Как найти электроемкость все формулы

Содержание:

Электроемкость:

Сообщая телу определенный заряд, мы изменяем его потенциал. Это изменение непосредственно связано со значением заряда, сообщаемого телу.

Для исследования зависимости потенциала тела от его заряда проведем опыт с электрометром, корпус которого соединен с поверхностью Земли. ‘Гикая система может измерять потенциал тела относительно Земли. Укрепим на стержне этого электрометра пустотелый металлический шар и будем сообщать ему заряд с помощью маленького металлического шарика на изоляционной ручке. Если коснуться заряженным шариком внутренней поверхности металлического шара, то весь его заряд перейдет на шар, а стрелка электрометра покажет увеличение потенциала шара. Последовательно повторяя опыт с переносом заряда на большой шар, заметим, что каждый раз его потенциал увеличивается (рис. 1.28).

Электроемкость - основные понятия, формулы и определение с примерами

Применяя более точные способы измерения заряда и потенциала, можно установить, что потенциал возрастает пропорционально возрастанию заряда. Потенциал пропорционален заряду шара. Результаты одного из таких опытов отражены на графике (рис 1.29).

Электроемкость - основные понятия, формулы и определение с примерами

Если ни стержне электрометра укрепим шар большего (меньшего) диаметра и продолжим опыты (рис. 1.31), то увидим, что скорость зарядки изменилась, соответственно уменьшилась (увеличилась).
Процесс электризации шара большего диаметра отображен графиком на рисунке 1.32.

Сопоставив графики, которые иллюстрируют процессы зарядки шаров различных диаметров (рис. 1.30 и 1.32), увидим, что графики имеют различный наклон относительно горизонтальной оси. Это свидетельствует о том, что при одинаковых значениях заряда шары разных диаметров будут иметь разные потенциалы. Оказывается, что на князь между зарядом и потенциалом шара существенно влияют геометрические размеры шаров.

Электроемкость - основные понятия, формулы и определение с примерами
Рис. 130. Электризация шара большего диаметра

Потенциал металлического шара пропорционален его заряду; коэффициент пропорциональности для различных шаров разный.

Анализируя результаты опытов и соответствующие графики, можно сделать выводы:

  1. потенциал каждого шара пропорционален его заряду: Электроемкость - основные понятия, формулы и определение с примерами
  2. для тел различных размеров коэффициент пропорциональности разный.

Установлено, что этот коэффициент для каждого тела имеет вполне определенное значение, что отражает способность тела накапливать электрический заряд. Физическая величина, равная отношению электрического заряда, сообщенного телу, к его потенциалу, называется электроемкостью тела.
Электроемкость - основные понятия, формулы и определение с примерами
где C — электроемкость проводника; Q — заряд; φ — потенциал.

Для измерения электроемкости в физике применяют единицу, которую называют фарад (Ф).

Тело имеет электроемкость в 1 фарад, если при изменении его заряда на 1 кулон потенциал изменяется па 1 вольт:
Электроемкость - основные понятия, формулы и определение с примерами

Электроемкость 1 фарад имеют тела, у которых при изменении заряда на 1 кулон потенциал изменяется на 1 вольт.

  • 1Ф — довольно большое значение электроемкости. Например, электроемкость Земли, имеющей радиус 6400 км, составляет всего 7 ∙ 104 Ф. Поэтому на практике используют единицу электроемкости, кратную фараду:
  • 1 микрофарад = 1 мкФ = 10-5 Ф.
  • 1 пикофарад = 1 пФ = 10-12 Ф.

Пример:

Два шара, электроемкости которых 50 мкф и 80 мкФ, а потенциалы 120 В и 50 В соответственно, соединяют проводом. Найти потенциал шаров после соединения.

Дано: 
C1 = 50 мкФ,
C2 = 80 мкФ,
φl = 120 В,
φ2 = 50 В.

Решение
Заряд каждого шара соответственно равен:
Q1 = C1φ1.
Q2=c2φ2

φ-?

После соединения шаров произойдет перераспределение зарядов между ними так, что их потенциалы станут одинаковыми. Согласно закону сохранения электрических зарядов

Электроемкость - основные понятия, формулы и определение с примерами

Отсюда
Электроемкость - основные понятия, формулы и определение с примерами

или
Электроемкость - основные понятия, формулы и определение с примерами

Подставив значения физических величин и произведя расчеты, получим:
Электроемкость - основные понятия, формулы и определение с примерами

Ответ: после соединения шары будут иметь потенциал 77 В.

Конденсатор

Чтобы экспериментально определить электроемкость проводника, как и его потенциал, нужно создать условия, исключающие влияние всех окружающих тел, которые, влияя па тело, изменяют его потенциал и электроемкость.

Это утверждение можно проверить опытом.
Укрепим на стержне электрометра металлический шар и сообщим ему определенный заряд. Стрелка прибора отклонится от положения равновесия и покажет определенное значение потенциала относительно земли.

Поднесем к шару металлическую пластину, соединенную проводником с землей (рис. 1.32).

Электроемкость - основные понятия, формулы и определение с примерами
Pиc. 132. Заземленная металлическая пластина влияет на электроемкость шара

Показания стрелки электрометра уменьшатся. Поскольку заряд шара в опыте не изменялся, то уменьшение потенциала свидетельствует об увеличении электроемкости шара. Изменение потенциала и соответственно электроемкости шара будет наблюдаться и в случае изменения расстояния между шаром и пластиной.

Таким образом, определяя электроемкость тела, необходимо учитывать также наличие окружающих тел. Поскольку на практике это сделать трудно, то применяют систему из двух или более проводников произвольной формы, разделенных диэлектриком. В этом случае электрические свойства такой системы проводников и диэлектрика не зависят от окружающих тел. Такую систему называют конденсатором. Простейшим для изучения и расчетов является конденсатор из двух металлических пластин, разделенных диэлектриком.

Электроемкость конденсатора, в отличие от обособленного тела, определяется по разности потенциалов между пластинами:

Электроемкость - основные понятия, формулы и определение с примерами

где Q — заряд одной пластины; (φl— φ2) и ∆φ — разность потенциалов между пластинами.

Слово конденсатор обозначает накопитель. В электричестве понимают как «накопитель электрических зарядов».

Пример:

Какую электроемкость имеет конденсатор, если на его обкладках накапливается заряд 50 нКл при разности потенциалов 2,5 кВ?

Дано:
Q = 50 нКл,
Аφ = 2,5 кВ.

Решение
Используем формулу емкости конденсатора:
Электроемкость - основные понятия, формулы и определение с примерами

С-?

Подставим значения физических величин:

Электроемкость - основные понятия, формулы и определение с примерами

Ответ: электроемкость данного конденсатора 20 пФ.

Первый конденсатор был создан в 1745 г. голландским ученым Питером ван Мушенбруком, профессором Лейденского университета. Проводя опыты по электризации различных тел, он опустил проводник от кондуктора электрической машины в стеклянный графин с водой (рис. 1.33).

Электроемкость - основные понятия, формулы и определение с примерами Питер ван Мушенбрук (1692-1781) — голландский физик; работы посвящены электричеству, теплоте, оптике; изобрел первый конденсатор — лейденскую банку и провел опыты с ней.

Электроемкость - основные понятия, формулы и определение с примерами
Pиc. 133. Из истории открытия простейшего конденсатора лейденской банки

Случайно коснувшись пальцем этого проводника, ученый ощутил сильный электрический удар. В дальнейшем жидкость заменили металлическими проводниками, укрепленными на внутренней и внешней поверхностях банки. Такой конденсатор назвали лейденской банкой. В таком первозданном виде она использовалась в лабораториях более 200 лет.

Более совершенные конденсаторы применяются в современной электротехнике и радиоэлектронике. Их можно найти в преобразователях напряжения (адаптерах), питающих постоянным электрическим током электронные приборы, в радиоприемниках и радиопередатчиках как поставные части колебательных контуров. Они применяются практически во всех функциональных узлах электронной аппаратуры. В фотовспышках конденсаторы накапливают большие заряды, необходимые для действия вспышки.

В электротехнике конденсаторы обеспечивают необходимый режим работы электродвигателей, автоматических и релейных приборов, линий электропередач и т. п.

Во многих широкодиапазонных радиоприемниках конденсаторы переменной емкости (рис. 1.34) позволяют плавно изменять собственную частоту колебательного контура н процессе поиска передачи определенной радиостанции.

Электроемкость - основные понятия, формулы и определение с примерами
Рис. 134. Конденсатор переменной емкости с воздушным диэлектриком

Весьма распространены конденсаторы варикапы, электроемкость которых можно изменять электрическим способом. Конструктивно они весьма схожи с полупроводниковыми диодами.

Конденсаторы могут быть плоскими, трубчатыми, дисковыми. В качестве диэлектрика в них используют парафинированную бумагу, слюду, воздух, пластмассы, керамику (рис. 1.35).

Электроемкость - основные понятия, формулы и определение с примерами
Рис. 1.35. Различные типы конденсаторов

Искусственно созданные диэлектрические материалы позволяют создавать конденсаторы больших емкостей при небольших размерах.

Электроемкость плоского конденсатора

Плоским конденсатором обычно называют систему плоских проводящих пластин — обкладок, разделенных диэлектриком. Благодаря простоте конструкции такого конденсатора легко рассчитывать его емкость и получать значения, подтверждаемые опытами. Для этого достаточно знать его геометрические параметры и электрические свойства диэлектрика между его пластинами. Зависимость электроемкости плоского конденсатора от указанных параметров можно исследовать в школьной лаборатории.

Создадим плоский конденсатор из двух плоских пластин. Для этого одну пластину укрепим на стержне электрометра, я другую — па изоляционной подставке, присоединив ее проводником к корпусу электрометра (рис. 1.36.). В такой системе электрометр будет измерять разность потенциалов между пластинами, образующими плоский конденсатор.

Электроемкость - основные понятия, формулы и определение с примерами
Pиc. 136. Плоский конденсатор, присоединенный к электрометру

Проводя исследования, нужно помнить, что при постоянном значении заряда на пластинах уменьшение разности потенциалов свидетельствует об увеличении электроемкости конденсатора, и наоборот.

При постоянном значении заряда на пластинах уменьшение разности потенциалов свидетельствует об увеличении электроемкости конденсатора, и наоборот.

Сообщим пластинам некоторый заряд и отметим показания стрелки прибора. Когда начнем сближать пластины, уменьшая расстояние между ними, показания стрелки начнут уменьшаться. Это будет свидетельством того, что при уменьшении расстояния между пластинами электроемкость конденсатора будет увеличиваться. При увеличении расстояния между пластинами показания стрелки будут увеличиваться, что свидетельствует об уменьшении электроемкости.

Электроемкость плоского конденсатора обратно пропорциональна расстоянию между его обкладками.

Электроемкость - основные понятия, формулы и определение с примерами

где d — расстояние между обкладками.

Эту, зависимость можно изобразить на графике как обратно пропорциональную зависимость (рис. 1.37).

Электроемкость плоского конденсатора обратно пропорциональна расстоянию между его обкладками.

Электроемкость - основные понятия, формулы и определение с примерами
Pиc. 137. График зависимости электроемкости и плоского конденсатора от расстояния между пластинами

Будем смещать одну пластину относительно другой в параллельных плоскостях, не изменяя расстояния между ними. При атом площадь перекрытия между пластинами будет изменяться (рис. 1.38). Изменение разности потенциалов, отмеченное электрометром, засвидетельствует изменение электроемкости.

Электроемкость - основные понятия, формулы и определение с примерами
Pиc. 138. При расчетах электроемкости плоского конденсатора учитывают площадь перекрытия пластин

Увеличение площади перекрытия приведет к увеличению электроемкости, при уменьшении — наоборот.

Электроемкость плоского конденсатора пропорциональна площади пластин, которые перекрываются.
Электроемкость - основные понятия, формулы и определение с примерами
где S — площадь пластин, которые перекрываются.

Электроемкость плоского конденсатора пропорциональна площади пластин, которые перекрываются.

Эту зависимость можно изобразить графиком прямой пропорциональной зависимости (рис. 1.39).

Электроемкость - основные понятия, формулы и определение с примерами
Pиc. 139. График зависимости электроемкости плоского конденсатора от площади его пластин

Возвратив пластины в первоначальное положение, внесем в пространство между обкладками пластину из диэлектрика. Электрометр отметит уменьшение разности потенциалов между пластинами, что свидетельствует об увеличении электроемкости. Если внести пластину из другого диэлектрика (другая диэлектрическая проницаемость), то изменение электроемкости будет другим.

Электроемкость плоского конденсатора зависит от диэлектрической проницаемости диэлектрика между обкладками.
Электроемкость - основные понятия, формулы и определение с примерами
где ε — диэлектрическая проницаемость диэлектрика.

Эта зависимость изображена графиком на рисунке 1.40.

Электроемкость - основные понятия, формулы и определение с примерами
Рис. 1.40. График зависимости электроемкости плоского конденсатора от диэлектрической проницаемости диэлектрика

Результаты описанных выше исследований можно обобщить формулой электроемкости плоского конденсатора
Электроемкость - основные понятия, формулы и определение с примерами
где ε — относительная диэлектрическая проницаемость диэлектрика; ε0— электрическая постоянная; d — расстояние между пластинами; S — площадь пластины.

Электроемкость плоского конденсатора зависит от диэлектрической проницаемости диэлектрика.

Соединение конденсаторов в батареи

Для получения необходимых значений электроемкости конденсаторы соединяют в батареи. На практике встречается параллельное, последовательное и смешанное соединение конденсаторов.

При параллельном соединении конденсаторов все обкладки соединяются в две группы, в каждую из которых входит по одной обкладке каждого конденсатора. На рисунке 1.41 приведена схема такого соединения. При таком соединении каждая группа обкладок имеет одинаковый потенциал.

Электроемкость - основные понятия, формулы и определение с примерами
Pиc 1.41. Схема параллельного соединения конденсаторов

Если батарею параллельно соединенных конденсаторов зарядить, то между обкладками каждого конденсатора будет одинаковая разность потенциалов. Общий заряд батареи будет равен сумме зарядов каждого из конденсаторов, входящих в батарею:

Электроемкость - основные понятия, формулы и определение с примерами

Если учесть, что Электроемкость - основные понятия, формулы и определение с примерами то

Электроемкость - основные понятия, формулы и определение с примерами
или
Электроемкость - основные понятия, формулы и определение с примерами

Электроемкость батареи параллельно соединенных конденсаторов равна сумме электроемкостей всех конденсаторов.

При последовательном соединении конденсаторов соединяются между собой только две пластины разных конденсаторов. Если в каждом конденсаторе пластины обозначить буквами А и В, то при последовательном соединении пластина B1 будет соединена с пластиной A2, пластина B2 -с пластиной А3 и т. д. (рис. 1.43).

Если цепочку последовательно соединенных конденсаторов присоединить к источнику тока, то об-
кладка A1 и обкладка B1 будут иметь одинаковые по значению заряды +Q и -Q. Благодаря этому все обкладки внутри цепочки будут иметь такие же, но попарно противоположные по знаку заряды:
Электроемкость - основные понятия, формулы и определение с примерами

Электроемкость - основные понятия, формулы и определение с примерами
Pиc. 1.42. Последовательное соединение конденсаторов

Вместе с тем общая разность потенциалов на концах цепочки будет равна сумме разностей потенциалов на каждом конденсаторе:
Электроемкость - основные понятия, формулы и определение с примерами

Учитывая, что Электроемкость - основные понятия, формулы и определение с примерами будем иметь

Электроемкость - основные понятия, формулы и определение с примерами

Разделим левую и правую части равенства на Q:

Электроемкость - основные понятия, формулы и определение с примерами

При последовательном соединении конденсаторов обратное значение электроемкости цепочки равно сумме обратных значений электроемкостей каждого из конденсаторов.

При последовательном соединении конденсаторов обратное значение электроемкости цепочки равно с

При последовательном соединении конденсаторов обратное значение электроемкости цепочки равно сумме обратных значений электроемкостей каждого из конденсаторов.
Электроемкость - основные понятия, формулы и определение с примерами

При последовательном соединении конденсаторов разной электроемкости C1, C2, C3, … Сn общая электроемкость С будет меньше электроемкости самого меньшего конденсатора.
Если C1 < C7 < C< … < Cn, то C < C1.

Электроемкость

То, что деньги хранят в банках, знает даже первоклассник. А вот где хранят заряды? И зачем вообще хранить заряды?

Что такое электроемкость

Электроемкость характеризует способность проводника или системы проводников накапливать электрический заряд. Различают электроемкость уединенного проводника и электроемкость системы проводников (например, конденсатора). Уединенным называют проводник, расположенный вдали от других тел так, что они не оказывают на этот проводник никакого влияния.

Электроемкость уединенного проводника (C) — физическая величина, характеризующая способность проводника накапливать заряд и равная отношению электрического заряда q проводника к его потенциалу М:

Электроемкость - основные понятия, формулы и определение с примерами

Единица электроемкости в Си — фарад: [C] = 1 Ф (названа в честь М. Фарадея).

1 Ф — это электроемкость такого проводника, потенциал которого равен 1 В при сообщении ему заряда 1 Кл; Электроемкость - основные понятия, формулы и определение с примерами

1 Ф — очень большая единица емкости, поэтому используют дольные единицы: Электроемкость - основные понятия, формулы и определение с примерами

Что такое конденсатор

Конденсатор — устройство, представляющее собой систему из двух проводящих обкладок, разделенных тонким слоем диэлектрика (рис. 44.1).

Электроемкость - основные понятия, формулы и определение с примерамиЭлектроемкость - основные понятия, формулы и определение с примерами

Рис. 44.1. Школьный воздушный конденсатор: а — вид; б — устройство; в — обозначение на схемах

Обкладкам конденсатора передают одинаковые по модулю, но противоположные по знаку заряды, что способствует накоплению зарядов: разноименные заряды притягиваются, а значит, располагаются на внутренних поверхностях обкладок.

Обычно для зарядки конденсатора обе его обкладки соединяют с полюсами батареи аккумуляторов: на обкладках появляются равные по модулю, но противоположные по знаку заряды. Результат не изменится, если соединить с полюсом батареи только одну обкладку, заземлив вторую: вследствие электростатической индукции на заземленной обкладке тоже появится заряд, равный по модулю заряду на другой обкладке, но имеющий противоположный знак.

Зарядом конденсатора называют модуль заряда одной из обкладок. Отношение заряда q данного конденсатора к разности потенциалов (Электроемкость - основные понятия, формулы и определение с примерами) между его обкладками не зависит ни от значения q, ни от разности потенциалов (Электроемкость - основные понятия, формулы и определение с примерами), а значит, может служить характеристикой конденсатора. Такую характеристику называют электроемкостью (емкостью) конденсатора:

Электроемкость - основные понятия, формулы и определение с примерами

где U — напряжение между обкладками: Электроемкость - основные понятия, формулы и определение с примерами.

Как показывают исследования, емкость конденсатора увеличится, если увеличить площадь поверхности обкладок или приблизить обкладки друг к другу. На емкость конденсатора влияет также диэлектрик: чем больше его диэлектрическая проницаемость, тем большую емкость имеет конденсатор.

Конденсатор, состоящий из двух параллельных металлических пластин (обкладок), разделенных слоем диэлектрика, называют плоским (см. рис. 44.1). Электроемкость плоского конденсатора вычисляют по формуле:

Электроемкость - основные понятия, формулы и определение с примерами

где Электроемкость - основные понятия, формулы и определение с примерами Ф/м — электрическая постоянная; ε — диэлектрическая проницаемость диэлектрика; S — площадь пластины конденсатора; d — расстояние между пластинами.

Поле между пластинами плоского конденсатора однородно, поэтому напряженность Е поля связана с напряжением U на конденсаторе формулой U=Ed.

Как рассчитывают электроемкость батареи конденсаторов

Конденсаторы характеризуются емкостью и максимальным рабочим напряжением Umax. Если напряжение, поданное на конденсатор, значительно превысит Umax, произойдет пробой — между обкладками возникнет искра, которая разрушит изоляцию.

Чтобы получить необходимую электроемкость при определенном рабочем напряжении, конденсаторы соединяют в батареи, применяя параллельное, последовательное и смешанное соединения. Рассмотрим батарею из трех конденсаторов электроемкостями Электроемкость - основные понятия, формулы и определение с примерами

Электроемкость - основные понятия, формулы и определение с примерами

При параллельном соединении конденсаторов положительно заряженные обкладки всех конденсаторов соединяют в один узел, а отрицательно заряженные — в другой узел (рис. 44.2). В таком случае общий заряд q батареи конденсаторов равен алгебраической сумме зарядов отдельных конденсаторов:

Электроемкость - основные понятия, формулы и определение с примерами

Соединенные в один узел обкладки представляют собой один проводник, поэтому потенциалы обкладок, а следовательно, и разность потенциалов (напряжение) между обкладками всех конденсаторов одинаковы:

Электроемкость - основные понятия, формулы и определение с примерами

Таким образом, при параллельном соединении конденсаторов допустимое рабочее напряжение батареи определяется рабочим напряжением одного конденсатора.

Поскольку Электроемкость - основные понятия, формулы и определение с примерами то Электроемкость - основные понятия, формулы и определение с примерами следовательно, электроемкость батареи из трех параллельно соединенных конденсаторов равна:

Электроемкость - основные понятия, формулы и определение с примерами

При последовательном соединении конденсаторы соединяют друг с другом разноименно заряженными обкладками (рис. 44.3). В этом случае заряды всех конденсаторов будут одинаковы и равны заряду батареи:

Электроемкость - основные понятия, формулы и определение с примерами

Электроемкость - основные понятия, формулы и определение с примерами

Напряжение на батарее последовательно соединенных конденсаторов равно сумме напряжений на отдельных конденсаторах:

Электроемкость - основные понятия, формулы и определение с примерами

Таким образом, допустимое рабочее напряжение батареи последовательно соединенных конденсаторов больше допустимого рабочего напряжения отдельного конденсатора. Электроемкость батареи последовательно соединенных конденсаторов вычисляют по формуле:

Электроемкость - основные понятия, формулы и определение с примерами

При последовательном соединении конденсаторов емкость батареи меньше, чем емкость конденсатора с минимальной емкостью.

Приведенные соотношения можно обобщить для любого количества конденсаторов.

Обратите внимание!

  • Если батарея содержит n параллельно соединенных конденсаторов электроемкостью C′ каждый, то: C=nC′
  • Если батарея содержит n последовательно соединенных конденсаторов электроемкостью C′ каждый, то: Электроемкость - основные понятия, формулы и определение с примерами

Энергия заряженного конденсатора

Заряженный конденсатор, как и любая другая система заряженных тел, обладает энергией.

Убедимся в этом с помощью простого эксперимента. Присоединим к обкладкам заряженного конденсатора лампочку. Замкнем ключ — лампочка загорится. Теперь измерим напряжение на обкладках конденсатора — оно равно нулю, то есть конденсатор разрядился, а это означает, что заряженный конденсатор обладал энергией, которая частично превратилась в энергию света.

Вычислим энергию заряженного до напряжения Электроемкость - основные понятия, формулы и определение с примерами конденсатора емкостью С, на котором накоплен заряд Электроемкость - основные понятия, формулы и определение с примерами. Эту энергию точнее было бы назвать энергией электростатического поля, которое существует между обкладками заряженного конденсатора, поскольку энергия любых заряженных тел сосредоточена в электрическом поле, создаваемом этими телами.

При разрядке конденсатора напряжение U на его обкладках изменяется прямо пропорционально заряду q конденсатора: Электроемкость - основные понятия, формулы и определение с примерами поэтому график зависимости U(q) имеет вид, представленный на рис. 44.4.

Электроемкость - основные понятия, формулы и определение с примерами

Рис. 44.4. К определению работы, которую совершает электрическое поле заряженного конденсатора при его разрядке

Мысленно разделим весь заряд конденсатора на маленькие «порции» Dq и будем считать, что при потере каждой такой «порции» напряжение на конденсаторе не изменяется. Таким образом получим ряд полос. Площадь S′ каждой полосы равна произведению двух ее сторон: Электроемкость - основные понятия, формулы и определение с примерами, где U′ — напряжение, при котором конденсатор терял данную «порцию» заряда Электроемкость - основные понятия, формулы и определение с примерами; A′ — работа, которую совершило поле при потере конденсатором заряда Электроемкость - основные понятия, формулы и определение с примерами. Полная работа, которую совершило поле при уменьшении заряда конденсатора от Электроемкость - основные понятия, формулы и определение с примерами до 0, определяется площадью выделенного на рис. 44.4 треугольника.

Следовательно,Электроемкость - основные понятия, формулы и определение с примерами. Учитывая, чтоЭлектроемкость - основные понятия, формулы и определение с примерамиполучим: Электроемкость - основные понятия, формулы и определение с примерами С другой стороны, данная работа равна уменьшению энергии электрического поля конденсатора от Электроемкость - основные понятия, формулы и определение с примерамидо нуля: A=Электроемкость - основные понятия, формулы и определение с примерами − 0 = W. Таким образом, энергия Электроемкость - основные понятия, формулы и определение с примерами заряженного до напряжения U конденсатора, имеющего электроемкость С и заряд q, равна:

Электроемкость - основные понятия, формулы и определение с примерами

Для чего нужны конденсаторы

В современной технике сложно найти отрасль, где не применялись бы конденсаторы. Без них не обходятся радио­ и телеаппаратура (настройка колебательных контуров), радиолокационная и лазерная техника (получение мощных импульсов), телефония и телеграфия (разделение цепей переменного и постоянного токов, тушение искр в контактах), электроизмерительная техника (создание образцов емкости). И это далеко не полный перечень.

В современной электроэнергетике конденсаторы тоже имеют широкое применение: они присутствуют в конструкциях люминесцентных светильников, электросварочных аппаратов, устройств защиты от перенапряжений. Конденсаторы применяют и в других, не электротехнических, областях техники и промышленности (в медицине, фототехнике и т. д.).

Разнообразие областей применения обусловливает большое разнообразие конденсаторов. Наряду с миниатюрными конденсаторами, имеющими массу меньше грамма, а размеры порядка нескольких миллиметров, существуют конденсаторы массой несколько тонн и высотой больше человеческого роста. Емкость современных конденсаторов может составлять от долей, а рабочее напряжение может быть в пределах от нескольких вольт до нескольких сотен киловольт. Конденсаторы можно классифицировать по следующим признакам и свойствам:

  • по назначению — постоянной и переменной емкости;
  • по форме обкладок — плоские, сферические, цилиндрические и др.;
  • по типу диэлектрика — воздушные, бумажные, слюдяные, керамические, электролитические и др.

Выводы:

Электроемкость - основные понятия, формулы и определение с примерами

  • Энергию заряженного конденсатора можно вычислить по формулам: Электроемкость - основные понятия, формулы и определение с примерами
  • Конденсаторы классифицируют по назначению (постоянной и переменной емкости); по форме обкладок (плоские, сферические, цилиндрические и др.); по типу диэлектрика (воздушные, бумажные, слюдяные, керамические, электролитические и др.).
  • Полупроводники
  • Потенциал электрического поля
  • Постоянный электрический ток
  • Законы постоянного тока 
  • Принцип суперпозиции электрических полей
  • Проводники в электрическом поле
  • Диэлектрики в электрическом поле
  • Закон Кулона

Для заряженного тела или заряженной системы вводят параметр, характеризующий способность тела накапливать заряд, — электроёмкость. Стандартное обозначение — displaystyle [C], единица измерения — displaystyle [C] = Ф (Фарад). Электроёмкость численно равна отношению заряда тела/системы к потенциалу этого тела/системы. Для неизменной системы данный параметр является постоянным.

Формульно:

displaystyle C=frac{q}{varphi } (1)

  • где

Рассчитаем в качестве примера электроёмкость шара радиуса displaystyle R.

Исходя из рассмотренного ранее потенциала шара:

displaystyle varphi =frac{1}{4pi varepsilon {{varepsilon }_{0}}}frac{q}{R} (2)

  • где

Подставим (2) в (1):

displaystyle C=frac{q}{varphi }=qfrac{1}{varphi }=qfrac{4pi varepsilon {{varepsilon }_{0}}}{1}frac{R}{q}=4pi varepsilon {{varepsilon }_{0}}R (3)

Формула (3) представляет собой математический способ нахождения электроёмкости проводящего шара.

Ещё одной системой, в которой можно достаточно просто рассчитать электроёмкость, является плоский конденсатор. Для расчёта электроёмкости такой системы воспользуемся (1), знаниями о связи напряжённости электростатического поля и потенциала электростатического поля (4) и напряжённостью электростатического поля между двумя параллельными пластинами (5).

displaystyle varphi =Ed (4)

  • где

displaystyle E=frac{q}{varepsilon {{varepsilon }_{0}}S} (5)

  • где

Тогда:

displaystyle C=frac{q}{varphi }=frac{q}{Ed}=frac{q}{d}frac{1}{E}=frac{q}{d}frac{varepsilon {{varepsilon }_{0}}S}{q}=frac{varepsilon {{varepsilon }_{0}}S}{d} (6)

Выражение (6) является соотношением для поиска электроёмкости плоского конденсатора.

Вывод: Таким образом, задачи на поиск электроёмкости системы сводятся или к определению электроёмкости (1), или к рассмотрению конкретной системы: шар (3), плоский конденсатор (6).

Определение

Конденсатор служит для накопления электрического заряда. Он представляет собой два проводника, разделенных слоем диэлектрика.

Плоский конденсатор — система двух разноименно заряженных пластин.

Разность потенциалов U (В) между обкладками конденсатора (напряжение между пластинами), определяется произведением напряженности создаваемого ими электрического поля на расстояние между ними:

U=Ed

Электроемкость конденсатора

Определение

Электрическая емкость — характеристика проводника, мера его способности накапливать электрический заряд.

Электроемкость обозначается как C. Единица измерения электрической емкости — Фарад (Ф).

Электроемкость конденсатора определяется формулой:

C=ε0εSd

  • ε0 — диэлектрическая постоянная, равная 8,85∙10–12 Кл2/(Н∙м2);
  • ε — диэлектрическая проницаемость среды;
  • S2) — площадь каждой пластины.

Внимание! У воздушного конденсатора диэлектрическая проницаемость среды равна 1.

Связь между электроемкостью конденсатора, зарядом и напряжением определяется формулами:

C=QU=qU

Важно! Электроемкость конденсатора зависит только от площади его пластин, расстояния между ними и диэлектрической проницаемости среды. От заряда и напряжения эта величина не зависит.

Энергия конденсатора

Формула энергии конденсатора

Энергия конденсатора связана с его электроемкостью и вычисляется по следующим формулам:

Wэ=q22C=CU22

Подсказки к задачам

Конденсатор отключен от источника q = q′
Конденсатор подключен к источнику U = U′
Количество теплоты и энергия конденсатора Q = ∆Wэ

Пример №1. Вычислить электроемкость плоского воздушного конденсатора с квадратными пластинами со стороной 10 см, расположенными на расстоянии 1 мм друг от друга. Ответ округлить до десятых.

10 см = 0,1 м

1 мм = 0,001 м

Так как между обкладками конденсатора находится воздух, примем диэлектрическую проницаемость среды за единицу.

Площадь квадратной пластины равна квадрату ее стороны:

S = a2

Соединения конденсаторов

Последовательное соединение Параллельное соединение
Схема
Напряжение

U=U1+U2

U=U1=U2

Заряд

q=q1=q2

q=q1+q2

Электроемкость

1C=1C1+1C2

C=C1+C2

Подсказки к задачам

Два конденсатора, электроемкости которых C1 и C2, заряжены до напряжения U1 и U2. Найдите разность потенциалов после соединения конденсаторов одноименными полюсами. Схема соединения конденсаторов одноименными полюсами:

Заряд системы после соединения:

q
=C1U1+C2U2

Электрическая емкость системы:

C
=C1+C2

Напряжение:

U
=qC=C1U1+C2U2C1+C2

Два конденсатора, электроемкости которых C1 и C2, заряжены до напряжения U1 и U2. Найдите разность потенциалов после соединения конденсаторов разноименными полюсами.

Схема соединения конденсаторов разноименными полюсами:

Заряд системы после соединения:

q
=C1U1C2U2

Электрическая емкость системы:

C
=C1+C2

Напряжение:

U
=qC=C1U1C2U2C1+C2

Пример №2. К конденсатору, электрическая емкость которого C = 16 пФ, подключают два одинаковых конденсатора емкостью X: один параллельно, а второй — последовательно (см. рисунок). Емкость образовавшейся батареи конденсаторов равна емкости C. Какова емкость X? Ответ округлите до десятых.

Электрическая емкость параллельного соединения равна:

Cпарал=X+C

Электроемкость последовательного соединения:

1Cпослед=1Cпарал+1X=1X+C+1X

Учтем, что суммарная электроемкость равна C:

1C=1X+C+1X

Преобразуем, умножим выражение на CX(X+C):

X(X+C)=CX+C(X+C)

Раскроем скобки:

X2+XC=CX+CX+C2

X2CXC2=0

Решив уравнение, получим: X = 25,9 пФ.

Разбор задач на тему «Заряженная частица в поле конденсатора»

Шарик, находящийся в масле плотностью ρ, «висит» в поле плоского конденсатора. Плотность вещества шарика ρш > ρ, его радиус r, расстояние между обкладками конденсатора d. Каков заряд шарика, если электрическое поле направлено вверх, а разность потенциалов между обкладками U? Условие равновесия исходит из второго закона Ньютона:

Fтяж+FK+FA=0

ρш > ρ, поэтому Fтяж> FA. В этом случае сила Кулона направлена вверх, а заряд шарика положительный. Схематически это можно отобразить так:

Проекция второго закона Ньютона на ось ОУ:

FK+FA=Fтяж

Сила тяжести равна произведению объема на плотность шарика и на ускорение свободного падения:

Fтяж=ρш43πr3g

Архимедова сила равна произведению объема шарика на плотность масла и на ускорение свободного падения:

FА=ρ43πr3g

Сила Кулона:

FK=qUd

qUd+ρ43πr3g=ρш43πr3g

q=(ρш43πr3gρ43πr3g)dU=4πr3gd(ρшρ)3U

Маленький шарик с зарядом q и массой m, подвешенный на невесомой нити с коэффициентом упругости k, находится между вертикальными пластинами воздушного конденсатора. Расстояние между обкладками конденсатора d. Какова разность потенциалов между обкладками конденсатора U, если удлинение нити ∆l?

Условие равновесия исходит из второго закона Ньютона:

Fтяж+FK+Fупр=0

Проекции на оси ОХ и ОУ соответственно:

FупрsinαFK=0

Fупрcosαmg=0

Отсюда:

kΔlsinα=qUd

kΔlcosα=mg

Чтобы избавиться от угла α, возведем уравнения в квадрат и сложим их:

(kΔl)2sin2α+(kΔl)2cos2α=(qUd)2+(mg)2

(kΔl)2(sin2α+cos2α)=(qUd)2+(mg)2

sin2α+cos2α=1

(kΔl)2=(qUd)2+(mg)2

U=dq(kΔl)2(mg)2

Пластины плоского конденсатора расположены горизонтально на расстоянии d друг от друга. Напряжение на пластинах конденсатора U. В пространстве между пластинами падает капля жидкости. Масса капли m, ее заряд q. Определите расстояние между пластинами. Влиянием воздуха на движение капли пренебречь. Второй закон Ньютона в векторной форме:

Fтяж+FK=0

Проекция на вертикальную ось:

FтяжFK=0

Fтяж=mg

FK=qUd

mg=qUd

d=qUmg

Между двумя параллельными горизонтально расположенными диэлектрическими пластинами создано однородное электрическое поле с напряженностью E, направленное вертикально вниз. Между пластинами помещен шарик на расстоянии d от верхней пластины и b от нижней. Заряд шарика –q, масса m. Шарик освобождают, и он начинает двигаться. Через какой промежуток времени t шарик ударится об одну из пластин, если система находится в поле силы тяжести Земли? Второй закон Ньютона в векторной форме:

Fтяж+FK=ma

Согласно условию данной задачи, сила тяжести противоположно направлена силе Кулона. Построим рисунок:

Если Fтяж > FK, то шарик движется с ускорением вниз. Ускорение и перемещение в этом случае равны:

a=mgqEm

s=b

Если Fтяж < FK, то шарик движется с ускорением верх. Ускорение и перемещение в этом случае равны:

a=qEmgm

s=d

Начальная скорость шарика равна нулю. Поэтому перемещение также равно:

s=at22

Сделаем вычисления для случая Fтяж > FK:

at22=b

mgqEmt22=b

t=2bmmgqE

Выполняя вычисления для случая Сделаем вычисления для случая Fтяж < FK, получим:

t=2bmqEmg

Между двумя параллельными, вертикально расположенными диэлектрическими пластинами создано однородное электрическое поле, напряженность которого E и направлена слева направо. Между пластинами помещен шарик на расстоянии b от левой пластины и d от правой. Заряд шарика –q, масса m. Шарик освобождают, и он начинает двигаться. Найдите смещение шарика по вертикали ∆h до удара об одну из пластин. Пластины имеют достаточно большой размер. Второй закон Ньютона в векторной форме:

Fтяж+FK=ma

Если сила Кулона направлена вправо, то sx = d.

Если сила Кулона направлена вправо, то sx = b.

Учитывая, что заряд меньше нуля, а вектор напряженности направлен вправо, делаем вывод, что кулоновская сила направлена влево.

Из проекций второго закона Ньютона выразим проекции ускорения на оси ОХ и ОУ соответственно:

ax=qEm

ay=g

Проекции перемещений на эти же оси:

sx=axt22

sx=Δh=gt22

axt22=b

Или:

qEmt22=b

Так как время движения шарика по вертикали и горизонтали одинаково:

t2=2Δhg=2mbqE

Δh=mbgqE

Задание EF17979

Введите ответ в поле ввода
Плоский конденсатор подключён к гальваническому элементу. Как изменятся при уменьшении зазора между обкладками конденсатора три величины: ёмкость конденсатора, величина заряда на его обкладках, разность потенциалов между ними?

Для каждой величины определите соответствующий характер изменения:

  1. увеличится
  2. уменьшится
  3. не изменится

Запишите в таблицу выбранные цифры для каждой физической величины. Цифры в ответе могут повторяться.


Алгоритм решения

1.Определить, от чего зависит емкость конденсатора, и как она изменится при уменьшении зазора между его обкладками.

2.Определить, от чего зависит величина заряда конденсатора, и как она изменится после уменьшения зазора между его обкладками.

3.Определить, от чего зависит разность потенциалов между обкладками конденсатора, и как она изменится при уменьшении зазора.

Решение

Емкость конденсатора определяется формулой:

C=ε0εSd

Следовательно, емкость имеет обратно пропорциональную зависимость от расстояния между обкладками. Если расстояние уменьшить, то емкость увеличится.

Вот как взаимосвязана электроемкость и заряд конденсатора:

C=qU

Мы выяснили, что электроемкость увеличивается. Следовательно, увеличится и заряд, так как они имеют прямо пропорциональную зависимость.

С учетом того, что плоский конденсатор подключен к гальваническому элементу, разность потенциалов никак не зависит от расстояния между обкладками. Поэтому величина U остается неизменной.

Ответ: 113

pазбирался: Алиса Никитина | обсудить разбор

Задание EF18574

Воспользовавшись оборудованием, представленным на рис. 1, учитель собрал модель плоского конденсатора (рис. 2), зарядил нижнюю пластину положительным зарядом, а корпус электрометра заземлил. Соединённая с корпусом электрометра верхняя пластина конденсатора приобрела отрицательный заряд, равный по модулю заряду нижней пластины. После этого учитель сместил одну пластину относительно другой не изменяя расстояния между ними (рис. 3). Как изменились при этом показания электрометра (увеличились, уменьшились, остались прежними)? Ответ поясните, указав, какие явления и закономерности Вы использовали для объяснения. Показания электрометра в данном опыте прямо пропорциональны разности потенциалов между пластинами конденсатора.


Алгоритм решения

1.Проанализировать каждый этап эксперимента.

2.Установить, от чего зависит угол отклонения стрелки электрометра.

3.Выяснить, что поменяется при смещении одной пластины конденсатора относительно другой, и что при этом произойдет со стрелкой электрометра.

Решение

На первом рисунке стрелка и стержень электрометра, соединённые с нижней пластиной, но изолированные от корпуса, заряжаются положительно. Поэтому стрелка отклоняется на некоторый угол. В верхней пластине и металлическом корпусе электрометра происходит перераспределение свободных электронов таким образом, что верхняя пластина заряжается отрицательно.

На втором рисунке заряды пластин одинаковы по модулю и противоположны по знаку, пластины образуют конденсатор с ёмкостью:

C=ε0εSd

S — площадь перекрытия пластин, d — расстояние между ними, ε — диэлектрическая проницаемость диэлектрика между пластинами.

Характер изменения угла отклонения стрелки совпадает с изменением разности потенциалов между пластинами: при увеличении разности потенциалов увеличивается угол отклонения, при уменьшении разности потенциалов угол уменьшается.

На рисунке 3 площадь перекрытия пластин уменьшилась. Следовательно, уменьшилась электроемкость, которая имеет обратно пропорциональную зависимость от разности потенциалов:

C=qU

Заряд остается постоянным, поскольку система изолированная — заряду просто некуда деться. Поэтому с уменьшением электроемкость растет разность потенциалов. Поэтому показания электрометра увеличатся.

Ответ: Увеличатся

pазбирался: Алиса Никитина | обсудить разбор

Задание EF18695

Ученик изучает свойства плоского конденсатора. Какую пару конденсаторов (см. рисунок) он должен выбрать, чтобы на опыте обнаружить зависимость ёмкости конденсатора от расстояния между его обкладками?


Алгоритм решения

  1. Установить, какие величины в данном эксперименте должны быть переменными, а какие — постоянными.
  2. Найти рисунок с парой конденсаторов, удовлетворяющий требованиям, выявленным в шаге 1.

Решение

Чтобы на опыте обнаружить зависимость ёмкости конденсатора от расстояния между его обкладками, нужно сохранить все величины постоянными, кроме самого расстояния. Поэтому площади обкладок должны быть одинаковыми, но расстояние между ними разными, как на рисунке 1.

Ответ: а

pазбирался: Алиса Никитина | обсудить разбор

Задание EF18703

Протон влетает в электрическое поле конденсатора параллельно его пластинам в точке, находящейся посередине между пластинами (см. рисунок). Найдите минимальную скорость υ, с которой протон должен влететь в конденсатор, чтобы затем вылететь из него. Длина пластин конденсатора 5 см, расстояние между пластинами 1 см, напряжённость электрического поля конденсатора 5000 В/м. Поле внутри конденсатора считать однородным, силой тяжести пренебречь.

Ответ записать в км/с, округлив до десятков.


Алгоритм решения

1.Записать исходные данные и перевести единицы измерения величин в СИ.

2.Выполнить рисунок. Указать направление движения протона и силы, действующие на него.

3.Выяснить, при каком условии протон успеет вылететь из конденсатора.

4.Выполнить решение в общем виде.

5.Подставить известные данные и вычислить искомую величину.

Решение

Запишем исходные данные:

 Масса протона: m = 1,67∙10–27 кг.

 Заряд протона: q = 1,6∙10–19 Кл.

 Расстояние между обкладками конденсатора: d = 1 см.

 Длина пластин конденсатора: l = 5 см.

 Напряженность однородного поля внутри конденсатора: E = 5000 В/м.

1 см = 0,01 м

5 см = 0,05 м

Сделаем рисунок:

Изначально протон обладает только горизонтальной скоростью v, равной vx. Влетев в однородное электростатическое поле внутри конденсатора, протон обретает вертикальную компоненту скорости, которая растет за счет ускорения, придаваемого кулоновскими силами. Положительно заряженный протон притягивается нижней отрицательно зараженной пластиной конденсатора.

Чтобы протон вылетел из конденсатора, его горизонтальная компонента скорости должна быть достаточной для того, чтобы частица не притянулась к нижней пластине раньше. Время, которое понадобится протону для преодоления длины пластин конденсатора со скоростью vx:

t=lvx=lv

Протон влетел в пространство между обкладками конденсатора на одинаковом расстоянии от них. Следовательно, прежде чем он упадет на нижнюю пластину, по оси OY он переместится на расстояние, равное 0,5d. Так как начальная компонента скорости равна нулю (мы пренебрегаем силой тяжести):

0,5d=at22

Протон вылетит из конденсатора, а не упадет на его пластину, если время горизонтального перемещения до конца пластин будет как минимум равно времени падения. Выразим время падения:

t=da

Приравняем правые части уравнений времени и получим:

lv=da

Отсюда скорость равна:

v=al2d

Ускорение выразим из второго закона Ньютона:

FK=ma=qUd

a=qUmd

Но известно, что:

U=Ed

Поэтому:

a=qEdmd=qEm

Отсюда:

Минимальная скорость, с которой протон должен влететь в конденсатор, составляет 346∙103 м/с. Округлим до десятков и переведем в км/с. Получим 350 км/с.

Ответ: 350

pазбирался: Алиса Никитина | обсудить разбор

Алиса Никитина | Просмотров: 6.1k

Если двум, находящимся на некотором расстоянии друг от друга, проводникам сообщить электрические заряды (q1 и q2), между ними появится электрическое поле. Разность потенциалов (Δφ) в нём будет определяться величинами сообщённых зарядов и формой, которую имеют проводники. Разность потенциалов между 2 точками постоянного во времени и однородного электрического поля называют напряжением (U).

Заряды, сообщённые проводникам, могут быть оба положительными, оба отрицательными или иметь разные знаки. Последний случай при равных абсолютных значениях зарядов нашёл в физике и электротехнике наибольшее применение и поэтому нам особенно интересен.

Электроемкость

Определение 1

Под конденсатором понимают систему из нескольких (чаще всего двух) находящихся близко друг от друга проводников, отделённых друг от друга слоем диэлектрика.

В подавляющем большинстве случаев его толщина много меньше размеров обкладок.

Определение 2

Электрической ёмкостью (C) между двумя проводниками называется скалярная величина, прямо пропорциональная абсолютной величине заряда одного из проводников и обратно пропорциональная разности потенциалов и напряжению между ними.

В виде формулы данное определение можно записать следующим образом:

[C=(q / Delta varphi)=(q / U)]

В системе СИ электроёмкость измеряют в Фарадах. Один Фарад равен электроемкости конденсатора, при которой заряд, равный 1 Кулону, создаёт между его пластинами напряжение в 1 Вольт.

[1 Phi=frac{1 mathrm{~Kл}}{1 mathrm{~B}}]

Ёмкость в 1 Фарад – величина очень большая. На практике чаще всего используют мили фарады (одна тысячная фарада), микрофарады (одна миллионная), нанофарады (одна миллиардная), пикофарады (10 в минус 12-й степени).

Определение 3

Плоским называют конденсатор, образованный двумя плоскими, параллельно расположенными по отношению друг к другу пластинами. Если роль диэлектрика между ними играет воздух, то такой конденсатор называют воздушным.

Определение 4

Электрическое поле в плоском конденсаторе сосредотачивается главным образом между пластинами, однако часть его выходит за их пределы. Это вышедшее поле называют полем рассеяния. Оно не является потенциальным, т.е. работа при перемещении в нём заряда из одного места в другое не равна нулю.

Обычно такое поле не велико и при решении многих (но далеко не всех) задач его наличием можно пренебречь.

Абсолютную величину напряжённости каждой из обкладок можно выразить формулой:

[E_{1}=frac{sigma}{2 varepsilon_{0}}].

Где σ это плотность электрического заряда на плоскости. По принципу суперпозиции полная величина напряжённости поля конденсатора равна сумме напряжённостей полей от каждой из его обкладок.

[vec{E}=overrightarrow{E^{+}}+overrightarrow{E^{-}}]

Т. к. между пластинами векторы [overrightarrow{E^{+}} text {и } overrightarrow{E^{-}}] параллельны, полную напряжённость можно вычислить по формуле [E=2 E_{1}=frac{sigma}{varepsilon_{0}}].

Вне пластин поля каждой из них компенсируют друг друга, и потому общая их напряжённость равна нулю.

Как вычислить электроемкость плоского конденсатора

Вспомним, как ёмкость зависит от заряда пластин и разности потенциалов между ними. Это формула [mathrm{C}=(mathrm{q} / Delta varphi) . text { Заряд } mathrm{q}=sigma * mathrm{~S}, mathrm{~S}] – площадь одной обкладки.

Разность потенциалов в однородном электростатическом поле равна напряжению и вычисляется по формуле [Delta varphi=mathrm{E}^{*} mathrm{~d}]

Подставляем эти значения в формулу для ёмкости. В результате получаем:

[C=left(sigma^{*} Sright) /left(E^{*} dright)]

Т. к. электрическая постоянная ε0 равна σ/E в итоге получаем [C=frac{q}{Delta varphi}=frac{sigma cdot S}{E cdot d}=frac{varepsilon_{0} S}{d}].

Теперь давайте определим электроемкость конденсатора в форме сферы и цилиндра.

Сферический конденсатор

Определение 5

Им называют систему двух проводящих, расположенных одна в другой сфер с радиусами R1 и R2. Будем исходить из того, что они имеют общий центр.

[varphi_{1}-varphi_{2}=int E d x=int frac{k Q d r}{r^{2}}=k Qleft(frac{1}{R_{1}}-frac{1}{R_{2}}right)] т. к. [C_{c Phi}=frac{Q}{k Qleft(frac{1}{R_{1}}-frac{1}{R_{2}}right)}=frac{4 pi varepsilon varepsilon_{0} R_{1} R_{2}}{R_{2}-R_{1}}]

У нас R2 -R1 << R1. Это значит, что R1 и R2 можно принять равными R, тогда произведение радиусов в формуле можно будет считать квадратом R.

R2 – R1=d

Исходя из того что [C_{c Phi}=frac{4 pi varepsilon varepsilon_{0} R^{2}}{d}] и [S_{c Phi}=4 pi R^{2}].

В итоге получаем [C=frac{varepsilon varepsilon_{0} S}{d}=frac{4 pi varepsilon varepsilon_{0} R^{2}}{R_{2}-R_{1}}].

Цилиндрический конденсатор

Определение 6

Им называют систему находящихся один в другом цилиндров.

Для упрощения расчётов расположим их на одной оси.

Если пренебречь краевыми эффектами, то [varphi_{1}-varphi_{2}=frac{lambda}{2 pi varepsilon varepsilon_{0}} ln left(frac{r_{2}}{r_{1}}right)=frac{q}{2 pi varepsilon varepsilon_{0} l} ln left(frac{r_{2}}{r_{1}}right)]

[C=frac{q}{varphi_{1}-varphi_{2}}=frac{2 pi varepsilon_{0}}{ln left(frac{r_{2}}{r_{1}}right)}].

Теперь вы знаете, чему равна электроемкость конденсатора, давайте рассмотрим их соединения в электрической цепи.

Нет времени решать самому?

Наши эксперты помогут!

Расчёт электроемкости батареи конденсаторов

Определение 7

Батареей статических конденсаторов называют группу конденсаторов, связанных между собой электрическим соединением.

У параллельно соединённых конденсаторов одинакова разность потенциалов между обкладками Q1= С1 (φА- φВ), Q2= С2 (φА- φВ), Q3 = С3 (φА- φВ). Заряд батареи складывается из зарядов каждого из отдельных конденсаторов, в неё входящих. Поэтому легко понять почему

[Q=sum_{i-1}^{N} Q_{i}=sum_{i=1}^{N} C_{i}left(varphi_{mathrm{A}^{-}} varphi_{mathrm{B}}right)]

Суммарная ёмкость батареи при таком раскладе равна

[C_{text {парал }}=frac{Q}{varphi_{A}-varphi_{B}}=sum_{i=1}^{N} C_{i}]

Выходит, что при параллельном соединении ёмкости просто складываются.

При последовательном соединении конденсаторов ситуация будет совершенно другой.

В этом случае заряды обкладок всех входящих в батарею конденсаторов равны по абсолютной величине. Разность потенциалов на её концах равняется сумме разностей потенциалов на каждом из них. В виде формулы можно записать таким образом Dj=Dj1 + Dj2 + ….+ Dj.

Для каждого из конденсаторов батареи справедливы соотношения:

[Delta varphi_{mathrm{i}}=mathrm{q} / mathrm{C}_{mathrm{i}}, text { но } Delta varphi=mathrm{Q} / mathrm{C}=mathrm{Q} sum_{i=1}^{N} frac{1}{C_{i}} mathrm{p}]

[frac{1}{C_{text {посл }}}=Q sum_{i=1}^{N} C_{i}].

Из этого следует однозначный вывод, что при последовательном соединении ёмкость батареи всегда меньше ёмкости любого из её конденсаторов.

Электроемкость конденсатора колебательного контура

Определение 8

Колебательным контуром называют электрическую цепь, содержащую конденсатор, катушку индуктивности и источник электричества.

Мы для вычисления ёмкости будем рассматривать упрощённую его схему, состоящую только из конденсатора и катушки. Сопротивление соединяющих их проводников положим равным нулю. Сопротивлением катушки и излучением электромагнитных волн тоже пренебрегаем. Такой контур называют идеальным.

Придадим обкладкам конденсатора заряды –Q и +Q. В начальный момент времени электроемкость конденсатора контура будет [W_{C}=frac{Q^{2}}{2 C}].

Это максимальное значение ёмкости конденсатора в контуре. Выше него никак не будет.

Если замкнуть конденсатор на катушку, он начнёт разряжаться, возникнет электрический ток. В катушке появится и станет возрастать магнитное поле. В максимуме, когда конденсатор полностью разрядится, энергия порождённого током поля будет [W_{L}=frac{1}{2} L I^{2}].

Полная энергия системы останется постоянной и равна [W_{text {полн}}=frac{1}{2}left(frac{Q^{2}}{C}+L I^{2}right)=mathrm{const}].

Электроемкость конденсатора, энергия которого известна, из приведённых формул вычисляется достаточно легко:

C=Q2/(2W-LI2)

В контуре станут происходить гармонические колебания, общее их уравнение [ddot{Q}+frac{1}{L C} Q=0].

Его решение: [Q(t)=Q_{m} cos omega_{0} t]

Для силы тока и напряжения получим

[I=frac{d Q}{d t}=-omega_{0} Q_{m} sin omega_{0} t=I_{m} cos left(omega_{0} t+frac{pi}{2}right)], [U_{C}=frac{Q}{C}=frac{Q_{m}}{C} cos omega_{0} t=U_{m} cos omega_{0} t].

Чтобы получить формулу электроемкости конденсатора колебательного контура в любой момент времени, следует обе части

[U_{C}=frac{Q}{C}=frac{Q_{m}}{C} cos omega_{0} t]

Умножить на C и поделить на Uc.

В результате получим: [C=frac{Q_{m}}{U_{C}} cos omega_{0} t].

Электроемкость. Единицы электроемкости. Конденсаторы

Подробности
Обновлено 13.08.2018 18:28
Просмотров: 901

«Физика — 10 класс»

При каком условии можно накопить на проводниках большой электрический заряд?

При любом способе электризации тел — с помощью трения, электростатической машины, гальванического элемента и т. д. — первоначально нейтральные тела заряжаются вследствие того, что некоторая часть заряженных частиц переходит от одного тела к другому.
Обычно этими частицами являются электроны.

При электризации двух проводников, например от электростатической машины, один из них приобретает заряд +q, а другой -q.
Между проводниками появляется электрическое поле и возникает разность потенциалов (напряжение).
С увеличением заряда проводников электрическое поле между ними усиливается.

В сильном электрическом поле (при большом напряжении и соответственно при большой напряженности) диэлектрик (например, воздух) становится проводящим.
Возможен так называемый пробой диэлектрика: между проводниками проскакивает искра, и они разряжаются.
Чем меньше увеличивается напряжение между проводниками с увеличением их зарядов, тем больший заряд можно на них накопить.

Электроемкость.

Введем физическую величину, характеризующую способность двух проводников накапливать электрический заряд.
Эту величину называют электроемкостью.

Напряжение U между двумя проводниками пропорционально электрическим зарядам, которые находятся на проводниках (на одном +|q|, а на другом -|q|).
Действительно, если заряды удвоить, то напряженность электрического поля станет в 2 раза больше, следовательно, в 2 раза увеличится и работа, совершаемая полем при перемещении заряда, т. е. в 2 раза увеличится напряжение.

Поэтому отношение заряда q одного из проводников (на другом находится такой же по модулю заряд) к разности потенциалов между этим проводником и соседним не зависит от заряда.

Оно определяется геометрическими размерами проводников, их формой и взаимным расположением, а также электрическими свойствами окружающей среды.

Это позволяет ввести понятие электроемкости двух проводников.

Электроемкостью двух проводников называют отношение заряда одного из проводников к разности потенциалов между ними:

Электроёмкость уединённого проводника равна отношению заряда проводника к его потенциалу, если все другие проводники бесконечно удалены и потенциал бесконечно удалённой точки равен нулю.

Чем меньше напряжение U между проводниками при сообщении им зарядов +|q| и -|q|, тем больше электроемкость проводников.

На проводниках можно накопить большие заряды, не вызывая пробоя диэлектрика.
Но сама электроемкость не зависит ни от сообщенных проводникам зарядов, ни от возникающего между ними напряжения.

Единицы электроемкости.

Формула (14.22) позволяет ввести единицу электроемкости.

Электроемкость двух проводников численно равна единице, если при сообщении им зарядов +1 Кли -1 Клмежду ними возникает разность потенциалов 1 В.

Эту единицу называют фарад (Ф); 1 Ф = 1 Кл/В.

Из-за того что заряд в 1 Кл очень велик, емкость 1 Ф оказывается очень большой.
Поэтому на практике часто используют доли этой единицы: микрофарад (мкФ) — 10-6 Ф и пикофарад (пФ) — 10-12 Ф.

Важная характеристика проводников — электроемкость.
Электроемкость проводников тем больше, чем меньше разность потенциалов между ними при сообщении им зарядов противоположных знаков.

Конденсаторы.

Систему проводников очень большой электроемкости вы можете обнаружить в любом радиоприемнике или купить в магазине. Называется она конденсатором. Сейчас вы узнаете, как устроены подобные системы и от чего зависит их электроемкость.

Большой электроемкостью обладают системы из двух проводников, называемые конденсаторами. Конденсатор представляет собой два проводника, разделенные слоем диэлектрика, толщина которого мала по сравнению с размерами проводников. Проводники в этом случае называются обкладками конденсатора.

Простейший плоский конденсатор состоит из двух одинаковых параллельных пластин, находящихся на малом расстоянии друг от друга (рис.14.33).

Если заряды пластин одинаковы по модулю и противоположны по знаку, то силовые линии электрического поля начинаются на положительно заряженной обкладке конденсатора и оканчиваются на отрицательно заряженной (рис.14.28). Поэтому почти все электрическое поле сосредоточено внутри конденсатора и однородно.

Для зарядки конденсатора нужно присоединить его обкладки к полюсам источника напряжения, например к полюсам батареи аккумуляторов. Можно также первую обкладку соединить с полюсом батареи, у которой другой полюс заземлен, а вторую обкладку конденсатора заземлить. Тогда на заземленной обкладке останется заряд, противоположный по знаку и равный по модулю заряду незаземленной обкладки. Такой же по модулю заряд уйдет в землю.

Под зарядом конденсатора понимают абсолютное значение заряда одной из обкладок.

Электроемкость конденсатора определяется формулой (14.22).

Электрические поля окружающих тел почти не проникают внутрь конденсатора и не влияют на разность потенциалов между его обкладками. Поэтому электроемкость конденсатора практически не зависит от наличия вблизи него каких-либо других тел.

Электроемкость плоского конденсатора.

Геометрия плоского конденсатора полностью определяется площадью S его пластин и расстоянием d между ними. От этих величин и должна зависеть емкость плоского конденсатора.

Чем больше площадь пластин, тем больший заряд можно на них накопить: q~S. С другой стороны, напряжение между пластинами согласно формуле (14.21) пропорционально расстоянию d между ними. Поэтому емкость

Кроме того, емкость конденсатора зависит от свойств диэлектрика между пластинами. Так как диэлектрик ослабляет поле, то электроемкость при наличии диэлектрика увеличивается.

Проверим на опыте зависимости, полученные нами из рассуждений. Для этого возьмем конденсатор, у которого расстояние между пластинами можно изменять, и электрометр с заземленным корпусом (рис.14.34). Соединим корпус и стержень электрометра с пластинами конденсатора проводниками и зарядим конденсатор. Для этого нужно коснуться наэлектризованной палочкой пластины конденсатора, соединенной со стержнем. Электрометр покажет разность потенциалов между пластинами.

Раздвигая пластины, мы обнаружим увеличение разности потенциалов. Согласно определению электроемкости (см. формулу (14.22)) это указывает на ее уменьшение. В соответствии с зависимостью (14.23) электроемкость действительно должна уменьшаться с увеличением расстояния между пластинами.

Вставив между обкладками конденсатора пластину из диэлектрика, например из органического стекла, мы обнаружим уменьшение разности потенциалов. Следовательно, электроемкость плоского конденсатора в этом случае увеличивается. Расстояние между пластинами d может быть очень малым, а площадь S — большой. Поэтому при небольших размерах конденсатор может иметь большую электроемкость.

Для сравнения: в отсутствие диэлектрика между обкладками плоского конденсатора при электроемкости в 1 Ф и расстоянии между пластинами d = 1 мм он должен был бы иметь площадь пластин S = 100 км2.

Кроме того, ёмкость конденсатора зависит от свойств диэлектрика между пластинами. Так как диэлектрик ослабляет поле, то электроёмкость при наличии диэлектрика увеличивается: где ε — диэлектрическая проницаемость диэлектрика.

Последовательное и параллельное соединения конденсаторов. На практике конденсаторы часто соединяют различными способами. На рисунке 14.40 представлено последовательное соединение трёх конденсаторов.

Если точки 1 и 2 подключить к источнику напряжения, то на левую пластину конденсатора С1 перейдёт заряд +qy на правую пластину конденсатора СЗ — заряд -q. Вследствие электростатической индукции правая пластина конденсатора С1 будет иметь заряд -q, а так как пластины конденсаторов С1 и С2 соединены и до подключения напряжения были электро нейтральны, то по закону сохранения заряда на левой пластине конденсатора С2 появится заряд +q и т. д. На всех пластинах конденсаторов при таком соединении будет одинаковый по модулю заряд:

q = q1 = q2 = q3.

Определить эквивалентную электроёмкость — это значит определить электроёмкость такого конденсатора, который при той же разности потенциалов будет накапливать тот же заряд q, что и система конденсаторов.

Разность потенциалов φ1 — φ2 складывается из суммы разностей потенциалов между пластинами каждого из конденсаторов:

φ1 — φ2 = (φ1 — φA) + (φA — φB) + (φB — φ2),

или U = U1 + U2 + U3.

Воспользовавшись формулой (14.23), запишем:


На рисунке 14.41 представлена схема параллельно соединённых конденсаторов. Разность потенциалов между пластинами всех конденсаторов одинакова и равна:

φ1 — φ2 = U = U1 = U2 = U3.

Заряды на пластинах конденсаторов

q1 = C1U, q2 = C2U, q3 = C3U.

На эквивалентном конденсаторе ёмкостью Сэкв заряд на пластинах при той же разности потенциалов

q = q1 + q2 + q3.

Для электроёмкости, согласно формуле (14.23) запишем: CэквU = C1U + C2U + C3U, следовательно, Сэкв = C1+ С2 + С3, и в общем случае

Различные типы конденсаторов.

В зависимости от назначения конденсаторы имеют различное устройство. Обычный технический бумажный конденсатор состоит из двух полосок алюминиевой фольги, изолированных друг от друга и от металлического корпуса бумажными лентами, пропитанными парафином. Полоски и ленты туго свернуты в пакет небольшого размера.

В радиотехнике широко применяют конденсаторы переменной электроемкости (рис.14.35). Такой конденсатор состоит из двух систем металлических пластин, которые при вращении рукоятки могут входить одна в другую. При этом меняются площади перекрывающихся частей пластин и, следовательно, их электроемкость. Диэлектриком в таких конденсаторах служит воздух.

Значительного увеличения электроемкости за счет уменьшения расстояния между обкладками достигают в так называемых электролитических конденсаторах (рис.14.36). Диэлектриком в них служит очень тонкая пленка оксидов, покрывающих одну из обкладок (полосу фольги). Другой обкладкой служит бумага, пропитанная раствором специального вещества (электролита).

Конденсаторы позволяют накапливать электрический заряд. Электроемкость плоского конденсатора пропорциональна площади пластин и обратно пропорциональна расстоянию между пластинами. Кроме того, она зависит от свойств диэлектрика между обкладками.

Источник: «Физика — 10 класс», 2014, учебник Мякишев, Буховцев, Сотский

Электростатика — Физика, учебник для 10 класса — Класс!ная физика

Что такое электродинамика —
Электрический заряд и элементарные частицы. Закон сохранения заряд —
Закон Кулона. Единица электрического заряда —
Примеры решения задач по теме «Закон Кулона» —
Близкодействие и действие на расстоянии —
Электрическое поле —
Напряжённость электрического поля. Силовые линии —
Поле точечного заряда и заряженного шара. Принцип суперпозиции полей —
Примеры решения задач по теме «Напряжённость электрического поля. Принцип суперпозиции полей» —
Проводники в электростатическом поле —
Диэлектрики в электростатическом поле —
Потенциальная энергия заряженного тела в однородном электростатическом поле —
Потенциал электростатического поля и разность потенциалов —
Связь между напряжённостью электростатического поля и разностью потенциалов. Эквипотенциальные поверхности —
Примеры решения задач по теме «Потенциальная энергия электростатического поля. Разность потенциалов» —
Электроёмкость. Единицы электроёмкости. Конденсатор —
Энергия заряженного конденсатора. Применение конденсаторов —
Примеры решения задач по теме «Электроёмкость. Энергия заряженного конденсатора»

Понравилась статья? Поделить с друзьями:
  • Как найти некоторые программы
  • Как найти ускорение тела по графику ускорения
  • Как найди свою страницу в вк фейковую
  • Как исправить крону молодой яблони
  • Как найти свой синдром