет лишь на частотах выше резонансной частоты конденсатора. Приблизительное значение этой индуктивности – десятки наногенри.

Итак, из всего этого выделим то, что входит в ЭПС электролитического конденсатора:

  • Сопротивление электролита. Вносит основную долю в величину ЭПС. Увеличивается из-за испарения растворителя и изменения химического состава электролита вследствие взаимодействия его с металлическими обкладками. Идеальная формула электролита пока не найдена, поэтому до сих пор аппаратуру выкашивает «конденсаторная чума» (англ. «Capacitor plague»);

  • Сопротивление, которое вызвано потерями в диэлектрике из-за его неоднородности, примесей и наличия влаги;

  • Омическое сопротивление проволочных выводов и обкладок. Активное сопротивление проводов;

  • Контактное сопротивление между обкладками и выводами.

Все эти факторы суммируются и образуют сопротивление конденсатора, которое и назвали эквивалентным последовательным сопротивлением – сокращённо ЭПС, а на зарубежный манер ESR (Equivalent Serial Resistance).

Как известно, электролитический конденсатор в силу своего устройства может работать только в цепях постоянного и пульсирующего тока из-за своей полярности. Собственно, его и применяют в блоках питания для фильтрации пульсаций после выпрямителя. Запомним эту особенность конденсатора – пропускать импульсы тока.

А если ESR – это, по сути, сопротивление, то на нём при протекании импульсов тока будет выделятся тепло. Вспомните о мощности резистора. Таким образом, чем больше ЭПС – тем сильнее будет греться конденсатор.

Нагрев электролитического конденсатора – это очень плохо. Из-за нагрева электролит начинает закипать и испаряться, конденсатор вздувается. Наверное, уже замечали на электролитических конденсаторах защитную насечку на верхней части корпуса.

Защитная насечка в верхней части корпуса конденсатора

При длительной работе конденсатора и повышенной температуре внутри его электролит начинает испаряться, и давить на эту насечку. Со временем давление внутри возрастает настолько, что насечка разрывается, высвобождая газ наружу.

Хлопнувший электролит на плате стабилизированного блока питания
«Хлопнувший» конденсатор на плате блока питания (причина — превышение допустимого напряжения)

Защитная насечка также предотвращает (или ослабляет) взрыв конденсатора при превышении на его обкладках допустимого рабочего напряжения или при переполюсовке – подаче на него напряжения обратной полярности.

На практике бывает и наоборот – давление выталкивает изолятор со стороны выводов. Далее на фото показан конденсатор, который высох. Ёмкость его снизилась до 106 мкФ, а ESR при измерении составило 2,8Ω, тогда как нормальное значение ESR для нового конденсатора с такой же ёмкостью лежит в пределах 0,08 – 0,1Ω.

Неисправный конденсатор

Электролитические конденсаторы выпускают на разную рабочую температуру. У алюминиевых электролитических конденсаторов нижняя граница температуры начинается с — 60°C, а верхняя ограничена +155°C. Но в большинстве своём такие конденсаторы рассчитаны на работу в температурном диапазоне от -25°C до 85°C и от -25°C до 105°C. На этикетке иногда указывается только верхний температурный предел: +85°C или +105°C.

Наличие ЭПС в реальном электролитическом конденсаторе влияет на его работу в высокочастотных схемах. И если для обычных конденсаторов это влияние не столь выражено, то вот для электролитических конденсаторов оно играет весьма важную роль. Особенно это касается их работы в цепях с высоким уровнем пульсаций, когда протекает существенный ток, и за счёт ESR выделяется тепло.

Взгляните на фото.

Вздувшиеся электролитические конденсаторы на материнской плате компьютера
Вздувшиеся электролитические конденсаторы (причина — длительная работа при повышенной температуре)

Это материнская плата персонального компьютера, который перестал включаться. Как видим, на печатной плате рядом с радиатором процессора расположено четыре вздувшихся электролитических конденсатора. Длительная работа при повышенной температуре (внешний нагрев от радиатора) и приличный срок эксплуатации привёл к тому, что конденсаторы «хлопнули». Виной тому – нагрев и ESR. Плохое охлаждение отрицательно сказывается не только на работе процессоров и микросхем, но, как оказывается, и на электролитических конденсаторах!

Снижение температуры окружающей среды на 10°C продлевает срок службы электролитического конденсатора почти вдвое.

Аналогичная картина наблюдается в отказавших блоках питания ПК – электролитические конденсаторы также вздуваются, что приводит к просадке и пульсациям напряжения питания.

Вздувшиеся конденсаторы на плате блока питания ATX от ПК
Неисправные конденсаторы в БП ПК ATX (причина — низкое качество конденсаторов)

Нередко из-за длительной работы импульсные блоки питания точек доступа, роутеров Wi-Fi, всевозможных модемов также выходят из строя по причине «хлопнувших» или потерявших ёмкость конденсаторов. Не будем забывать, что при нагреве электролит высыхает, а это приводит к снижению ёмкости. Пример из практики я описывал здесь.

Из всего сказанного следует, что электролитические конденсаторы, работающие в высокочастотных импульсных схемах (блоки питания, инверторы, преобразователи, импульсные стабилизаторы) работают в довольно экстремальных условиях и выходят из строя чаще. Зная это производители выпускают специальные серии конденсаторов с низким ESR и низким импедансом. На таких конденсаторах, как правило, присутствует надпись Low ESR или Low Impedance (Low Imp). Что, соответственно, означает, – низкое ЭПС, низкий импеданс. Также существуют серии с ультранизким ЭПС и ультранизким импедансом (Ultra Low ESR, Ultra Low Impedance).

Известно, что конденсатор обладает ёмкостным или реактивным сопротивлением, которое снижается с ростом частоты переменного тока.

Таким образом, с ростом частоты переменного тока, реактивное сопротивление конденсатора будет падать, но только до тех пор, пока оно не приблизится к величине эквивалентного последовательного сопротивления (ESR). Его то и необходимо измерить. Поэтому многие приборы – измерители ESR (ESR-метры) измеряют ЭПС на частотах в несколько десятков – сотен килогерц. Это необходимо для того, чтобы «убрать» величину реактивного сопротивления из результатов измерения.

Стоит отметить, что на величину ESR конденсатора влияет не только частота пульсаций тока, но и напряжение на обкладках, температура окружающей среды, качество изготовления. Поэтому однозначно сказать, что ESR конденсатора, например, равно 3 омам, нельзя. На разной рабочей частоте величина ESR будет разной.

ESR-метр

При проверке конденсаторов, особенно электролитических, стоит обращать внимание на величину ESR. Для тестирования конденсаторов и измерения ESR существует немало серийно выпускаемых приборов. На фото универсальный тестер радиокомпонентов (LCR-T4 Tester) функционал которого поддерживает замер ESR конденсаторов.

LCR T4 тестер

В радиотехнических журналах можно встретить описания самодельных приборов и приставок к мультиметрам для измерения ESR. В продаже можно найти и узкоспециализированные ESR-метры, которые способны измерять ёмкость и ЭПС без выпайки конденсаторов из платы, а также разряжать их перед этим с целью защиты прибора от повреждения высоким остаточным напряжением. К таким приборам относятся, например, такие как ESR-micro v3.1, ESR-micro V4.0s, ESR-micro v4.0SI.

При ремонте электроники приходится часто менять электролитические конденсаторы. При этом для оценки их качества измеряются такие параметры, как ёмкость и ESR. Чтобы было с чем сравнивать, была составлена таблица ESR, в которой указано ЭПС новых электролитических конденсаторов разных ёмкостей. Данную таблицу можно использовать для оценки пригодности того или иного конденсатора для дальнейшей службы. Но, с одной оговоркой…

Не стоит забывать о том, что «эталонные» данные по величине ESR приводятся в даташитах на конкретную серию конденсаторов. Так что, иногда лучше свериться с информацией, полученной «из первых рук». Здесь лишь следует учесть то, что производители для замера ESR могут использовать иное оборудование, чем вы, и, поэтому, итоговые показания всё равно будут отличаться, пусть, и незначительно.

Главная » Радиоэлектроника для начинающих » Текущая страница

Также Вам будет интересно узнать:

  • Свойства электролитических конденсаторов.

  • Правильное соединение конденсаторов.

  • Как узнать ёмкость конденсатора по его маркировке?

Добавлено 12 декабря 2019 в 07:16

Рассмотрим подробнее важность ESR (эквивалентного последовательного сопротивления) конденсатора, как его измерить, и какие факторы могут повлиять на ваши измерения.

По мере того, как рабочие частоты увеличиваются, а электронные системы становятся все сложнее и меньше, разработчики должны уделять пристальное внимание ESR (эквивалентному последовательному сопротивлению) конденсатора, поскольку оно влияет на энергопотребление и эффективность.

Знание значения ESR в ожидаемых условиях работы может очень помочь в определении пригодности конкретного конденсатора для выполнения заданной функции.

Некоторые производители указывают ESR при конкретных частоте и рабочих условиях, некоторые просто указывают коэффициент рассеяния, а другие не предоставляют ни ESR, ни коэффициента рассеяния.

Эквивалентное последовательное сопротивление (ESR) является одной из характеристик неидеального конденсатора, которая может вызывать различные проблемы производительности в электронных схемах. Высокое значение ESR ухудшает производительность из-за потерь I2R, шума и более высокого падения напряжения.

В некоторых случаях тепло, выделяемое благодаря ESR, невелико и может не вызывать проблем. Однако в некоторых схемах, особенно в приложениях с большим током, рассеиваемое тепло может вызвать значительное повышение температуры, повлиять на работу схемы и вызвать деградирование конденсатора. Кроме того, на сопротивлении происходит значительное падение напряжения, что снижает долю полезной энергии в приложении.

Таким образом, при выборе конденсатора для таких применений, как ВЧ, аккумулирование энергии, схемы фильтров и другие чувствительные схемы, требуется учет и других характеристик, помимо значений емкости и напряжения.

Связанная информация

  • Особенности конденсаторов
  • Практические аспекты применения конденсаторов
  • Чистое питание для каждой микросхемы, часть 2: Выбор и использование блокировочных конденсаторов

Влияние ESR на радиочастотные схемы и схемы аккумулирования энергии

Несмотря на то, что ESR у керамических конденсаторов очень мало, порядка миллиом, это сопротивление может существенно повлиять на такие схемы, как радиочастотные схемы и схемы с низким энергопотреблением.

В переносных радиочастотных передатчиках конденсаторы с высоким ESR в схемах связи или обхода источника питания усилителя потребляют и расходуют больше энергии аккумулятора из-за более высоких потерь I2ESR. Это уменьшает эффективность, выходную мощность и срок службы батареи.

Кроме того, большинство радиочастотных полупроводниковых устройств, изготовленных для согласующих каскадов, построены с очень низким входным сопротивлением. Таким образом, согласующий конденсатор, такой как многослойный керамический чип-конденсатор (MLCC) с высоким ESR, будет представлять собой значительную долю от общего полного сопротивления цепи. Например, если входной импеданс устройства составляет 1 Ом, согласующий конденсатор с ESR 0,8 Ом будет рассеивать около 40 процентов общей мощности, таким образом, уменьшая выходную мощность и эффективность схемы.

Конденсаторы в приложениях по аккумулированию энергии выполняют более важную роль – накапливают заряд от низковольтных источников энергии и быстро и эффективно разряжают эту накопленную энергию для питания нагрузки. Следовательно, конденсаторы и другие компоненты в цепях аккумулирования энергии должны во время работы потреблять очень мало энергии.

Конденсатор с высоким ESR будет иметь бо́льшие потери I2ESR, поэтому часть полученной энергии в конечном итоге будет потрачена впустую в виде тепла, что приведет к уменьшению выходной энергии конденсатора. Однако разработчики могут предпочесть суперконденсаторы (несмотря на их более высокие ESR и утечку), потому что они предлагают более высокую плотность энергии.

Определение эквивалентного последовательного сопротивления с помощью измерителя ESR

Измеритель ESR является умеренно точным прибором, который доступен и удобен в использовании, особенно при измерении нескольких конденсаторов, когда они находятся в схеме. На конденсатор в схеме делителя напряжения подается переменное напряжение. Частота подаваемого переменного напряжения обычно равна значению, при котором реактивное сопротивление конденсатора незначительно.

Рисунок 1 Простая модель измерения ESR

Рисунок 1 – Простая модель измерения ESR

Во время теста с использованием измерителя ESR ток пропускается через конденсатор в течение очень короткого времени, поэтому конденсатор не заряжается полностью. Ток создает напряжение на конденсаторе. Это напряжение будет равно произведению тока на ESR конденсатора, плюс незначительное напряжение из-за небольшого заряда в конденсаторе.

Поскольку ток известен, значение ESR рассчитывается путем деления измеренного напряжения на ток. Результаты затем отображаются на показаниях измерителя.

Измерения ESR могут выполняться, когда конденсатор находится и в схеме, и вне схемы. Для конденсаторов, подключенных параллельно, измерение дает в результате общее сопротивление. Если необходимо определить отдельно ESR у конкретных конденсаторов, они должны быть извлечены из схемы. Однако при наличии сотен конденсаторов утомительно вынимать каждый из них, а также существует повышенный риск повреждения конденсаторов или печатной платы во время удаления.

Типовой измеритель ESR использует низкое напряжение около 250 мВ или менее с частотой около 100 кГц. Низкое напряжение является недостаточным для смещения и активации полупроводниковых устройств в окружающих цепях, что гарантирует, что импеданс соседних компонентов не влияет на показания ESR.

Перед проведением измерения конденсатор должен быть разряжен. Некоторые измерители ESR имеют встроенный механизм разряда. Однако может быть важно разрядить конденсатор вручную, особенно если это высоковольтный конденсатор, заряд которого может повредить измеритель ESR.

Несмотря на то, что измеритель ESR может удобно тестировать конденсаторы внутри схемы, он имеет ограничения по частоте, а также по самому низкому уровню сопротивления, который он может точно измерить.

Измерение с помощью коаксиальной резонансной трубы для сверхнизких сопротивлений на высоких частотах

Поскольку значение ESR зависит от рабочей частоты, измерение сверхнизких значений ESR на очень высоких частотах становится проблемой при использовании обычных измерителей ESR.

Для керамических конденсаторов наиболее точным методом определения ESR на высоких частотах (от 100 МГц до 1,3 ГГц) является метод коаксиальной резонансной линии. Этот метод основан на стандартной модели Boonton 34A и используется вместе с генератором высокочастотных сигналов и высокочастотным вольтметром.

Рисунок 2 – Блок-схема коаксиальной резонансной трубки

Рисунок 2 – Блок-схема измерителя ESR на коаксиальной резонансной трубке

Линия коаксиального резонатора выполнена из медной трубки со сплошным медным стержнем в качестве центрального проводника. Тестируемый конденсатор устанавливается последовательно между центральным проводником и проводником экрана.

Перед выполнением измерения ESR конденсатора необходимо определить характеристики ненагруженной линии резонатора. ВЧ возбуждение закороченной коаксиальной линии помогает определить ширину полосы λ/4 и 3λ/4, тогда как ширина полосы λ/2 и λ определяется, когда линия разомкнута (λ – это длина волны; дополнительную информацию см. в этой статье). Эти данные характеризуют резонансную частоту, добротность (Q) ненагруженной резонансной линии и сопротивление крепежного элемента.

Затем тестируемый конденсатор помещается в секцию DUT (device under test, тестируемое устройство), и генератор сигналов настраивается на пиковое резонансное напряжение. Конденсатор вызывает изменение резонансной частоты и добротности, значения которых теперь отличаются от значений ненагруженной коаксиальной линии. Затем используются расчеты линии передачи, и значение ESR определяется на основе взаимосвязи между новой частотой и добротностью, а также частотой и добротностью исходного состояния без нагрузки.

Рисунок 3 Полоса пропускания нагруженной и незагруженной линии передачи

Рисунок 3 – Полоса пропускания нагруженной и незагруженной линии передачи

В настоящее время обычной практикой является использование векторного анализатора цепей для замены как генератора сигналов, так и высокочастотного вольтметра. При использовании векторного анализатора цепей резонансная частота считывается с дисплея. Некоторые модели векторных анализаторов могут экспортировать результаты непосредственно в программу расчета и отображать окончательное значение ESR.

Длина трубки рассчитана на работу в диапазоне частот от 100 МГц до 1,5 ГГц; однако для частот, выходящих за пределы этого диапазона, трубка может быть выполнена произвольной длины.

Факторы, которые влияют на измерения ESR

Ошибки измерения ESR могут возникать в результате проблем с техникой, способа выполнения контакта с конденсатором или отсутствия калибровки измерительного оборудования.

Должны быть приняты во внимание сопротивления, самоиндукция и емкость измерительного прибора и его выводов, особенно на высоких частотах измерения.

Сопротивление и индуктивность измерительных проводов

Сопротивление измерительных проводов является распространенным источником ошибок при измерениях низких сопротивлений. Это сопротивление добавляется к сопротивлению тестируемого устройства.

Кроме того, следует избегать измерительных проводов со спиральной намоткой, поскольку источником ошибки может стать их индуктивность.

Помехи от соседнего оборудования

Измерение следует проводить в местах, удаленных или экранированных от источников значительных электромагнитных помех. В противном случае измерительные провода могут ловить помехи, и это может повлиять на показания.

Заключение

ESR варьируется в зависимости от типа конденсатора и условий эксплуатации, таких как частота и температура. Некоторые производители указывают ESR на определенной частоте и при определенных условиях работы, другие просто указывают коэффициент рассеяния, а другие не предоставляют ни ESR, ни коэффициента рассеяния. Тем не менее, знание значения ESR в ожидаемых условиях работы может очень помочь в определении пригодности конкретного конденсатора для выполнения заданной функции.

Тип метода, используемого для определения ESR, зависит от таких факторов, как тип конденсатора, рабочая частота и требуемая точность. В то время как измеритель ESR и другие самодельные измерители подходят для ряда применений на частотах примерно до 100 кГц, они не могут точно определить очень низкие значения ESR на очень высоких частотах. Метод коаксиальной резонансной линии часто является предпочтительным при определении сверхнизких значений ESR на частотах между приблизительно 100 МГц и 1,3 ГГц.

По мере того, как рабочие частоты увеличиваются, а электронные системы становятся меньше и сложнее, необходимо уделять пристальное внимание таким параметрам, как ESR, которые напрямую влияют на характеристики схемы и эффективность энергопотребления.

Теги

ESR (эквивалентное последовательное сопротивление)ИзмерениеКерамический конденсаторКонденсаторЭквивалентная схемаЭлектролитический конденсатор

— это очень важный параметр конденсаторов. Для чего он нужен и как его определить, об этом мы как раз и поговорим в нашей статье.

Думаю, все вы в курсе, что в нашем бесшабашном мире нет ничего идеального. То же самое касается и электроники. Радиоэлементы, каскады, радиоузлы также частенько дают сбои. Можно даже вспомнить недавнюю историю с космическим кораблем «Прогресс». Сбой какого-то узла повлек гибель целого гиганта космической отрасли. Даже простой, на первый взгляд, радиоэлемент конденсатор, имеет в своем составе не только емкость, но и другие паразитные параметры. Давайте рассмотрим схему, из чего все-таки состоит наш реальный конденсатор?

ESR на реальной схеме конденсатора

где

r — это сопротивление диэлектрика  и корпуса между обкладками конденсатора

С — собственно сама емкость конденсатора

ESR — эквивалентное последовательное сопротивление

ESI (чаще его называют ESL)  — эквивалентная последовательная индуктивность

Вот на самом деле из чего состоит простой безобидный конденсатор, особенно электролитический. Рассмотрим эти параметры более подробно:

r — сопротивление диэлектрика. Диэлектриком может быть электролит в электролитических конденсаторах, бумага или еще какая-нибудь дрянь). Также между выводами конденсатора находится его корпус. Он тоже обладает каким-то сопротивлением и тоже сделан из диэлектрика и относится сюда же.

С — емкость конденсатора, которая написана на самом конденсаторе плюс-минус некоторые отклонения, связанные с погрешностью.

ESI(ESL) — последовательная индуктивность — это собственная индуктивность обкладок и выводов. На низких частотах можно не учитывать. Где «прячется» ESR в конденсаторе

ESR представляет из себя сопротивление выводов и обкладокгде в конденсаторе ESR

Как вы знаете, сопротивление проводника можно узнать по формуле:

где

ρ — это удельное сопротивление проводника

l — длина проводника

S — площадь поперечного сечения проводника

Так что можете посчитать приблизительно сопротивление выводов конденсатора и заодно его обкладок ;-) Но, конечно же, так никто не делает. Для этого есть специальные приборы, которые умеют замерять этот самый параметр. Например, мой прибор с Алиэкспресса, который я недавно приобрел.

Почему вредно большое значение ESR

Раньше, еще когда только-только стали появляться первые электронные схемы, такой параметр, как ESR даже ни у кого не был на слуху. Может быть и знали, что есть это сопротивление, но оно никому не вредило. Но… с появлением первых импульсных блоков питания все чаще стали говорить о ESR. Чем же столь безобидное сопротивление не понравилось импульсным блокам питания?

На нулевой частоте (постоянный ток) и низких частотах, как вы помните из статьи конденсатор в цепи постоянного и переменного тока, конденсатор сам оказывает большое сопротивление электрическому току. В этом случае какие-то паразитные доли Ома сопротивления ESR не будут влиять на параметры электрической цепи. Все самое интересное начинается тогда, когда конденсатор работает в высокочастотных цепях (ВЧ).

Мы с вами знаем, что конденсатор пропускает через себя переменный ток. И чем больше частота, тем меньше сопротивление самого конденсатора. Вот вам формула, если позабыли:

ESR конденсатора

где, ХС  — это сопротивление конденсатора, Ом

П — постоянная и равняется приблизительно 3,14

F — частота, измеряется в Герцах

С — емкость,  измеряется в Фарадах

Но, одно то мы не учли… Сопротивление выводов и пластин с частотой не меняется! Так… и если пораскинуть мозгами, то получается, что на бесконечной частоте сопротивление конденсатора будет равняться его ESRу? Получается, наш конденсатор превращается в резистор? А как ведет себя резистор в цепи переменного тока? Да точно также как и в цепи постоянного тока: греется! Следовательно на этом резисторе будет рассеиваться мощность P в окружающую среду. А как вы помните, мощность через сопротивление и силу тока выражается формулой:

P=I2xR

где

I — это сила тока, в Амперах

R — сопротивление резистора ESR, в Омах

Значит, если ESR будет больше, то и мощность рассеивания тоже будет больше! То есть этот резистор будет хорошенько нагреваться.

Из всего выше сказанного можно сделать простенький вывод: конденсатор с большим ESR в высокочастотных цепях с большими токами будет нагреваться. Ну да ладно, пусть себе греется… Резисторы и микросхемы тоже ведь греются и ничего! Но весь косяк заключается в том, что с увеличением температуры конденсатора меняется и его емкость! Есть даже такой интересный параметр конденсатора,  как ТКЕ или Температурный Коэффициент Емкости. Этот коэффициент показывает, насколько поменяется емкость при изменении температуры. А раз уже «плавает» емкость, то вслед за ней «плывет» и схема.

Обучение

Чтобы разобраться с ЭПС эквивалентном последовательном сопротивлением конденсатора,  напомню конструкцию электролитического конденсатора.

На фотографии показаны разобранные электролитические конденсаторы. Внутри стакана находится виток, в котором смотаны обкладки конденсатора.

На фотографии показаны разобранные электролитические конденсаторы

Этот размотанный виток состоит из алюминиевой фольги — фольга выполняет роль обкладок конденсатора. Между обкладками проложена бумага, которая пропитана электролитом. Выводы конденсатора к обкладкам крепиться с помощью заклепок.

Обкладки конденсатора состоят из фольги и проложенной между ними бумагой пропитанной электролитом

Любой электронный компонент не идеален, в том числе и конденсатор. Электролитический конденсатор можно представить набором таких элементов,

Эквивалентная схема конденсатора

где C — это емкость, собственно сам конденсатор,  резистор Rp — это сопротивление диэлектрика в конденсаторе. Величина данного резистора составляет десятки и сотни МОм. Этот резистор влияет на ток утечки конденсатора. Так как обкладки конденсатора свернуты между собой, образуется индуктивность. Значение этой индуктивности составляет где-то примерно 10 нГн. Резистор Rc — это активное сопротивление конденсатора. На его значение влияет химический состав электролита, высох электролит или еще нет, сопротивление выводов конденсатора, а также сопротивление мест крепления к выводов конденсатора к собственно к обкладкам конденсатора. Значение сопротивление этого резистора больше всего оказывает влияние на значение величины эквивалентного последовательного сопротивления конденсатора.

Вот схема обычного выпрямителя.

Схема выпрямителя

Эквивалентное последнее сопротивление данного конденсатора исправного, нового оно очень мало и им можно пренебречь и обычно что и делают — пренебрегают. Эта схема нормально работает, конденсатор выполняет свою функцию сглаживает пульсации. Теперь в конденсаторе появилась сопротивление — появилось большое внутреннее активное сопротивление.

В конденсаторе появилось большое внутреннее активное сопротивление

Что при этом происходит. Через это сопротивление течет ток, и соответственно, сопротивление нагревается, а поскольку оно находится внутри — греется сам конденсатор и происходит такое явление, как высыхании электролита. И со временем это сопротивление увеличивается. Электролит сохнет, емкость электролитического конденсатора уменьшается и соответственно он уже не выполняет свою функцию по фильтрации пульсаций в данном блоке питания. Конденсатор выходит из строя, и, собственно говоря, вся схема становится здесь неработоспособной. На выходе из данного выпрямителя будут большие пульсации. Вот такое вредное воздействие оказывает увеличение эквивалентного последовательного сопротивления конденсатора.

Таблицы максимальных значений ESR у электролитических конденсаторов

Мы уже привыкли к основным параметрам конденсатора: ёмкости и рабочему напряжению. Но в последнее время не менее важным параметром стало его эквивалентное последовательное сопротивление (ЭПС). Что же это такое и на что оно влияет?

Любой электронный компонент не идеален. Это относится и к конденсатору. Совокупность его свойств показывает условная схема.Таблицы максимальных значений ESR у электролитических конденсаторов

Как видим, реальный конденсатор состоит из ёмкости C, которую мы привыкли видеть на схемах в виде двух вертикальных полос. Далее резистор Rs, который символизирует активное сопротивление проволочных выводов и контактного сопротивления вывод – обкладка.

Так как любой, даже очень хороший диэлектрик имеет определённое сопротивление (до сотен мегаом), то параллельно обкладкам изображается резистор Rp. Именно через этот «виртуальный» резистор течёт так называемый ток утечки. Естественно, никаких резисторов внутри конденсатора нет. Это лишь для наглядности и удобного представления.

Из-за того, что обкладки у электролитического конденсатора скручиваются и устанавливаются в алюминиевый корпус, образуется индуктивность L.

Свои свойства эта индуктивность проявляет лишь на частотах выше резонансной частоты конденсатора. Приблизительное значение этой индуктивности – десятки наногенри.

Итак, из всего этого выделим то, что входит в ЭПС электролитического конденсатора:

  • Сопротивление, которое вызвано потерями в диэлектрике из-за его неоднородности, примесей и наличия влаги;
  • Омическое сопротивление проволочных выводов и обкладок. Активное сопротивление проводов;
  • Контактное сопротивление между обкладками и выводами;
  • Сюда же можно включить и сопротивление электролита, которое увеличивается из-за испарения растворителя электролита и изменения его химического состава вследствие взаимодействия его с металлическими обкладками.

Все эти факторы суммируются и образуют сопротивление конденсатора, которое и назвали эквивалентным последовательным сопротивлением – сокращённо ЭПС, а на зарубежный манер ESR (Equivalent Serial Resistance).

Как известно, электролитический конденсатор в силу своего устройства может работать только в цепях постоянного и пульсирующего тока из-за своей полярности. Собственно, его и применяют в блоках питания для фильтрации пульсаций после выпрямителя. Запомним эту особенность конденсатора – пропускать импульсы тока.

Из всего сказанного следует, что электролитические конденсаторы, работающие в высокочастотных импульсных схемах (блоки питания, инверторы, преобразователи, импульсные стабилизаторы) работают в довольно экстремальных условиях и выходят из строя чаще. Зная это производители выпускают специальные серии с низким ESR. На таких конденсаторах, как правило, присутствует надпись Low ESR, что означает «низкое ЭПС».

При ремонте любой аппаратуры необходимо производить замеры ESR при помощи специального измерительного прибора — ESR-метра. Для тестирования конденсаторов и измерения ESR существует немало серийно выпускаемых приборов. На сегодняшний день самый доступный — это универсальный тестер радиокомпонентов LCR-T4 Tester, функционал которого поддерживает замер ESR конденсаторов. В радиотехнических журналах можно встретить описания самодельных приборов и приставок к мультиметрам для измерения ESR. В продаже можно найти и узкоспециализированные ESR-метры, которые способны измерять ёмкость и ЭПС без выпайки их из платы, а также разряжать их перед этим с целью защиты прибора от повреждения высоким остаточным напряжением конденсатора. К таким приборам относятся, например, такие как ESR-micro v3.1, ESR-micro V4.0s, ESR-micro v4.0SI.

Максимально допустимые значения ESR электролитических конденсаторов приведены в таблицах ниже.

Таблица ESR новых электролитических конденсаторов (тестер LCR T4).

мкф/вольты 6,3V 10V 16V 25V 35V 50V 63V 160V 250V 400V 450V
1 4,3 10
2,2
4,7 1,7 2,6
10 2 1,1 2,7 2,2
22 0,69 1,2 0,77
33 0,44 0,91
47 0,84 0,87 0,49 0,68
68 0,33
82 0,57 0,55/ 0,89
100 0,46 0,75 0,17 0,4 0,29 0,43 0,77 0,35
220 0,53 0,25 0,49
330 0,25 0,22
470 0,16 0,13 0,12 0,08
1000 0,07 0,08 0,07
2200 0,03 0,02 0,03
4700 0,03

В качестве образцов для измерения ESR (Таблица №1) использовались новые конденсаторы разных производителей. Преимущественно это конденсаторы Jamicon серии TK – с широким температурным диапазоном (значения выделены жирным шрифтом), а также ELZET, SAMWHA и GEMBIRD. Стоит отметить, что при проверке конденсаторы Jamicon показали более низкое значение ESR по сравнению с другими.

Отмечу и то, что производители выпускают конденсаторы с разными характеристиками и свойствами. Их делят на серии. В приведённой таблице приводится ESR обычных конденсаторов.

Кроме них выпускаются и конденсаторы Low ESR и Low Impedance, ЭПС которых, как правило, очень мал и порой составляет сотые доли ома.

Заносить величину ESR или импеданса таких конденсаторов в таблицу нет особого смысла, так как он очень мал и его легко узнать из документации на серию.

В колонке на 450V для ёмкости 82μF указано два значения ESR. Первое – среднее значение для конденсаторов SAMWHA (SD, 85 0 C(M)). Второе, выделенное цветом, это ESR конденсатора CapXon (LY, 105 0 C) для ЖК-телевизоров в вытянутом корпусе (13х50).

Отмечу ещё раз, что разные модели ESR-метров могут показывать разную величину ESR у одного и того же конденсатора. Как уже говорилось, эквивалентное последовательное сопротивление зависит от многих факторов, да и методика его измерения у различных приборов отличается. Поэтому здесь и указано, какой прибор применялся для измерений.

Для сравнения приведу ещё одну таблицу. Перед вами с ориентировочными значениями ESR для электролитических конденсаторов разной ёмкости. Данная таблица используется Бобом Паркером в разработанном им ESR-метре K7214.

Сводная таблица ESR конденсаторов Боба Паркера

При отсутствии нанесенных значений ESR на измерительном приборе большинство радиолюбителей рекомендуют пользоваться сводной таблицей Боба Паркера. Данные в этой таблице используются большинством производителей измерителей, как Китайских, так и европейских.

svodnaya tablica esr bob parker

Таблица значений ESR, применяемая Бобом Паркером

мкф/вольты 10V 16V 25V 35V 63V 160V 250V
1 14 16 18 20
2.2 6 8 10 10 10
4.7 15 7,5 4,2 2,3 5
10 6 4 3,5 2,4 3 5
22 5,4 3,6 2,1 1,5 1,5 1,5 3
47 2,2 1,6 1,2 0,5 0,5 0,7 0,8
100 1,2 0,7 0,32 0,32 0,3 0,15 0,8
220 0,6 0,33 0,23 0,17 0,16 0,09 0,5
470 0,24 0,2 0,15 0,1 0,1 0,1 0,3
1000 0,12 0,1 0,08 0,07 0,05 0,06
4700 0,23 0,2 0,12 0,06 0,06

Как видно, некоторые ячейки  пусты. Для конденсаторов ёмкостью до 10 мкФ максимально допустимой величиной ESR приемлемо считать 4 – 5 Ом.

Не помешает помнить одно простое правило:

У любого исправного электролитического конденсатора ESR не превышает 20 Ом (Ω).

Измеритель ESR R/C/L и тестер полупроводников

Любому, кто работает с электроникой, требуется тестер радиоэлектронных компонентов. В большинстве случаев электронщики всех мастей обходятся цифровым мультиметром. Им можно проверить с достаточной точностью самые часто используемые электронные компоненты: диоды, биполярные транзисторы, конденсаторы, резисторы и пр.

Но, среди радиодеталей есть и такие, проверить которые рядовым мультиметром сложно, а порой и невозможно. К таким можно отнести полевые транзисторы (как MOSFET, так и J-FET). Также, обычный мультиметр не всегда имеет функцию замера ёмкости конденсаторов, в том числе и электролитических. И даже если таковая функция имеется, то прибор, как правило, не измеряет ещё один очень важный параметр электролитических конденсаторов – эквивалентное последовательное сопротивление (ЭПС или ESR).

С недавнего времени стали доступны по цене универсальные измерители R, C, L и ESR. Многие из них обладают возможностью проверки практически всех ходовых радиодеталей.

Давайте узнаем, какими возможностями обладает такой тестер. На фото универсальный тестер R, C, L и ESR — MTester V2.07 (QS2015-T4). Он же LCR T4 Tester. Приобрёл я его на Алиэкспресс. Не удивляйтесь, что прибор без корпуса, с ним он стоит куда дороже. Вот здесь вариант без корпуса, а вот здесь с корпусом.

mtester-v2.07.jpg

Тестер радиодеталей собран на микроконтроллере Atmega328p. Также на печатной плате имеются SMD-транзисторы с маркировкой J6 (биполярный S9014), M6 (S9015), интегральный стабилизатор 78L05, TL431 — прецизионный регулятор напряжения (регулируемый стабилитрон), SMD-диоды 1N4148, кварц на 8,042 МГц. и «рассыпуха» — планарные конденсаторы и резисторы.

komplect-mtester.jpg

Прибор запитывается от батарейки на 9V (типоразмер 6F22). Впрочем, если такой нет под рукой, прибор можно запитать и от стабилизированного блока питания.

На печатной плате тестера установлена ZIF-панель. Рядом указаны цифры 1,2,3,1,1,1,1. Дополнительные клеммы верхнего ряда ZIF-панели (те, которые 1,1,1,1) дублируют клемму под номером 1. Это для того, чтобы было легче устанавливать детали с разнесёнными выводами. Кстати, стоит отметить, что нижний ряд клемм дублирует клеммы 2 и 3. Для 2 отведено 3 дополнительных клеммы, а для 3 уже 4. В этом можно убедиться, осмотрев разводку печатных проводников на другой стороне печатной платы.

Замер ёмкости и параметров электролитического конденсатора.

Для начала проверим электролитический конденсатор на 1000 мкФ * 16V. Подключаем один вывод электролита к выводу 1, а другой к выводу 3.

prov-electrolit.jpg

Можно подключит один из выводов к клемме 2. Прибор сам определит, к каким выводам подключен конденсатор. Далее жмём на красную кнопку.

test-electrolit.jpg

На экране результат: ёмкость — 1004 мкФ (1004 μF); ЭПС — 0,05 Ом (ESR = 0,05Ω); Vloss = 1,4%. О параметре Vloss расскажу позднее.

Проверка танталового электролитического конденсатора 22 мкФ * 35в.

tantal-test.jpg

Результат: ёмкость — 24,4 мкФ; ЭПС — 0,2 Ом., Vloss = 0,4%

Тестер можно использовать и для замера ёмкости у обычных конденсаторов с ёмкостью где-то от 20 пикофарад (20pF). Если подключить к ZIF-Панели выносные щупы, то можно проверять и детали, выполненные в корпусах для поверхностного (SMT) монтажа. Я, например, с помощью этого тестера подбирал SMD-конденсаторы и резисторы.

Обращаю внимание! Перед тестированием конденсаторов, особенно электролитических, их необходимо разрядить! Иначе можно повредить прибор высоким остаточным напряжением. Особенно это относится к электролитам, выпаянным с плат.

Таинственный параметр Vloss.

При проверке конденсаторов, кроме ёмкости и ESR, универсальный тестер показывает ещё такой параметр, как Vloss. Что же он означает? К сожалению, точного и конкретного обоснования этого термина я не нашёл. Но, судя по всему, он косвенно указывает на уровень утечки конденсатора. Как известно, реальный конденсатор имеет сопротивление диэлектрика между обкладками. Благодаря этому сопротивлению конденсатор медленно разряжается из-за, так называемого, тока утечки.

Так вот, при заряде конденсатора коротким импульсом тока напряжение на его обкладках достигает определённого уровня. Но, как только заряд конденсатора прекращается, напряжение на заряженном конденсаторе падает на очень небольшую величину. Разность между максимальным напряжением на конденсаторе и тем, что наблюдается после завершения заряда и выражают как Vloss. Чтобы было удобней, Vloss выражают в процентах.

Падение напряжения на обкладках конденсатора объясняют как внутренним рассеиванием заряда, так и сопротивлением между обкладками, которое имеется у всех конденсаторов, так как любой диэлектрик имеет, пусть и большое, но сопротивление.

Для керамических и электролитических конденсаторов высокий показатель Vloss в несколько процентов свидетельствует о плохом качестве конденсатора.

Проверка диодов универсальным тестером.

Образец для испытаний — диод 1N4007.

test-1n4007.jpg

Для диодов указывается падение напряжения на p-n переходе в открытом состоянии Uf. В техдокументации на диоды указывается как VF — Forward Voltage (иногда VFM). Замечу, что при разном прямом токе через диод величина этого параметра также меняется.

Для данного диода 1N4007: VF=677mV (0,677V). Это нормальное значение для низкочастотного выпрямительного диода. А вот у диодов Шоттки это значение ниже, поэтому их и рекомендуют применять в устройствах с низковольтным автономным питанием.

Кроме этого тестер замеряет и ёмкость p-n перехода (C=8pF).

Результат проверки диода КД106А. Как видим, ёмкость перехода у него во много раз больше, чем у диода 1N4007. Аж 184 пикофарады!

kd106a-test.jpg

Если вместо диода установить светодиод и включить проверку, то во время тестирования он будет задорно помигивать.

Для светодиодов тестер показывает ёмкость перехода и минимальное напряжение, при котором светодиод открывается и начинает излучать. Конкретно для этого красного светодиода оно составило Uf = 1,84V.

Как оказалось, универсальный тестер справляется и с проверкой сдвоенных диодов, которые можно встретить в компьютерных блоках питания, преобразователях напряжения автоусилителей, всевозможных блоках питания.

Проверка сдвоенного диода MBR20100CT.

Тестер показывает падение напряжения на каждом из диодов Uf = 299mV (в даташитах указывается как VF), а также цоколёвку. Не забываем, что сдвоенные диоды бывают как с общим анодом, так и общим катодом.

Проверка биполярных транзисторов.

В качестве подопытного «кролика» возьмём наш КТ817Г. Как видим, у биполярных транзисторов измеряется коэффициент усиления hFE (он же h21э) и напряжение смещения Б-Э (открытия транзистора) Uf. Для кремниевых биполярных транзисторов напряжение смещения находится в пределах 0,6

0,7 вольт. Для нашего КТ817Г оно составило 0,615 вольт (615mV).

prov kt817

Составные биполярные транзисторы тоже распознаёт. Вот только параметрам на дисплее я бы верить не стал. Ну, действительно. Не может составной транзистор иметь коэффициент усиления hFE = 37. Для КТ973А минимальный hFE должен быть не менее 750.

t kt973

Как оказалось, структуру для КТ973А (PNP) и КТ972А (NPN) определяет верно. Но вот всё остальное замеряет некорректно.t kt972a

Стоит учесть, что если хотя бы один из переходов транзистора пробит, то тестер может определить его как диод.

Изделия с низким ESR

Технологии непрерывно развиваются и сейчас большинство схем строятся на ВЧ части. Поэтому к конденсаторам выдвигаются особые требования. Именно поэтому все больше используются конденсаторы с маркировкой LOW ESR, которые так же могут выделяться золотым цветом.

На сегодняшний день наименьшим ESR обладают керамические и SMD — керамические конденсаторы.

Заключение

Ну что еще можно сказать про ESR? В настоящее время идет битва среди производителей за рынок. Кто предложит конденсатор с минимальным ESR и хорошей емкостью, тот молоток ;-). Не поленитесь также купить или собрать прибор ESR-метр. Особенно он будет очень актуален для ремонтников радиоэлектронной аппаратуры. Мультиметр может показать вам емкость и ток утечки, но вот внутреннее сопротивление покажет именно ESR-метр.

Бывало очень много случаев, когда аппаратура ну никак не хотела работать, хотя все элементы в ней были целые. В этом случае просто замеряли ESR-метром конденсаторы и выявляли их сопротивление. После замены дефектных конденсаторов  с большим ESR на конденсаторы с низким ESR (LOW ESR), аппаратура оживала и работала долго и счастливо.

Источники

  • https://radiofiles.ru/raznoe/tablitsy-maksimalnyh-znacheniy-esr-u-elektroliticheskih-kondensatorov/
  • https://www.RusElectronic.com/ekvivalentnoe-posledovatelnoe-soprotivlenie-kondensatora-esr/
  • https://aseke.ru/elektronika/1393-tablicy-maksimal-nyh-znacheniy-esr-u-elektroliticheskih-kondensatorov.html
  • https://sk-fatera.ru/instrumenty/tablica-esr-kondensatorov.html
  • https://cashbuzz.ru/hi-tech/1713-tablica-esr-kondensatorov-skachat-tablicy-dlya-novyh-kondensatorov.html
  • https://go-radio.ru/tablitsa-esr.html
  • https://vesali.ru/skidki-i-rasprodazhi/tablitsa-esr-kondensatorov-skachat-tablitsy-dlya-novyh-kondensatorov
  • https://radiosit.ru/parametr/parametry-kondensatorov-esr-vloss.html
  • https://zen.yandex.ru/media/energofiksik/esr-kondensatora-chto-eto-za-parametr-i-pochemu-on-tak-vajen-dlia-kondensatora-5c8cda0d8276f600b33b363d

Как вам статья?

Павел

Павел

Бакалавр «210400 Радиотехника» – ТУСУР. Томский государственный университет систем управления и радиоэлектроники

Написать

Пишите свои рекомендации и задавайте вопросы

Содержание

  1. ESR — оно же эквивалентное последовательное сопротивление
  2. Таблица ESR
  3. ESR — Equivalent Series Resistance
  4. Обучение
  5. Таблицы максимальных значений ESR у электролитических конденсаторов
  6. Таблица ESR конденсаторов
  7. ESR новых электролитических конденсаторов (тестер LCR T4)
  8. Таблица значений ESR, применяемая Бобом Паркером в ESR-метре K7214
  9. Максимально-допустимые ESR конденсаторов Китайского и японского производства
  10. Падение напряженности и общая емкость
  11. Ток при последовательном соединении конденсаторов
  12. Физические формулы и примеры вычислений
  13. Купил китайский тестер конденсаторов, диодов, транзисторов и т.д.
  14. Замер ёмкости и параметров электролитического конденсатора.
  15. Проверка биполярных транзисторов.
  16. Проверка диодов универсальным тестером.
  17. Вывод и впечатления от прибора
  18. Самодельная приставка -метр, измеряющийконденсаторов без выпаивания с печатной платы.

— это очень важный параметр конденсаторов. Для чего он нужен и как его определить, об этом мы как раз и поговорим в нашей статье.

Думаю, все вы в курсе, что в нашем бесшабашном мире нет ничего идеального. То же самое касается и электроники. Радиоэлементы, каскады, радиоузлы также частенько дают сбои. Можно даже вспомнить недавнюю историю с космическим кораблем «Прогресс». Сбой какого-то узла повлек гибель целого гиганта космической отрасли. Даже простой, на первый взгляд, радиоэлемент конденсатор, имеет в своем составе не только емкость, но и другие паразитные параметры. Давайте рассмотрим схему, из чего все-таки состоит наш реальный конденсатор?

ESR на реальной схеме конденсатора

где

r — это сопротивление диэлектрика  и корпуса между обкладками конденсатора

С — собственно сама емкость конденсатора

ESR — эквивалентное последовательное сопротивление

ESI (чаще его называют ESL)  — эквивалентная последовательная индуктивность

Вот на самом деле из чего состоит простой безобидный конденсатор, особенно электролитический. Рассмотрим эти параметры более подробно:

r — сопротивление диэлектрика. Диэлектриком может быть электролит в электролитических конденсаторах, бумага или еще какая-нибудь дрянь). Также между выводами конденсатора находится его корпус. Он тоже обладает каким-то сопротивлением и тоже сделан из диэлектрика и относится сюда же.

С — емкость конденсатора, которая написана на самом конденсаторе плюс-минус некоторые отклонения, связанные с погрешностью.

ESI(ESL) — последовательная индуктивность — это собственная индуктивность обкладок и выводов. На низких частотах можно не учитывать. Почему? Читаем статью катушка индуктивности в цепи постоянного и переменного тока.

ESR представляет из себя сопротивление выводов и обкладок

где в конденсаторе ESR

Как вы знаете, сопротивление проводника можно узнать по формуле:

где

ρ — это удельное сопротивление проводника

l — длина проводника

S — площадь поперечного сечения проводника

Так что можете посчитать приблизительно сопротивление выводов конденсатора и заодно его обкладок ;-)
Но, конечно же, так никто не делает. Для этого есть специальные приборы, которые умеют замерять этот самый параметр. Например, мой прибор с Алиэкспресса, который я недавно приобрел.

Таблица ESR

Для чего нужна таблица?
Большинство пробников и тестеров, обычно светодиодные или стрелочные, измеряют импеданс — общее сопротивление конденсатора (активное и реактивное). Активное отдельно замерить сложнее, но оно и есть потери — значение ESR.
При измерении ёмкостей менее 100 микрофарад, реактивная составляющая уже оказывается соизмеримой, а иногда больше значения ESR, и существенно влияет на результат. А в конденсаторах менее 10 мкф и вовсе значение ESR во много раз меньше и его доля незначительна в общем показании. Точно замерить ESR у них невозможно такими пробниками, но выявить неисправные конденсаторы можно.
Другими словами, реактивное сопротивление в показаниях таких приборов — неудобная погрешность, зависимая от ёмкости конденсатора. Её надо учитывать при оценке качества конденсатора для разных ёмкостей.
К тому же ESR зависит от толщины слоя электролита и диэлектрика. Для высоковольтных и крупногабаритных конденсаторов эти значения учитываются производителями в зависимости от области применения.
Никакой пропорциональной зависимости ESR от других параметров конденсатора не существует, поэтому для оценки его качества в практике используются таблицы.

Все существующие таблицы — условны и не всегда объективно определяют допустимые значения для всех измерителей. Публикуют их часто для популяризации сайтов, поэтому важно понимать суть значений в таблицах.
Тем более, разные пробники работают на разных принципах или частотах (от 10 до 100 кГц), разница показаний в 5 или 10 раз может отличаться от табличных лишь по этой причине.
Очень полезно самому замерить значения ESR у новых конденсаторов разных производителей и составить свою таблицу для своего пробника. Это уже будут реальные показатели. Тогда их можно сравнить с неисправными конденсаторами и со значениями их реактивных сопротивлений, чтоб сделать какие-то выводы о критичности.
В преобразователях блоков питания греют конденсатор паразитные десятые, иногда сотые доли Ома и, если их сможет показать Ваш измеритель, уже неплохо.
Импульсный ток в конденсаторах достигает десятков Ампер и активные десятые доли Ома для 10 Ампер — это уже реальные Ватты — нагрев.
Габариты конденсатора тоже имеют существенное значение, они будут охлаждать электролит, это надо учитывать при выборе типа конденсатора в мощных преобразователях.
Практика показала, тонкие конденсаторы Low ESR, установленные при замене в блоках питания вместо крупногабаритных обычных, частенько долго там не живут, перегреваются, закипают и вздуваются иногда уже через несколько месяцев работы.

Для самого популярного в ИИП конденсатора 1000мкф x 25в часто в таблицах указывают 0.08 Ом, как норму. А в других таблицах 0.8 Ом. Какой прибор что мерит, кто и для каких цепей определил ему норму — загадки.
Проверьте для сравнения своим прибором этот конденсатор новый от разных производителей, в том числе с пометкой Low ESR, тогда оценка будет объективнее.

ESR — Equivalent Series Resistance

— один из параметров конденсатора, характеризующий его активные потери в цепи переменного тока.
В эквиваленте его можно представить, как включенный последовательно с конденсатором резистор, сопротивление которого определяется,
главным образом, диэлектрическими потерями, а так же сопротивлением обкладок, внутренних контактных соединений и выводов.
В русскоязычной аббревиатуре — Эквивалентное Последовательное Сопротивление — ЭПС.

Потери в диэлектрике, обусловленные особенностями его поляризации, составляют основную часть потерь в конденсаторе и определяются материалом,
а так же толщиной слоя диэлектрика.

Поляризация — ограниченное смещение связанных зарядов диэлектрика в электрическом поле.

Рассматривать детально процессы всех видов поляризации здесь нет необходимости, но вкратце это можно пояснить следующим образом:

Частицы диэлектрика, обладающие зарядом, под воздействием переменного электрического поля вынуждены совершать непроизвольные механические колебания,
обусловленные их переориентацией и смещением (поляризацией).
В слоях диэлектрика, близких к обкладкам, заряды, не покидая своих связей,
активно участвуют во всех процессах формирования напряжения и тока в конденсаторе, как и проводники. По сути, уменьшается толщина слоя реального диэлектрика.
В результате существенно повышается ёмкость конденсатора но, по причине инертности и внутреннего трения связанных частиц,
процессы сопровождаются выделением тепла и потерями энергии в токопроводящих слоях диэлектрика. То есть, эти поляризованные слои обладают активным сопротивлением электрическому току.
С увеличением частоты, диэлектрические потери пропорционально возрастают по той же причине — механической инертности поляризованных зарядов.

Сопротивление токопроводящих слоёв диэлектрика последовательно складывается с сопротивлением обкладок, выводов и контактных соединений. В итоге образуется общее активное сопротивление R — Equivalent Series Resistance (ESR). По сути оно представляет собой резистор, включенный последовательно с конденсатором.

В этом случае угол сдвига фаз между током и напряжением будет не 90°, как в идеальном конденсаторе, а несколько меньше.
Тангенс угла δ, составляющего эту разницу с 90°, называют тангенсом угла потерь.

ESR и тангенс угла потрерь

Тангенс угла определится отношением активного сопротивления к реактивному R/Xc, как тригонометрическая функция отношения двух катетов треугольника сопротивлений, показанного на рисунке выше.

В электролитических конденсаторах значимой частью ESR является сопротивление жидкого электролита,
который используется в качестве одной из обкладок для обеспечения максимальной площади соприкосновения с диэлектриком.
Активное сопротивление электролита в реальных конденсаторах обычно соизмеримо с десятыми или даже с сотыми долями Ома при 20°C, но для конденсаторов большой ёмкости, используемых в фильтрах выпрямителей ИИП на рабочей частоте порядка 100 кГц,
когда его реактивное сопротивление измеряется тысячными долями Ома, эта величина может составлять основные потери, и будет значительно уменьшаться по мере прогрева.
При рабочей температуре величина диэлектрических потерь на таких частотах обычно оказывается в несколько раз больше.

Сопротивление электролита зависит от температуры по причине изменения степени его вязкости и подвижности ионов.

В процессе работы происходит нагрев диэлектрика и электролита переменным током, в связи с чем существенно уменьшается сопротивление электролита,
тогда ESR конденсатора будет определяться преимущественно его диэлектрическими потерями, которые продолжат греть конденсатор в допустимых расчётами пределах.
Но, в случаях разогрева до температуры кипения, электролит утрачивает свои первоначальные свойства и при последующем охлаждении становится
более вязким, что ухудшает подвижность ионов и повышает активное сопротивление. Дальнейшая эксплуатация будет вызывать ещё больший разогрев и ухудшение качества электролита, что в последствии приведёт к непригодности конденсатора для дальнейшей работы.
Неисправные конденсаторы, в которых кипел электролит, обычно определяются визуально по вздувшемуся и разгерметизированному корпусу.

Для надёжности работы электролитических конденсаторов очень важен правильный выбор его типа,
номинала и максимального напряжения в зависимости от режимов и условий эксплуатации.
Для фильтров выпрямителей в преобразователях, работающих на частотах десятков или сотен килогерц, производители выпускают специальные конденсаторы с малым ESR и указывают полное сопротивление переменному току (импеданс Z) для всех номиналов в таблицах.
Тип таких конденсаторов сопровождается пометкой в технической документации — Low impedance или Low ESR.

Для анализа состояния электролита и внутренних соединений электролитических конденсаторов применяются измерители или пробники ESR,
которые могут быть выполнены исходя из разных принципов измерений и требований к погрешностям.
Большая часть простых ESR-пробников и тестеров основана на принципе измерения импеданса. У них есть свой существенный плюс — низкоомный вход, что позволяет проверять конденсаторы, не выпаивая их из платы.
Подробнее о способах измерения можно ознакомиться на страничке — измерение ESR.

Наряду с ухудшением качества электролита, часто активное сопротивление в конденсаторах возрастает по причине ухудшения контактов обкладок с выводами, вплоть до полного обрыва. В электролитических это происходит чаще, в металлокерамических реже, телевизионным мастерам все эти случаи хорошо знакомы. А ремонтники старшего поколения, кто застал советские ламповые телевизоры, хорошо помнят бумажные конденсаторы, которые иногда поджимали пассатижами для уплотнения контактных соединений внутри, и они какое-то время ещё работали.

Обучение

С появлением импульсных блоков питания, а так же другой импульсной аппаратуры, у современных электролитических конденсаторов, помимо такого важного параметра как емкость конденсатора, появился еще такой важный параметр — ЭПС конденсатора. ЭПС — это последовательное эквивалентное сопротивление конденсатора. В английской аббревиатуре она называется ESR (Equivalent Series Resistance).

Чтобы разобраться с ЭПС эквивалентном последовательном сопротивлением конденсатора,  напомню конструкцию электролитического конденсатора.

На фотографии показаны разобранные электролитические конденсаторы. Внутри стакана находится виток, в котором смотаны обкладки конденсатора.

На фотографии показаны разобранные электролитические конденсаторы

Этот размотанный виток состоит из алюминиевой фольги — фольга выполняет роль обкладок конденсатора. Между обкладками проложена бумага, которая пропитана электролитом. Выводы конденсатора к обкладкам крепиться с помощью заклепок.

Обкладки конденсатора состоят из фольги и проложенной между ними бумагой пропитанной электролитом

Любой электронный компонент не идеален, в том числе и конденсатор. Электролитический конденсатор можно представить набором таких элементов,

Эквивалентная схема конденсатора

где C — это емкость, собственно сам конденсатор,  резистор Rp — это сопротивление диэлектрика в конденсаторе. Величина данного резистора составляет десятки и сотни МОм. Этот резистор влияет на ток утечки конденсатора. Так как обкладки конденсатора свернуты между собой, образуется индуктивность. Значение этой индуктивности составляет где-то примерно 10 нГн. Резистор Rc — это активное сопротивление конденсатора. На его значение влияет химический состав электролита, высох электролит или еще нет, сопротивление выводов конденсатора, а также сопротивление мест крепления к выводов конденсатора к собственно к обкладкам конденсатора. Значение сопротивление этого резистора больше всего оказывает влияние на значение величины эквивалентного последовательного сопротивления конденсатора.

Вот схема обычного выпрямителя.

Схема выпрямителя

Эквивалентное последнее сопротивление данного конденсатора исправного, нового оно очень мало и им можно пренебречь и обычно что и делают — пренебрегают. Эта схема нормально работает, конденсатор выполняет свою функцию сглаживает пульсации. Теперь в конденсаторе появилась сопротивление — появилось большое внутреннее активное сопротивление.

В конденсаторе появилось большое внутреннее активное сопротивление

Что при этом происходит. Через это сопротивление течет ток, и соответственно, сопротивление нагревается, а поскольку оно находится внутри — греется сам конденсатор и происходит такое явление, как высыхании электролита. И со временем это сопротивление увеличивается. Электролит сохнет, емкость электролитического конденсатора уменьшается и соответственно он уже не выполняет свою функцию по фильтрации пульсаций в данном блоке питания. Конденсатор выходит из строя, и, собственно говоря, вся схема становится здесь неработоспособной. На выходе из данного выпрямителя будут большие пульсации. Вот такое вредное воздействие оказывает увеличение эквивалентного последовательного сопротивления конденсатора.

Таблицы максимальных значений ESR у электролитических конденсаторов

konder001.jpg

Мы уже привыкли к основным параметрам конденсатора: ёмкости и рабочему напряжению. Но в последнее время не менее важным параметром стало его эквивалентное последовательное сопротивление (ЭПС). Что же это такое и на что оно влияет?

Любой электронный компонент не идеален. Это относится и к конденсатору. Совокупность его свойств показывает условная схема.

real-capacitanse.jpg

Как видим, реальный конденсатор состоит из ёмкости C, которую мы привыкли видеть на схемах в виде двух вертикальных полос. Далее резистор Rs, который символизирует активное сопротивление проволочных выводов и контактного сопротивления вывод – обкладка.

Так как любой, даже очень хороший диэлектрик имеет определённое сопротивление (до сотен мегаом), то параллельно обкладкам изображается резистор Rp. Именно через этот «виртуальный» резистор течёт так называемый ток утечки. Естественно, никаких резисторов внутри конденсатора нет. Это лишь для наглядности и удобного представления.

Из-за того, что обкладки у электролитического конденсатора скручиваются и устанавливаются в алюминиевый корпус, образуется индуктивность L.

Свои свойства эта индуктивность проявляет лишь на частотах выше резонансной частоты конденсатора. Приблизительное значение этой индуктивности – десятки наногенри.

Итак, из всего этого выделим то, что входит в ЭПС электролитического конденсатора:

  • Универсальный измеритель параметров радиодеталей
  • Сопротивление, которое вызвано потерями в диэлектрике из-за его неоднородности, примесей и наличия влаги;
  • Омическое сопротивление проволочных выводов и обкладок. Активное сопротивление проводов;
  • Контактное сопротивление между обкладками и выводами;
  • Сюда же можно включить и сопротивление электролита, которое увеличивается из-за испарения растворителя электролита и изменения его химического состава вследствие взаимодействия его с металлическими обкладками.

Все эти факторы суммируются и образуют сопротивление конденсатора, которое и назвали эквивалентным последовательным сопротивлением – сокращённо ЭПС, а на зарубежный манер ESR (Equivalent Serial Resistance).

Как известно, электролитический конденсатор в силу своего устройства может работать только в цепях постоянного и пульсирующего тока из-за своей полярности. Собственно, его и применяют в блоках питания для фильтрации пульсаций после выпрямителя. Запомним эту особенность конденсатора – пропускать импульсы тока.

Из всего сказанного следует, что электролитические конденсаторы, работающие в высокочастотных импульсных схемах (блоки питания, инверторы, преобразователи, импульсные стабилизаторы) работают в довольно экстремальных условиях и выходят из строя чаще. Зная это производители выпускают специальные серии с низким ESR. На таких конденсаторах, как правило, присутствует надпись Low ESR, что означает «низкое ЭПС».

При ремонте любой аппаратуры необходимо производить замеры ESR при помощи специального измерительного прибора — ESR-метра. Для тестирования конденсаторов и измерения ESR существует немало серийно выпускаемых приборов. На сегодняшний день самый доступный — это универсальный тестер радиокомпонентов LCR-T4 Tester, функционал которого поддерживает замер ESR конденсаторов. В радиотехнических журналах можно встретить описания самодельных приборов и приставок к мультиметрам для измерения ESR. В продаже можно найти и узкоспециализированные ESR-метры, которые способны измерять ёмкость и ЭПС без выпайки их из платы, а также разряжать их перед этим с целью защиты прибора от повреждения высоким остаточным напряжением конденсатора. К таким приборам относятся, например, такие как ESR-micro v3.1, ESR-micro V4.0s, ESR-micro v4.0SI.

Максимально допустимые значения ESR электролитических конденсаторов приведены в таблицах ниже.

Таблица ESR конденсаторов

Таблица значений ЕСР для конденсаторов
ESR (Equivalent Series Resistance) или, говоря по-русски — Эквивалентное последовательное сопротивление — это один из параметров конденсатора, который указывает его активные потери в цепи переменного тока. Для каждого конденсатора значения ЭПС определяется специальным оборудованием — ESR-измерителями. На многих из них намаркирована таблица значений ЭПС.

Пример изменителя с таблицей значений эквивалентного последовательного сопротивления
Они бывают разного производства и поэтому некоторые их показатели могут отличаться. Причина тому — замеры на разных частотах, у каждого измерителя они индивидуальны. Таблица ESR конденсаторов, которые можно найти в сети — подбираются путем проверки данных на новых конденсаторах ESR-измерителями. В данной статье мы собрали таблицы значений от разных приборов, найденные на специализированных сайтах. Каждую из них вы сможете скачать или сохранить себе для работы.

ESR новых электролитических конденсаторов (тестер LCR T4)

мкф/вольты 6,3V 10V 16V 25V 35V 50V 63V 160V 250V 400V 450V
1 4,3 10
2,2
4,7 1,7 2,6
10 2 1,1 2,7 2,2
22 0,69 1,2 0,77
33 0,44 0,91
47 0,84 0,87 0,49 0,68
68 0,33
82 0,57 0,55/ 0,89
100 0,46 0,75 0,17 0,4 0,29 0,43 0,77 0,35
220 0,53 0,25 0,49
330 0,25 0,22
470 0,16 0,13 0,12 0,08
1000 0,07 0,08 0,07
2200 0,03 0,02 0,03
4700 0,03

В качестве образцов для измерения ESR (Таблица №1) использовались новые конденсаторы разных производителей. Преимущественно это конденсаторы Jamicon серии TK – с широким температурным диапазоном (значения выделены жирным шрифтом), а также ELZET, SAMWHA и GEMBIRD. Стоит отметить, что при проверке конденсаторы Jamicon показали более низкое значение ESR по сравнению с другими.

Отмечу и то, что производители выпускают конденсаторы с разными характеристиками и свойствами. Их делят на серии. В приведённой таблице приводится ESR обычных конденсаторов.

Кроме них выпускаются и конденсаторы Low ESR и Low Impedance, ЭПС которых, как правило, очень мал и порой составляет сотые доли ома.

Заносить величину ESR или импеданса таких конденсаторов в таблицу нет особого смысла, так как он очень мал и его легко узнать из документации на серию.

Таблицы максимальных значений ESR у электролитических конденсаторов

В колонке на 450V для ёмкости 82μF указано два значения ESR. Первое – среднее значение для конденсаторов SAMWHA (SD, 85 0 C(M)). Второе, выделенное цветом, это ESR конденсатора CapXon (LY, 105 0 C) для ЖК-телевизоров в вытянутом корпусе (13х50).

Таблицы максимальных значений ESR у электролитических конденсаторов

Отмечу ещё раз, что разные модели ESR-метров могут показывать разную величину ESR у одного и того же конденсатора. Как уже говорилось, эквивалентное последовательное сопротивление зависит от многих факторов, да и методика его измерения у различных приборов отличается. Поэтому здесь и указано, какой прибор применялся для измерений.

Для сравнения приведу ещё одну таблицу. Перед вами Таблица №2 с ориентировочными значениями ESR для электролитических конденсаторов разной ёмкости. Данная таблица используется Бобом Паркером в разработанном им ESR-метре K7214.

Таблица значений ESR, применяемая Бобом Паркером в ESR-метре K7214

Таблицы максимальных значений ESR у электролитических конденсаторов

Как видно, некоторые ячейки таблицы №3 пусты. Для конденсаторов ёмкостью до 10 мкФ максимально допустимой величиной ESR приемлемо считать 4 – 5 Ом.

Еще одна старенькая, но более полная табличка:

Таблицы максимальных значений ESR у электролитических конденсаторов

Максимально-допустимые ESR конденсаторов Китайского и японского производства

Таблицы максимальных значений ESR у электролитических конденсаторов

Падение напряженности и общая емкость

Ёмкость конденсатора – это величина, определяющая количество заряда, который он способен в себе сохранить. Выражение имеет следующий вид:

C = q/U.

Здесь q – заряд, накопленный между обкладками конденсатора, U – напряжение к ним приложенное.

Вышеописанная формула представляет общий случай. На практике при расчете ёмкости конденсатора следует учитывать ряд других переменных:

C = E0ES/d,

где:

  • E0 – электрическая постоянная, равная 8,85*10-12 Ф/м,
  • E – диэлектрическая проницаемость среды, в которой располагаются обкладки конденсатора,
  • S – их площадь пересечения,
  • d – расстояние между обкладками.

Стандартная модель конденсатора имеет следующий вид.

Таблицы максимальных значений ESR у электролитических конденсаторов
Модель конденсатора

Обкладки чаще всего изготовлены из тонкого листового алюминия и скручены в рулон. Делается это для увеличения их площади, ведь так ёмкость конденсатора становится существенно больше.

От выбора диэлектрика, устанавливаемого производителем между обкладками конденсатора, зависит номинальное и максимальное напряжение прибора. Это, в свою очередь, определяет его сферу применения. Если к обкладкам приложить чрезмерную разность потенциалов, то напряжённость поля между ними превысит допустимый уровень, и произойдёт пробой диэлектрика. Подобная ситуация особенно пагубно влияет на электролитические конденсаторы и ионисторы. В случае их пробоя прибор частично или полностью теряет способность накапливать заряд и в дальнейшем становится непригодным для работы.

При последовательном и параллельном включении разных конденсаторов существенно изменяются их характеристики. Данное свойство этих деталей активно используется инженерами-электронщиками и радиолюбителями. Знание принципов подключения позволяет им более продуктивно разрабатывать новые устройства.

Ток при последовательном соединении конденсаторов

Электрический ток бывает двух видов: постоянным и переменным. Для работы ёмкостей это имеет большое значение.

Физические формулы и примеры вычислений

Формулы для эквивалентных сопротивлений цепи, состоящей из пары резисторовR1 иR2, можно выделить в определённый ряд:

  • параллельное присоединение определяют по формуле Rэкв. = (R1*R2)/R1+R2;
  • последовательное включение вычисляют, определяя его сумму Rэкв. = R1+R2.

У смешанного соединения резистивных элементов нет конкретной формулы. Чтобы не запутаться при длительных преобразованиях, здесь допустимо воспользоваться специальной программой из интернета. Это сервис «онлайн-калькулятор». Он поможет разобраться со сложными схемами соединения, будь то треугольник, квадрат, пятиугольник или иная схематичная фигура, образованная резистивными элементами.

Понять, как работают все формулы и методы, можно на конкретной задаче. На представленном первом рисунке – смешанная электрическая схема. Она включает в себя 10 резисторов. Элементы представлены в следующих номиналах:

  • R1 = 1 Ом;
  • R2 = 2 Ом;
  • R3 = 3 Ом;
  • R4 = 6 Ом;
  • R5 = 9 Ом;
  • R6 = 18 Ом;
  • R7 = 2Ом;
  • R8 = 2Ом;
  • R9 = 8 Ом;
  • R10 = 4 Ом.

Напряжение, поданное на схему:

U = 24 В.

Требуется рассчитать токи на всех резистивных элементах.

Таблицы максимальных значений ESR у электролитических конденсаторов
Исходная цепь

Для расчётов применяется закон Ома:

I = U/R, подставляя вместо R эквивалентное сопротивление.

Внимание! Для решения этой задачи сначала вычисляют общее (эквивалентное) R, после чего уже рассчитывают ток в цепи и напряжение на каждом резистивном компоненте.

Вычисляя Rэкв., разделяют заданную цепь на звенья, вмещающие в себя параллельные и последовательные включения. Делают расчёты для каждого такого звена, после – всей цепи целиком.

На рисунке выше изображено смешанное соединение сопротивлений. Его можно разбить на три участка:

  • АВ – участок, имеющий две параллельных ветви;
  • ВС – отрезок, вмещающий в себя последовательное сопряжение;
  • CD – отрезок схемы с расположением трёх параллельных цепочек.

Сопротивления R2 и R3, образующие нижнюю ветку отрезка АВ, соединены последовательно, что учитывается при расчёте.

Таблицы максимальных значений ESR у электролитических конденсаторов
Последовательно соединённые резисторы R2 и R3

Если посмотреть на участок СD, то можно отметить смешанное включение резистивных элементов.

Таблицы максимальных значений ESR у электролитических конденсаторов
Смешанное включение на участке CD

Начало расчётов состоит в определении эквивалентных сопротивлений для этих смешанных фрагментов. Выполняют это в следующем порядке:

  • Rэкв.2,3 = R2+R3=2 + 3 = 5 Ом;
  • Rэкв.7,8 = (R7*R8)/R7 + R8 = (2*2)/2 + 2 = 1 Ом;
  • Rэкв.7,8,9 = Rэкв.7,8 + R9 = 1 + 8 = 9 Ом.

Зная значения полученных эквивалентов, упрощают первоначальную схему. Она будет иметь вид, представленный на рисунке ниже.

Таблицы максимальных значений ESR у электролитических конденсаторов
Результат первого свёртывания

Далее можно уже определить Rэкв. для участковAB,BC,CD, по формулам:

  • Rэкв.AB = (R1*Rэкв 2,3)/R1 + Rэкв 2,3 = (1*5)/1 + 5 = 0,83 Ом;
  • Rэкв.BC = R4 + R5 = 6 + 9 = 15 Ом;
  • 1/Rэкв.CD = 1/R6 + 1/Rэкв.7,8,9 + 1/R10 = 1/18 + 1/9 + 1/4 = 0,05 + 0,11 + 0,25 = 0,41 Ом.

В результате выполненных вычислений получается эквивалентная схема, в которую входят три Rэкв. сопротивления. Она имеет вид, показанный на рисунке ниже.

Таблицы максимальных значений ESR у электролитических конденсаторов
Результат последующего свёртывания

Теперь можно определить эквивалентное сопротивление всей первоначальной схемы, сложив эквивалентные значения всех трёх участков:

Rэкв. = Rэкв.AB + Rэкв.BC + Rэкв.CD = 0,83 + 15 + 0,41 = 56,83 Ом.

Далее, используя закон Ома, находят ток в последнем последовательном участке:

I = U/ Rэкв. = 24/56,83 = 0,42 А.

Зная силу тока, можно найти, какое падение напряжения на рассмотренных участках AB, BC, CD. Это выполняется следующим образом:

  • UAB = I* Rэкв.AB= 0,42*0,83 = 0,35 В;
  • UBC = I* Rэкв.BC= 0,42*15 = 6,3В;
  • UCD = I* Rэкв.CD = 0,42*0,41 = 0,17 В.

Следующим шагом станет определение токов на параллельных отрезкахABиCD:

  • I1 = UAB/R1 = 0,35/1 = 0,35 А;
  • I2 = UAB/Rэкв.2,3 = 0,35/5 = 0,07 А;
  • I3 = UCD/R6 = 0,17/18 = 0,009 А;
  • I6 = UCD/Rэкв.7,8,9= 0,17/9 = 0,02 А;
  • I7 = UCD/R10 = 0,17/4 = 0,04 А.

Далее, чтобы найти значения токов, проходящих через R7 и R8, нужно рассчитать напряжение на этих двух резисторах. Предварительно находят падение напряжения на R9.

U9 = R9*I6 = 8*0,02 = 0,16 В.

Теперь напряжение, падающее на Rэкв.7,8, будет разностью между U CD и U9.

U7,8 = UCD – U9= 0,17 – 0,16 = 1 В.

После этого можно уже узнать значение токов, движущихся по резисторамR7 иR8, используя формулы:

  • I4 = U7,8/R7 = 1/2 = 0,5 A;
  • I5 = U7,8/R8 = 1/2 = 0,5 A.

Стоит заметить! Ток, протекающий через R4 и R5, по своему значению равен току на отрезке, не имеющем разветвления.

Рассчитывая схемы и решая задачи по нахождению значений электрических параметров, необходимо использовать эквивалентные сопротивления. С помощью такой замены сложные построения превращаются в элементарные цепи, которые сводятся к параллельным и последовательным соединениям резистивных элементов.

Купил китайский тестер конденсаторов, диодов, транзисторов и т.д.

Большинство глюков и неисправностей в компьютерной технике связаны с выходом из строя конденсаторов. Специально для определения состояния подозрительный конденсаторов я купил на ебее девайс с длинным названием Mega328 Transistor Tester Diode Triode Capacitance ESR Meter MOS/PNP/NPN L/C/R (далее- просто тестер).
Этот девайс продают без корпуса, без инструкции, вообще без чего бы то ни было:
Таблицы максимальных значений ESR у электролитических конденсаторов
Цена с доставкой- от 12$. Такой же точно у нас на радиорынке продают за 20 баксов.
C помощью этого тестера можно измерять такие параметры конденсатора, как ёмкость, ESR (эквивалентное последовательное сопротивление) и утечку тока.
Вообще, тестер может мерить много чего:

Но мне пока сей девайс нужен только для конденсаторов и вот, что хотелось бы отметить:
1. Меряет хорошо, проверял на новых конденсаторах. Кроме ёмкости показывает так же ESR (эквивалентное последовательное сопротивление). ESR вообще штука коварная- конденсатор может выглядеть целым и не вздувшимся, но работать не будет если ESR выше нормы.
Ориентироваться нужно по таблице:
2. Синяя колодка для установки выводных элементов не позволяет поставить в нее конденсатор с короткими ножками(выпаяный из платы). Потому для проверки конденсатора я припаивал к нему проводки:

И это я сделал напрасно, т.к. на тестере есть специальная площадка для тестирования SMD-компонентов и на ней можно удобно тестить выводные элементы с короткими ногами:

3. Тестировать конденсаторы не выпаивая их из платы не получится, тестер не работает в качестве внутрисхемного ESR-пробника.
В предыдущем примере я благополучно протестил конденсатор 2200 mF. Тот же конденсатор, но впаянный в плату, не тестируется:

4. Тестер питается от батарейки-кроны на 9 В. Но зачем же держать отдельную крону для такого девайса? Тестер будет использоваться по случаю и не где-нибудь в полях, а в рабочем кабинете. Потому переделаем его на работу от блока питания.
Смотрим на печатную плату тестера(кликабельно):

Видим, что напряжение от кроны идет двумя путями:

  • на вход АЦП микропроцессора для определения уровня напряжения батарейки
  • через микросхему 78L05 на питание микропроцессора и индикатора.

78L05 это стабилизатор, который преобразует входное напряжение 7… 20 В в выходное напряжение 5 В.
То есть, теоретически вместо кроны можно подключить какой-нибудь блок питания с выходным напряжением  от 7 до 12 (на всякий случай) вольт от старого свича, сканера или чего-то подобного и тестер должен работать.
На 7 вольт блока питания я, к сожалению, не нашел, нашел на 12. Подсоединил к тестеру, включил:

При запуске тестер проверил напряжение «на батарейке» и увидел там 12.2 В. В остальном отличий от использования кроны не заметил- результат измерения эталонного конденсатора точно такой же, как и в случае, когда в качестве питания подключена крона.
Значит, система работает. Я и не сомневался, но проверять всегда надо.
Далее выпаял разъем питания(мама) из старого ADSL-модема и припаял его на тестер вместо крепления батарейки-кроны:

Теперь тестер работает от блока питания:

И в дальнейшем не надо будет вечно выколупывать крону из ампервольтметра, когда вдруг понадобится срочно замерить конденсатор.

Замер ёмкости и параметров электролитического конденсатора.

Для начала проверим электролитический конденсатор на 1000 мкФ * 16V. Подключаем один вывод электролита к выводу 1, а другой к выводу 3.

prov-electrolit.jpg

Можно подключит один из выводов к клемме 2. Прибор сам определит, к каким выводам подключен конденсатор. Далее жмём на красную кнопку.

test-electrolit.jpg

На экране результат: ёмкость — 1004 мкФ (1004 μF); ЭПС — 0,05 Ом (ESR = 0,05Ω); Vloss = 1,4%. О параметре Vloss расскажу позднее.

Проверка танталового электролитического конденсатора 22 мкФ * 35в.

tantal-test.jpg

Результат: ёмкость — 24,4 мкФ; ЭПС — 0,2 Ом., Vloss = 0,4%

Тестер можно использовать и для замера ёмкости у обычных конденсаторов с ёмкостью где-то от 20 пикофарад (20pF). Если подключить к ZIF-Панели выносные щупы, то можно проверять и детали, выполненные в корпусах для поверхностного (SMT) монтажа. Я, например, с помощью этого тестера подбирал SMD-конденсаторы и резисторы.

Обращаю внимание! Перед тестированием конденсаторов, особенно электролитических, их необходимо разрядить! Иначе можно повредить прибор высоким остаточным напряжением. Особенно это относится к электролитам, выпаянным с плат.

Проверка биполярных транзисторов.

В качестве подопытного «кролика» возьмём наш КТ817Г. Как видим, у биполярных транзисторов измеряется коэффициент усиления hFE (он же h21э) и напряжение смещения Б-Э (открытия транзистора) Uf. Для кремниевых биполярных транзисторов напряжение смещения находится в пределах 0,6 ~ 0,7 вольт. Для нашего КТ817Г оно составило 0,615 вольт (615mV).

prov-kt817.jpg

Составные биполярные транзисторы тоже распознаёт. Вот только параметрам на дисплее я бы верить не стал. Ну, действительно. Не может составной транзистор иметь коэффициент усиления hFE = 37. Для КТ973А минимальный hFE должен быть не менее 750.

t-kt973.jpg

Как оказалось, структуру для КТ973А (PNP) и КТ972А (NPN) определяет верно. Но вот всё остальное замеряет некорректно.

t-kt972a.jpg

Стоит учесть, что если хотя бы один из переходов транзистора пробит, то тестер может определить его как диод.

Проверка диодов универсальным тестером.

Образец для испытаний — диод 1N4007.

test-1n4007.jpg

Для диодов указывается падение напряжения на p-n переходе в открытом состоянии Uf. В техдокументации на диоды указывается как VF — Forward Voltage (иногда VFM). Замечу, что при разном прямом токе через диод величина этого параметра также меняется.

Для данного диода 1N4007: VF=677mV (0,677V). Это нормальное значение для низкочастотного выпрямительного диода. А вот у диодов Шоттки это значение ниже, поэтому их и рекомендуют применять в устройствах с низковольтным автономным питанием.

Кроме этого тестер замеряет и ёмкость p-n перехода (C=8pF).

Результат проверки диода КД106А. Как видим, ёмкость перехода у него во много раз больше, чем у диода 1N4007. Аж 184 пикофарады!

kd106a-test.jpg

Если вместо диода установить светодиод и включить проверку, то во время тестирования он будет задорно помигивать.

Для светодиодов тестер показывает ёмкость перехода и минимальное напряжение, при котором светодиод открывается и начинает излучать. Конкретно для этого красного светодиода оно составило Uf = 1,84V.

Как оказалось, универсальный тестер справляется и с проверкой сдвоенных диодов, которые можно встретить в компьютерных блоках питания, преобразователях напряжения автоусилителей, всевозможных блоках питания.

Проверка сдвоенного диода MBR20100CT.

Тестер показывает падение напряжения на каждом из диодов Uf = 299mV (в даташитах указывается как VF), а также цоколёвку. Не забываем, что сдвоенные диоды бывают как с общим анодом, так и общим катодом.

Вывод и впечатления от прибора

К небольшим минусам прибора должен отнести:

  • проверка стабилитронов с напряжением стабилизации только до 4,5 В;
  • не защищенный шлейф ЖК индикатора (корпус мастерить обязательно).

Несмотря на имеющиеся минусы, плюсов у прибора гораздо больше и не одному радиолюбителю, а так же профессионально занятому в сфере электроники человеку, прибор способен значительно облегчить жизнь.

Самодельная приставка -метр, измеряющийконденсаторов без выпаивания с печатной платы.

Прошло примерно полтора года, с тех пор, как я начал регулярно заниматься ремонтами электроники. Как оказалось дело это не менее интересное, чем конструирование электронных конструкций. Понемногу появились люди, желающие, кто время от времени, а кто и регулярно, сотрудничать со мной как с мастером. В связи с тем что рентабельность большинства производимых ремонтов не позволяет снимать помещение, иначе аренда съедает большую часть прибыли, работаю в основном на дому либо выезжаю с инструментами к знакомым ИП имеющим скупку бытовой электроники и мастерскую.

Параллельно со знакомым, выкупаем технику на местном форуме и Авито, ремонтируем и знакомый реализует, оба в долях с реализации. Но суть не в этом. Сегодня решил поделиться с читателями схемой простого, но очень полезного для любого ремонтника – электронщика устройства, ESR метра, позволяющего корректно измерять этот параметр, в большинстве случаев без выпаивания электролитических конденсаторов. ESR, оно же ЭПС (Эквивалентное Последовательное Сопротивление) – параметр конденсатора очень сильно влияющий на его работоспособность при работе в высокочастотных цепях. Какие же это устройства?

ПРОВЕРКА КОНДЕНСАТОРОВ БЕЗ ВЫПАЙКИ

Это абсолютно любые схемы с применением стабилизаторов, DC-DC преобразователей питания, импульсные блоки питания для любой техники, от компьютерной – до мобильных зарядок.

ПРОВЕРКА КОНДЕНСАТОРОВ БЕЗ ВЫПАЙКИ

Вздувшийся конденсатор

Без этого устройства значительная часть ремонтов выполняемых мною либо вообще не могла бы быть выполнена, либо все же была выполнена, но с большими неудобствами в виде постоянного выпаивания и запаивания обратно электролитических конденсаторов небольшого номинала, с целью измерения эквивалентного последовательного сопротивления с помощью транзистор тестера. Мой же прибор, позволяет измерять этот параметр не выпаивая деталь, просто прикоснувшись пинцетом к выводам конденсатора.

Данные конденсаторы номиналом 0.33-22 мкФ, как известно очень редко имеют насечки в верхней части корпуса, по которым конденсаторы большего номинала, вздуваются и раскрываются розочкой, например всем знакомые конденсаторы на материнских платах и блоках питания. Дело в том, что конденсатор, не имеющий этих насечек для выпускания излишнего образовавшегося давления, визуально, без измерения прибором, даже для опытного электронщика ничем не отличим от полностью рабочего.

Компьютерный блок питания

Компьютерный блок питания

Конечно, если домашнему мастеру предстоит разовый ремонт, например компьютерного блока питания АТХ формата, собирать данный прибор не имеет смысла, проще заменить сразу все конденсаторы мелкого номинала на новые, но если вы ремонтируете хотя бы пять блоков питания в полгода вам этот прибор уже желателен к сборке. Какие альтернативы есть, сборке этого измерителя? Покупной прибор стоимостью порядка 2000 рублей, ESR micro.

ESR micro Фото

ESR micro – фото

Из отличий и достоинств покупного прибора могу назвать только то, что у него показания выводятся сразу в милли Омах, а у моего прибора нужно переводить из миллиВольт в миллиОмы. Что впрочем не вызывает затруднений, достаточно откалибровать прибор по значениям низкоомных точных резисторов и составить для себя таблицу. Поработав с прибором пару месяцев, уже визуально, безо всяких таблиц, просто взглянув на дисплей мультиметра уже видишь нормальное значение ESR конденсатора – на грани либо уже необходима замена. Схема моего прибора, кстати, в свое время была взята из журнала Радио.

Источники

  • https://anticwar.ru/esr_kondensatora_tablitsa_9006
  • https://anticwar.ru/esr_kondensatora_9837
  • https://vesali.ru/skidki-i-rasprodazhi/tablitsa-esr-kondensatorov-skachat-tablitsy-dlya-novyh-kondensatorov
  • https://cashbuzz.ru/hi-tech/1713-tablica-esr-kondensatorov-skachat-tablicy-dlya-novyh-kondensatorov.html
  • https://el-come.ru/s-azov/posledovatelnoe-soprotivlenie-kondensatorov.html
  • https://aseke.ru/elektronika/1393-tablicy-maksimal-nyh-znacheniy-esr-u-elektroliticheskih-kondensatorov.html
  • http://www.comp-man.info/2015/12/capacitance-meter.html
  • https://reshu-otvet.ru/tablica-esr-kondensatorov-dlja-kitajskogo-testera/

Помогла ли вам статья?

Понравилась статья? Поделить с друзьями:
  • Sony 2200 ошибка при подключении к интернету как исправить ошибку
  • Как найти человека вконтакте по его фотографии
  • Ошибки в решении суда как их исправить или применить в свою пользу
  • Как найти силу тока пример
  • Потерялась мышка от ноутбука как найти