Как найти емкость диода

Принято
говорить об общей емкости диода Сд ,
измеренной между выводами диода при
заданном напряжении смещения и частоте.
Общая емкость диода равна сумме барьерной
емкости С6 , диффузионной емкости Сдиф
и емкости корпуса прибора Ск.

Барьерная
(зарядная) емкость

обусловлена нескомпенсированным
объемным зарядом ионов примесей,
сосредоточенными по обе стороны от
границы р-n-перехода.

Модельным
аналогом барьерной емкости может
служить емкость плоского конденсатора,
обкладками которого являются р- и
n-области, а диэлектриком служит
р-n-переход, практически не имеющий
подвижных зарядов. Значение барьерной
емкости колеблется от десятков до сотен
пикофарад; изменение этой емкости при
изменении напряжения может достигать
десятикратной величины.

Выражение
для зависимости барьерной емкости от
напряжения на переходе имеет вид:


где
S-площадь
поперечного сечения перехода, С0-величина
барьерной емкости при нулевом напряжении
на переходе U=0.
U-обратное
напряжения на переходе.

Диффузионная
емкость
.
Изменение величины объемного заряда
неравновесных электронов и дырок,
вызванное изменением прямого тока,
можно рассматривать как следствие
наличия так называемой диффузионной
емкости, которая включена параллельно
барьерной емкости. Величина диффузионной
емкости пропорциональна прямому току
перехода:


rэф
эффективное время жизни неосновных
носителей.

Значения
диффузионной емкости могут иметь
порядок от сотен до тысяч пикофарад.
Поэтому при прямом напряжении емкость
р-n-перехода определяется преимущественно
диффузионной емкостью, а при обратном
напряжении —

барьерной
емкость

1 8. Устройство полупроводниковых диодов. Классификация диодов по частоте, мощности, по назначению.

Полупроводниковым
диодом

называют электропреобразовательный
прибор с одним (или несколькими)
выпрямляющим электрическим переходом
и двумя выводами для подключения к
внешней цепи. Принцип работы большинства
диодов основан на использовании
физических явлений в p-n-переходе.

В
зависимости от технологических
процессов, используемых при изготовлении
диодов, различают: сплавные, диффузионные,
планарно-эпитаксиальные диоды и их
разновидности. Устройство полупроводникового
диода, изготовленного по
планарно-эпитаксиальной технологии,
приведено на рис. 1.

Большинство
полупроводниковых диодов выполняют
на основе несимметричных p-n-переходов.
В качестве структурных элементов диодов
используют также p-n-,
n-p-переходы,
переходы металл-полупроводник, p+-p-,
p+-n-переходы, гетеропереходы. Вся
структура с электрическим переходом
заключается в металлический, стеклянный,
керамический или пластмассовый корпус
для исключения влияния окружающей
среды. Полупроводниковые диоды
изготовляются как в дискретном, так и
в интегральном исполнении. Основным
элементом полупроводникового диода
является р-n-переход, поэтому вольтамперная
характеристика реального диода близка
к вольтамперной характеристике
р-n-перехода.Параметры и режим работы
диода определяются его вольтамперной
характеристикой, иллюстрирующей
зависимость протекающего через диод
тока I от приложенного напряжения U.
Типовая вольтамперная характеристика
прибора.

Диоды
классифицируются:

по
назначению:
выпрямительные(предназначен
для преобразования переменного тока
в пульсирующий), импульсные(предназ.для
работы в импульсных и цифровых
устройствах), стабилитроны(предназ.
для стабилизации напряжения ), варикап
и т.д

по
диапазону
частот
:низко-
и высокочастотные,СВЧ

п

о
мощности
:
диоды малой мощности (Iпр. max ≤ 0,3 А),
средней мощности(0,3 А ≤ Iпр. max ≤ 10 А),
большой мощности (Iпр. max> 10 А).

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]

  • #
  • #
  • #
  • #
  • #
  • #
  • #
  • #
  • #
  • #
  • #

Диоды. For dummies

Все диоды можно разделить на две большие группы: полупроводниковые и неполупроводниковые. Здесь я буду рассматривать только первую из них.

В основе полупроводникового диода лежит такая известная штука, как p-n переход. Думаю, что большинству читателей о нем рассказывали на уроках физики в школе, а кому-то более подробно еще и в институте. Однако, на всякий случай приведу общий принцип его работы.

Два слова о зонной теории проводимости твердых тел

Прежде, чем начать разговор о p-n переходе, стоит обговорить некоторые теоретические моменты.

Считается, что электроны в атоме расположены на различном расстоянии от ядра. Соответственно, чем ближе электрон к ядру, тем сильнее связь между ними и тем большую энергию надо приложить, чтобы отправить его «в свободное плаванье». Говорят, что электроны расположены на различных энергетических уровнях. Заполнение этих уровней электронами происходит снизу вверх и на каждом из них может находиться не больше строго определенного числа электронов (атом Бора). Таким образом, если уровень заполнен, то новый электрон не может на него попасть, пока для него не освободится место. Чтобы электрон мог перейти на уровень выше, ему нужно сообщить дополнительную энергию. А если электрон «падает» вниз, то излишек энергии освобождается в виде излучения. Электроны могут занимать в атоме только сторого определенные орбиты с определенными энергиями. Орбиты эти называются разрешенными. Соответственно, запрещенными называют те орбиты (зоны), в которых электрон находиться не может. Подробнее об этом можно почитать по ссылке на атом Бора выше, здесь же примем это как аксиому.

Самый верхний энергетический уровень называется валентным. У большинства веществ он заполнен только частично, поэтому электроны внешних подуровней других атомов всегда могут найти на нем себе место. И они действительно хаотично мигрируют от атома к атому, осуществляя таким образом связь между ними. Нижний слой, в котором могут перемещаться свободные электроны, называют зоной проводимости. Если валентная зона частично заполнена и электроны в ней могут перемещаться от атома к атому, то она совпадает с зоной проводимости. Такая картина наблюдается у проводников. У полупроводников валентная зона заполнена целиком, но разница энергий между валентным и проводящим уровнями у них мала. Поэтому электроны могут преодолевать ее просто за счет теплового движения. А у изоляторов эта разница велика, и чтобы получить пробой, нужно приложить значительную энергию.

Такова общая картина энергетического строения атома. Можно переходить непосредственно к p-n переходу.

p-n переход

Начнем с того, что полупроводники бывают n-типа и p-типа. Первые получают легированием четырехвалентного полупроводника (чаще всего кремния) пятивалентным полупроводником (например, мышьяком). Эту пятивалентную примесь называют донором. Ее атомы образуют четыре химических связи с атомами кремния, а пятый валентный электрон остается свободным и может выйти из валентной зоны в зону проводимости, если, например, незначительно повысить температуру вещества. Таким образом, в проводнике n-типа возникает избыток электронов.

Полупроводники p-типа тоже получаются путем легирования кремния, но уже трехвалентной примесью (например, бором). Эта примесь носит название акцептора. Он может образовывать только три из четырех возможных химических связей. А оставшуюся незаполненной валентную связь принято называть дыркой. Т.е. дырка — это не реальная частица, а абстракция, принятая для более удобного описания процессов, происходящих в полупроводнике. Ее заряд полагают положительным и равным заряду электрона. Итак, в полупроводнике p-типа у нас получается избыток положительных зарядов.

В полупроводниках обоих типов кроме основных носителей заряда (электроны для n-типа, дырки для p-типа) в наибольшом количестве присутствуют неосновные носители заряда: дырки для n-области и электроны для p-области.

Если расположить рядом p- и n-полупроводники, то на границе между ними возникнет диффузный ток. Произойдет это потому, что с одной стороны у нас чересчур много отрицательных зарядов (электронов), а с другой — положительных (дырок). Соответственно, электроны будут перетекать в приграничную область p-полупроводника. А поскольку дырка — место отсутствия электрона, то возникнет ощущение, будто дырки перемещаются в противоположную сторону — к границе n-полупроводника. Попадая в p- и n-области, электроны и дырки рекомбинируют, что приводит к снижению количества подвижных носителей заряда. На этом фоне становятся ясно видны неподвижные положительно и отрицательно заряженные ионы на границах полупроводников (от которых «ушли» рекомбинировавшие дырки и электроны). В итоге получим две узкие заряженные области на границе веществ. Это и есть p-n переход, который также называют обедненным слоем из-за малой концентрации в нем подвижных носителей заряда. Естественно, что здесь возникнет электрическое поле, направление которого препятствует дальнейшей диффузии электронов и дырок. Возникает потенциальный барьер, преодолеть который основные носители заряда смогут только обладая достаточной для этого энергией. А вот неосновным носителям возникшее электрическое поле наоборот помогает. Соответственно, через переход потечет ток, в противоположном диффузному направлении. Этот ток называют дрейфовым. При отсутствии внешнего воздействия диффузный и дрейфовый ток уравновешивают друг друга и перетекание зарядов прекращается.

Ширина обедненной области и контактная разность потенциалов границ перехода (потенциальный барьер) являются важными характеристиками p-n перехода.

Если приложить внешнее напряжение так, чтобы его электрическое поле «поддерживало» диффузный ток, то произойдет снижение потенциального барьера и сужение обедненной области. Соответственно, ток будет легче течь через переход. Такое подключение внешнего напряжения называют прямым смещением.

Но можно подключиться и наоборот, чтобы внешнее электрическое поле поддерживало дрейфовый ток. Однако, в этом случае ширина обедненной зоны увеличится, а потенциальный барьер возрастет. Переход «закроется». Такое подключение называют обратным смещением. Если величина приложенного напряжения превысит некоторое предельное значение, то произойдет пробой перехода, и через него потечет ток (электроны разгонятся до такой степени, что смогут проскочить через потенциальный барьер). Эта граничная величина называется напряжением пробоя.

Все, конец теории, пора перейти к ее практическому применению.

Диоды, наконец-то

image
Диод, по сути, одиночный p-n переход. Если он подключен с прямым смещением, то ток через него течет, а если с обратным — не течет (на самом деле, небольшой дрейфовый ток все равно остается, но этим можно пренебречь). Этот принцип показан в условном обозначении диода: если ток направлен по стрелке треугольника, то ему ничего не мешает, а если наоборот — то он «натыкается» на вертикальную линию. Эта вертикальная линия на диодах-радиоэлементах обозначается широкой полосой у края.

Помню, когда я была глупой студенткой и впервые пришла работать в цех набивки печатных плат, то сначала ставила диоды как бог на душу положит. Только потом я узнала, что правильное расположение этого элемента играет весьма и весьма значительную роль. Но это так, лирическое отступление.

Диоды имеют нелинейную вольт-амперную характеристику.

Области применения диодов

  1. Выпрямление пременного тока. Основано оно именно на свойстве диода «запираться» при обратном смещении. Диод как бы «срезает» отрицательные полуволны.
  2. В качестве переменной емкости. Эти диоды называются варикапами.
    image
    Здесь используется зависимость барьерной емкости перехода от обратного смещения. Чем больше его значение, тем шире обедненная область p-n перехода. Ее можно представить себе как плоский конденсатор, обкладками которого явялются границы области, а сама она выступает в качестве диэлектрика. Соответственно, чем толще «слой диэлеткрика», тем ниже барьерная емкость. Следовательно, изменяя приложенное напряжение можно электрически менять емкость варикапа.
  3. Для стабилизации напряжения. Принцип работы таких диодов заключается в том, что даже при значительном увеличении внешнего падения напряжения, падение напряжения на диоде увеличится незначительно. Это справедливо и для прямого, и для обратного смещений. Однако напряжение пробоя при обратном смещении намного выше, чем прямое напряжение диода. Таким образом, если нужно поддерживать стабильным большое напряжение, то диод лучше включать обратно. А чтобы он сохранял работоспособность, несмотря на пробой, нужно использовать диод особого типа — стабилитрон.
    image
    В прямосмещенном режиме он будет работать подобно обычному выпрямляющему диоду. А вот в обратносмещенном не будет проводить ток до тех пор, пока приложенное напряжение не достигнет так называемого напряжения стабилитрона, при котором диод сможет проводить значительный ток, а напряжение будет ограничено уровнем напряжения стабилитрона.
  4. В качестве «ключа» (коммутирующего устройства). Такие диоды должны уметь очень быстро открываться и закрываться в зависимости от приложенного напряжения.
  5. В качестве детекторов излучения (фотодиоды).
    image
    Кванты света передают атомам в n-области дополнительную энергию, что приводит к появлению большого числа новых пар электрон-дырка. Когда они доходят до p-n перехода, то дырки уходят в p-область, а электроны скапливаются у края перехода. Таким образом, происходит возрастание дрейфового тока, а между p- и n-областями возникает разность потенциалов, называемая фотоЭДС. Величина ее тем больше, чем больше световой поток.
  6. Для создания оптического излучения (светодиоды).
    image
    При рекомбинации дырок и электронов (прямое смещение) происходит переход последних на более низкий энергетический уровень. «Излишек» энергии выделяется в виде кванта энергии. И в зависимости от химического состава и свойств того или иного полупроводника, он излучает волны того или иного диапазона. От состава же зависит и эффективность излучения.

Немного экзотики

Не стоит забывать о том, что p-n переход — одно из явлений микромира, где правит балом квантовая физика и становятся возможными странные вещи. Например, туннельный эффект — когда частица может пройти через потенциальный барьер, обладая меньшей энергией. Это становится возможным благодаря неопределенности соотношения между импульсом и координатами частицы (привет, Гейзенберг!). Этот эффект лежит в основе туннельных диодов.
image
Чтобы обеспечить возможность «просачивания» зарядов, их делают из вырожденных полупроводников (содержащих высокую концентрацию примесей). В результате получают резкий p-n переход с тонким запирающим слоем. Такие диоды маломощные и низкоинерционные, поэтому их можно применять в СВЧ-диапазоне.

Есть еще одна необычная разновидность полупроводниковых диодов — диоды Шоттки.
image
В них используется не традиционный p-n переход, а переход металл-полупроводник в качестве барьера Шоттки. Барьер этот возникает в том случае, когда разнятся величины работы выхода электронов из металла и полупроводника. Если n-полупроводник имеет работу выхода меньше, чем контактирующий с ним металл, то приграничный слой металла будет заряжен отрицательно, а полупроводника — положительно (электронам проще перейти из полупроводника в металл, чем наоборот). Если же у нас контакт металл/p-полупроводник, причем работа выхода для второго выше, чем для первого, то получим положительно заряженный приграничный слой металла и отрицательно заряженный слой полупроводника. В любом случае, у нас возникнет разность потенциалов, с помощью которой работы выхода из обоих контактирующих веществ сравняются. Это приведет к возникновению равновесного состояния и формированию потенциального барьера между металлом и полупроводником. И так же, как и в случае p-n перехода, к переходу металл/полупроводник можно прикладывать прямое и обратное смещение с аналогичным результатом.

Диоды Шоттки отличаются от p-n собратьев низким падением напряжения при прямом включении и меньшей электрической емкостью перехода. Таким образом, повышается их рабочая частота и понижается уровень помех.

Заключение

Само собой, здесь рассмотрены далеко не все существующие виды диодов. Но надеюсь, что по написанному выше можно составить достаточно полное суждение об этих электронных компонетах.

Диод. Часть 2. Немного о конструкции и принципах

▌Конструкция
Диод делают из полупроводников. Вообще, изначально, полупроводниковые материалы, такие как кремний или германий ток проводят довольно хреново. У них электроны крепко держатся двумя молекулами сразу и требуется довольно большая энергия чтобы их вырвать.

Если полупроводник нагреть, облучить, подать высокое напряжение, чтобы образовалось мощное поле, которое потащит электроны, то из кристаллической решетки будет вырван электрон и будет он болтаться свободно среди молекул.
А там где он был, образуется дырка. Дырка означает не скомпенсированную электроном связь, положительно заряженную область. Сдернуть электрон из ближайшего атома в соседнюю дырку куда проще, чем просто вырвать его из решетки. При этом дырка будет уже у соседнего атома, ведь электрон то надо откуда то вырвать.

По сути, дырку можно считать положительно заряженной частицей. Потому как под действием поля дырки также мотает по всему кристаллу как и электроны. Хотя они и менее подвижные, т.к. на перемещение дырки надо больше энергии чем на перемещение электрона.

Ну вот, есть у нас такой прикольный материал у которого сопротивление зависит от приложенной к нему энергии. И что дальше?

А самое веселое начинается когда в полупроводник добавляют примеси за счет которых можно либо добавить дырок, либо свободных электронов. Накидав в кристаллическую решетку атомов с тремя или с пятью свободными электронами соответственно.

Получаются проводники p и n типа. В p — есть лишние дырки (positive), а в n — лишние электроны (negative).

Осталось только слепить два таких разнопроводимых кристалла вместе, чтобы получился pn переход. И мы получили диод. Суть в чем:

Когда ток подается вот так:

Т.е. к p-кристаллу мы подаем положительный потенциал, а на n-кристалл отрицательный, то дырки и электроны поведут себя как и подобает приличным электрическим зарядам — отталкиваясь от себе подобных и притягивясь к противоположности.

В p-кристалле электроны неудержимо потянет в плюсовой провод, следовательно дырки ломанутся в центр.
А в n-кристалле электроны из минусового провода, от источника питания, ломанутся к плюсу, тоже в центр. В центре электроны из n-кристалла запрыгнут в дырки p-кристалла и поскачут дальше к минусу (это называется рекомбинация). Т.е. через диод пойдет ток. И чем больше напряжение, тем больше дырок будет сдвигать и больше будет ток. Причем зависимость эта будет не линейная, а скорей параболическая.

Окей. С этим все понятно. Берем и меняем полярность. Что произойдет? А все то же самое, только направление движения зарядов изменится.

В p-кристалле электроны побегут в центр, значит дырки утащит к минусовому проводу, где они и останутся зиять, т.к. в металле проводника пути для них нет.

А в n-кристалле усосет все свободные электроны в источник питания. И тоже останется пустота. А, как я уже говорил, полупроводник в котором нет свободных зарядов, это хреновый проводник. Почти диэлектрик. И вот, собственно, на этом месте диод и перестает проводить ток в обратном направлении.

▌Фотодиод
Но при этом свойства полупроводника в зоне откуда убежали все свободные заряды никуда не деваются. Если полупроводник облучить, то в нем таки возникнут свободные заряды и он будет проводить ток. Так работает, например, фотодиод. Помните его схему включения?

Вот диод стоит себе в обратном направлении, сопротивление у него огромное, намного больше подтягивающего резистора и на ноге при этом возникает положительный потенциал от подтяжки. Но стоит ему засветить, как его тотчас прорывает за счет того, что его кристалл чувствителен к свету и свет из него легко выбивает заряды. Но, на самом деле, у фотодиода характеристика ВАХ еще более интересна:

Если рассмотреть его поквадрантно. То на нулевом освещении (самый верхний график) он ведет себя почти как обычный диод. Чуток травит назад, совсем мало. А прямая проводимость по той же параболе. А вот при увеличении освещения начинается самое интересное. Ну, во первых, у него резко возрастает обратный ток. Чем ярче на него светим, тем сильней. Но самое интересное это квадрант D. Если посмотреть на график, то при прямом напряжении мы имеем… обратный ток.

Т.е. фотодиод является источником энергии. Генерирует обратный ток и до поры до времени сопротивляется внешнему источнику питания. В конце концов, тот конечно его перебарывает и график уходит в квадрант А.

▌Стабилитрон
Или вот, например, стабилитрон. Тоже девайс работает в обратку. Тоже, по сути, вполне себе добропорядочный диод.

Стоит себе не пропускает, ну кроме тех случаев, когда поле (А напряженность поля напрямую зависит от напряжения. Ваш К.О.) оказывается столь сильно, что вырывает из полупроводника заряды сами по себе. И тогда он начинает подтравливать ток. Но только до тех пор, пока напряжение на нем не снизится до некого предельного уровня. Уровень этот и определяет напряжение которое стабилитрон будет стабилизировать. Причем чем больше напряжение, тем больший ток через него будет стравливаться, стараясь это напряжение удержать.

Примерно как клапан ограничения давления на паровом котле. Стоит там пружина с уставкой на давление в 5 очков, и все что выше 5 очков травит наружу.

То есть любой диод может пробивать в обратном направлении, при превышении определенного потенциала. И этот пробой является обратимым. При условии что ток при нем не был настолько большим, чтобы выделить тепло достаточное для уничтожения кристалла. Поэтому на стабилитроне и нужен резистор.

А то слишком большой ток через него потечет и он сдохнет, а так получается своего рода делитель напряжения, в котором нижнее плечо автоматом подстраивается так, чтобы на выходе было напряжение на которое заточен стабилитрон.

▌Емкость диода
Вообще, если рассматривать диод более детально, то у него есть емкость (хотя чего это я, у всего в мире есть емкость, даже у индуктивности 😉 ) и более приближенная к реальности схема диода выглядит так:

Но тут есть один нюанс. У этой емкости две природы. Когда диод пропускает в одну сторону, то у него заряжается диффузионная емкость. Т.е. кристаллы диода насыщается неосновыми зарядами. Что значит неосновными?

А то, что в p-кристалле, где должно быть, по идее, полно дырок (основных зарядов), при протекании тока от души набивается хренова куча электронов, забивает все излишние дырки, да еще сверху насыпает с горкой.

В противовес, в n-кристалле, мало того, что все электроны лишние (основной заряд) усасывает полем, так еще и дополнительно вырывает из решетки, образуя дырки (неосновной заряд).

И когда напряжение резко меняют на обратное, диод то может и закроется мгновенно, но вот из насыщенных неосновными зарядами областей пока утащит все лишние электроны и дырки, которых там не должно быть, пройдет какое то время, а эти самые неосновные заряды при исходе образуют импульс обратного тока. Короткий, конечно, как иголочка.

Но если у вас частота высокая, то эти короткие импульсы вам могут помех натворить, потребление увеличить, пробить что-нибудь не то и так далее. Диффузионная емкость зависит от прямого тока. Чем больше прямой ток, тем больше неосновных зарядов насуёт в кристаллы.

Небольшое плато — это время на то, пока растащит заряды в области pn перехода. Собственно, время закрытия самого перехода. А вот потом уже идет обычный такой разряд конденсатора — это растаскивает неосновные заряды из основного тела полупроводника. И чем это тело больше, тем дольше их будет оттуда растаскивать.

А когда диод включен обратно, то возникает барьерная емкость.

Если внимательно посмотреть на обратно смещенный диод, на что это похоже?

Два проводника, между ними диэлектрик… Правильно, на конденсатор. Ну и хрен что диэлектрик у этого конденсатора это полупроводник. При определенных условиях он же диэлектрик? Диэлектрик. Значит работать будет.

А еще расстояние между проводящими областями зависит от электрического поля. Подали посильней обратное смещение — дырки и электроны вжались в края — диэлектрический слой увеличился, ослабил поле — уменьшился. А от толщины диэлектрика напрямую зависит емкость этого импровизированного конденсатора. Т.е. барьерная емкость зависит от приложенного обратного напряжения.

Ну и обе емкости зависят от конструктива. Раньше, в советской литературе, было даже четкое деление на плоскостный и точечный диод. Т.е. у плоскостного pn переход был в виде двух плоских областей, способных пропустить через себя большой ток, но обладающих большой емкостью. А у точечного диода переход представлял собой подпружиненную иголочку с покрытием, упирающуюся в кристалл полупроводника. Площадь контакта мала, емкость мала, ток тоже мизерный.

Сейчас я такого деления как то не встречаю. Видать в западной классификации диоды по конструктиву не делят.

▌Варикап
Способность диода образовывать барьерную емкость при обратном смещении и послужило идеей для варикапа. Осталось только сделать такой диод, для которого барьерная емкость была бы максимально стабильной, не зависящей от разных там погодных условий и вуаля.

Т.е. даем отрицательное постоянное смещение, а поверх него переменный сигнал, то меняя смещение можно менять емкостное сопротивление этого конденсатора для этого переменного сигнала. Такую емкость зовут барьерной. Т.к. ее величина зависит от ширины потенциального барьера.

А как это применить тут можно многое придумать. Первое что приходит в голову разные электрически управляемые фильтры или колебательные контура. Вроде такого:

▌Шоттки
Отдельно хочу сказать о диоде Шоттки. Диод Шоттки использует не pn переход двух полупроводников. А переход полупроводник-металл. Получается примерно то же самое, но с рядом особенностей, как то:

  • Пониженное падение напряжения. Около 0.2 вольт, в отличии от типичных 0.7 вольт для простого диода.
  • Очень низкое время обратного восстановления. Так как в нем в разы меньше скапливаются неосновные заряды, а значит диффузионная емкость очень мала.

Минусы тоже значительные.

  • Самый главый минус в том, что у них намного ниже обратное напряжение чем у обычных pn диодов.
  • Также есть повышенный обратный ток. Если диод запирается в обратку почти наглухо, то тут ниппель чутка сифонит и чем выше температура, тем больше. Может до единиц, а то и десяток миллиампер (!) доходить. Особенно на мощных диодах с прямыми токами в десятки ампер.
  • А еще их обратный пробой не является обратимым. Пробило значит пробило. В помойку, без вариантов.

Вот как то так. Кратенько и по самым основам. Как раз под окончание сессии у студентов 😉

Спасибо. Вы потрясающие! Всего за месяц мы собрали нужную сумму в 500000 на хоккейную коробку для детского дома Аистенок. Из которых 125000+ было от вас, читателей EasyElectronics. Были даже переводы на 25000+ и просто поток платежей на 251 рубль. Это невероятно круто. Сейчас идет заключение договора и подготовка к строительству!

А я встрял на три года, как минимум, ежемесячной пахоты над статьями :)))))))))))) Спасибо вам за такой мощный пинок.

Емкость диода на что влияет

Ольга Александровна Косарева

Шпаргалка по общей электротехники и электроники

1. ИСТОРИЯ ЭЛЕКТРОНИКИ

Фундамент для возникновения и развития электроники был заложен работами физиков в XVIII и XIX вв. Первые в мире исследования электрических разрядов в воздухе были осуществлены в XVIII в. в России академиками Ломоносовым и Рихманом и независимо от них американским ученым Франклином. Важным событием явилось открытие электрической дуги академиком Петровым в 1802 г. Исследования процессов прохождения электрического тока в разреженных газах проводили в прошлом веке в Англии Крукс, Томсон, Тоунсенд, Астон, в Германии Гейслер, Гитторф, Плюккер и др. В 1873 г. Лодыгин изобрел первый в мире электровакуумный прибор – лампу накаливания. Независимо от него несколько позже такую же лампу создал и усовершенствовал американский изобретатель Эдисон. Электрическая дуга впервые была применена для целей освещения Яблочковым в 1876 г. В 1887 г. немецкий физик Герц открыл фотоэлектрический эффект.

Термоэлектронная эмиссии была открыта в 1884 г. Эдисоном. В 1901 г. Ричардсон провел детальное исследование термоэлектронной эмиссии. Первая электронно-лучевая трубка с холодным катодом была создана в 1897 г. Брауном (Германия). Использование электронных приборов в радиотехнике началось с того, что в 1904 г. английский ученый Флеминг применил двухэлектродную лампу с накаленным катодом для выпрямления высокочастотных колебаний в радиоприемнике. В 1907 г. американский инженер Ли-де-Форест ввел в лампу управления сетку, т. е. создал первый триод. В том же году профессор Петербургского технологического института Розинг предложил применить электронно-лучевую трубку для приема телевизионных изображений и в последующие годы осуществил экспериментальное подтверждение своих идей. В 1909-191 1 гг. в России Коваленков создал первые триоды для усиления дальней телефонной связи. Важное значение имело изобретение подогревного катода Чернышевым в 1921 г. В 1926 г. Хелл в США усовершенствовал лампы с экранирующей сеткой, а в 1930 г. он предложил пентод, ставший одной из наиболее распространенных ламп. В 1930 г. Кубецкий изобрел фотоэлектронные умножители, в конструкции которых значительный вклад внесли Векшин-ский и Тимофеев. Первое предложение о специальных передающих телевизионных трубках сделали независимо друг от друга в 1930–1931 гг. Константинов и Катаев. Подобные же трубки, названные иконоскопами, построил в США Зворыкин.

Изобретение таких трубок открыло новые широкие возможности для развития телевидения. Несколько позднее в 1933 г. Шмаков и Тимофеев предложили новые более чувствительные передающие трубки (супериконоскопы или суперэмитроны), позволившие вести телевизионные передачи без сильного искусственного освещения. Русский радиофизик Рожановский в 1932 г. предложил создать новые приборы с модуляцией электронного потока по скорости. По его идеям Арсеньева и Хейль в 1939 г. построили первые такие приборы для усиления и генерации колебаний СВЧ, названные пролетными клистронами. В 1940 г. Коваленко изобрел более простой отражательный клистрон, который широко используется для генерирования колебаний СВЧ.

Большое значение для техники дециметровых волн имели работы Девяткова, Данильцева, Хохлова и Гуревича, которые в 1938–1941 гг. сконструировали специальные триоды с плосковыми дисковыми электродами. По этому принципу в Германии были выпущены металлокерамические и в США ма-ячковые лампы.

2. ПОЛУПРОВОДНИКОВЫЕ ПРИБОРЫ

По сравнению с электронными лампами у полупроводниковых приборов имеются существенные достоинства:

1) малый вес и малые размеры;

2) отсутствие затрат энергии на накал;

3) более высокая надежность в работе и большой срок службы (до десятка тысяч часов);

4) большая механическая прочность (стойкость к тряске, ударам и другим видам механических перегрузок);

5) различные устройства (выпрямители, усилители, генераторы) с полупроводниковыми приборами имеют высокий КПД, так как потери энергии в самих приборах незначительны;

6) маломощные устройства с транзисторами могут работать при очень низких питающих напряжениях;

7) принципы устройства и работы полупроводниковых приборов использованы для создания нового важного направления развития электроники – полупроводниковой микроэлектроники.

Вместе с тем полупроводниковые приборы в настоящее время обладают следующими недостатками:

1) параметры и характеристики отдельных экземпляров приборов данного типа имеют значительный разброс;

2) свойства и параметры приборов сильно зависят от температуры;

3) наблюдается изменение свойств приборов с течением времени (старение);

4) их собственные шумы в ряде случаев больше, нежели у электронных приборов;

5) большинство типов транзисторов непригодно для работы на частотах выше десятков мегагерц;

6) входное сопротивление у большинства транзисторов значительно меньше, чем у электронных ламп;

7) транзисторы пока еще не изготавливают для таких больших мощностей, как электровакуумные приборы;

8) работа большинства полупроводниковых приборов резко ухудшается под действием радиоактивного излучения.

Транзисторы успешно применяются в усилителях, приемниках, передатчиках, генераторах, телевизорах, измерительных приборах, импульсных схемах, электронных счетных машинах и др. Использование полупроводниковых приборов дает огромную экономию в расходовании электрической энергии источников питания и позволяет во много раз уменьшить размеры аппаратуры.

Ведутся исследования по улучшению полупроводниковых приборов по применению для них новых материалов. Созданы полупроводниковые выпрямители на токи в тысячи ампер. Применение кремния вместо германия позволяет эксплуатировать приборы при температуре до 125″ С и выше. Созданы транзисторы для частот до сотен мегагерц и более, а также новые типы полупроводниковых приборов для сверхвысоких частот. Замена электронных ламп полупроводниковыми приборами успешно осуществлена во многих радиотехнических устройствах. Промышленность выпускает большое количество полупроводниковых диодов и транзисторов различных типов.

3. ДВИЖЕНИЕ ЭЛЕКТРОНОВ В ОДНОРОДНОМ ЭЛЕКТРИЧЕСКОМ ПОЛЕ

Взаимодействие электронов с электрическим полем является основным процессом в электровакуумных и полупроводниковых приборах.

Электрон является частицей материи с отрицательным электрическим зарядом, у которого абсолютное значение e = 1,610 -19 Кл. Масса неподвижного электрона равна m = 9,110 -28 г. С возрастанием скорости движения масса электронов увеличивается. теоретически при скорости движения, равной с = 3·10 8 м/с, масса электрона должна стать бесконечно большой. В обычных электровакуумных приборах скорость электронов не превышает 0,1с. При этом условии можно считать массу электрона постоянной, равной т.

Если разность потенциалов между электродами U, а расстояние между ними d, то напряженность поля равна: Е= U/d. Для однородного электрического поля величина Е является постоянной.

Пусть из электрода, имеющего более низкий потенциал, например из катода, вылетает электрон с кинетической энергией W0 и начальной скоростью v0, направленной вдоль силовых линий поля. Поле действует на электрон и ускоряет его движение к электроду, имеющему более высокий потенциал, например к аноду. То есть электрон притягивается к электроду с более высоким потенциалом. В данном случае поле называется ускоряющим.

В ускоряющем поле происходит увеличение кинетической энергии электрона за счет работы поля по перемещению электрона. В соответствии с законом сохранения энергии увеличение кинетической энергии электрона W-W0 равно работе поля, которая определяется произведением перемещаемого заряда е на пройденную им разность потенциалов U: W-W! = mv 2 /2 – mv 2 0/2 = eU. Если начальная скорость электрона равна нулю, то W0 = mv 2 0/2 = 0 и W=mv 2 /2 = eU, т. е. кинетическая энергия электрона равна работе поля. Скорость электрона в ускоряющем поле зависит от пройденной разности по’тенциалов.

Журнал РАДИОЛОЦМАН, февраль 2016

Glen Chenier

EDN

Выбираем источники питания MEAN WELL в открытом исполнении для промышленных устройств

На днях Линда из отдела снабжения зашла ко мне с проблемой: Лу из конструкторского отдела попросил ее найти замену для диода, сгоревшего в импульсном источнике питания. Чертова штука была маркирована странным номером, расшифровать который не помогло никакое гугление.

На корпусе был узнаваемый логотип изготовителя, но запросить у него справочные данные не представлялось возможным – маркировка типа осталась от давно проданной компании и в последующем никем не использовалась. Оставалось попытаться решить проблему самостоятельно.

По счастью в ЗиПе имелась вторая идентичная деталь, и Лу смог предоставить мне исправный диод того же типа. Теперь мне лишь оставалось выяснить, что же это такое. Обычный выпрямительный диод? Стабилитрон? Диод Шоттки? Какое обратное пробивное напряжение? Емкость перехода? Время восстановления?

Из размеров корпуса DO-41 несложно было заключить, что допустимая мощность составляет один ватт. Не составляло также труда пропустить различные токи и измерить прямое падение напряжения, чтобы убедиться, что это не диод Шоттки. Соединив последовательно несколько источников питания и постепенно увеличивая обратное напряжение (с токоограничительным резистором соответствующего сопротивления на случай достижения пробивного напряжения стабилитрона), я убедился, что это не стабилитрон – по крайней мере, в пределах испытательного напряжения 200 В.

Задача оценки требуемого максимально допустимого обратного напряжения могла быть решена путем первоначальной замены в схеме источника питания проверяемого прибора высоковольтным диодом и последующим измерением падающего на нем напряжения.

Таким образом, неизвестными остаются только емкость перехода CJ и время восстановления обратного сопротивления TRR. Это время, в течение которого диод остается в проводящем состоянии после резкой смены прямого напряжения на обратное. Я должен был найти способ измерения этих параметров. И без какого-либо экзотического оборудования, лишь с тем, что необходимо для грубой оценки, другими словами, все, с чем я должен был работать – это функциональный генератор с временем спада 40 нс и 100-мегагерцовый осциллограф.

Простой способ измерения емкости и времени обратного восстановления диода

Измерительная установка была очень простой. На проверяемый диод подавались 5-вольтовые импульсы с таким постоянным смещением, чтобы диод открывался только на время положительных пиков импульсов. Осциллограф, подключенный к обоим выводам диода, синхронизировался отрицательным фронтом импульса генератора. Меняя постоянное напряжение смещения, можно было управлять прямым напряжением и током проводимости диода. Ток проводимости исследуемого диода измерялся по падению напряжения на последовательном сопротивлении 50 Ом.

Первые, что требовалось сделать – оценить работоспособность измерительной установки. Насколько адекватно эти доморощенные испытания отражают реальные характеристики диодов? Это было проверено путем измерений нескольких диодов с известными параметрами и сравнения результатов с информацией из технической документации. Я протестировал следующие диоды, и нашел результаты весьма интересными:

  1. 1N4002 – используемый в повседневной практике стандартный выпрямитель с указанным значением CJ = 15 пФ и неизвестным TRR;
  2. 1N4148 – быстродействующий переключающий диод с указанными значениями CJ = 4 пФ и TRR = 8 нс;
  3. MUR880 – сильноточный выпрямительный диод с быстрым восстановлением и указанными значениями CJ = 300 пФ и TRR = 200 нс;
  4. Загадочный объект.

Для удобства сравнения масштаб по оси времени для всех осциллограмм выбран одинаковым и равным 100 нс/дел.

Простой способ измерения емкости и времени обратного восстановления диода
Начав с диода 1N4002, постоянное смещение генератора импульсов
было установлено таким, чтобы вершина импульса находилась на
уровне 0 В, на два деления ниже верха экрана, а спад импульса происходил
до уровня –5 В. Исследуемый диод не переходил в проводящее состояние,
а очень незначительный отрицательный ток (синяя осциллограмма)
обусловлен небольшой емкостью CJ.
 
Простой способ измерения емкости и времени обратного восстановления диода
Для получения эталонных данных параллельно проверяемому диоду
временно был подключен конденсатор емкостью 120 пФ, удаленный
при выполнении последующих измерений. Ток на синей осциллограмме
связанный, только с этой емкостью, следует отличать
от обратного тока.
 
Простой способ измерения емкости и времени обратного восстановления диода
Установленное постоянное смещение генератора импульсов
на 400 мВ превышало напряжение начала включения
исследуемого диода. Высокий уровень сигнала в левой части
желтой осциллограммы отображает прямое смещение 400 мВ.
Большой скачок напряжения порождает незначительный
обратный ток.
 
Простой способ измерения емкости и времени обратного восстановления диода
Постоянное прямое смещение, увеличенное на 100 мВ для лучшего
открывания диода, стало равным 500 мВ. Обратный ток 2 В/50 Ом = 40 мА
сохраняется в течение примерно 100 нс.
 
Простой способ измерения емкости и времени обратного восстановления диода
Прямое смещение увеличено еще на 100 мВ, и теперь равно 600 мВ.
Обратный ток вырос до 60 мА, а время восстановления
стало весьма значительным.
 
Простой способ измерения емкости и времени обратного восстановления диода
После очередного приращения на 100 мВ смещение достигло 700 мВ,
а прямой ток – 16 мА. Хорошо видно, что чем сильнее открывается
диод, тем больше время восстановления его обратного сопротивления.
Как видно из осциллограммы выше, до начала закрывания проверяемый
диод находится в состоянии проводимости в течение приблизительно
1200 нс при напряжении на переходе порядка 600 мВ.

Это наглядно демонстрирует, насколько хорошо стандартный выпрямительный диод подходит для частоты 50 или 60 Гц, где постепенное плавное изменение обратного смещения происходит за время, намного превышающее TRR. Но вы можете видеть, что в режиме резких переключений диод становится виртуальным коротким замыканием на значительную часть периода. Нехорошо.

Теперь давайте, сравним предыдущие результаты с диодом 1N4148.

Простой способ измерения емкости и времени обратного восстановления диода
Для уверенного открывания диода 1N4148 постоянное смещение
установлено равным 800 мВ; протекающий при этом прямой ток
равен 20 мА. При такой скорости нарастания входного импульса
время восстановления обратного сопротивления слишком мало
для того, чтобы его можно было измерить с помощью осциллографа.
 
Простой способ измерения емкости и времени обратного восстановления диода
Постоянное смещение и амплитуда импульса установлены такими,
чтобы через открытый 1N4148 протекал ток, предельный для
используемого генератора. 50-омный согласующий резистор на входе
испытываемого диода был на время удален, чтобы получить
максимальный прямой ток 100 мА, однако даже при таких условиях
обратный ток был настолько мал, что измерить его не представлялось
возможным. Обратите внимание, что для этой осциллограммы масштаб
по вертикали был временно изменен на 5 В/дел.

Далее переходим к MUR880.

Простой способ измерения емкости и времени обратного восстановления диода
Диод MUR880 при прямом напряжении 0 В. Основываясь на измерениях,
сделанных выше для конденсатора 120 пФ, емкость CJ можно оценить
величиной порядка 100 пФ – лучше указанного в справочных
данных значения 300 пФ.
 
Простой способ измерения емкости и времени обратного восстановления диода
MUR880 при прямом напряжении 600 мВ и прямом токе 20 мА. Время TRR
приблизительно равно 200 нс, как и указано в справочных данных.
 
Простой способ измерения емкости и времени обратного восстановления диода
MUR880, как и в предыдущем испытании, питается максимально
допустимым током генератора. Прямой и обратный токи одинаковы
и равны 100 мА. Масштаб по вертикали временно был изменен на 5 В/дел.
Как и ожидалось, время восстановления обратного сопротивления
по-прежнему равно 200 нс.

Небольшое время TRR делает диод пригодным для использования в сильноточных переключающих схемах, но даже при этом одним из факторов, ограничивающих рабочую частоту, будет то, как быстро диод выходит из состояния проводимости. Обойти это ограничение можно заменой диодов синхронно управляемыми МОП-транзисторами.

И, наконец, мы возьмем неизвестный диод.

Простой способ измерения емкости и времени обратного восстановления диода
Неизвестный диод при прямом напряжении 0 В. На время я увеличил
чувствительность синего канала и заменил исследуемый диод
небольшим конденсатором, чтобы определить, что при нулевом
смещении емкость CJ приблизительно равна 25 пФ.
 
Простой способ измерения емкости и времени обратного восстановления диода
Неизвестный диод при большом открывающем напряжении
600 мВ и прямом токе 20 мА. Время восстановления обратного
сопротивления равно примерно 100 нс.
 
Простой способ измерения емкости и времени обратного восстановления диода
Как и в предыдущем опыте, неизвестный диод испытывался при предельном
выходном токе генератора. Прямой и обратный токи одинаковы и равны 100 мА.
Масштаб по вертикали на время был увеличен до 5 В/дел. Время восстановления
обратного сопротивления осталось равным 200 нс.

Как и в предыдущем опыте, неизвестный диод испытывался при предельном выходном токе генератора. Прямой и обратный токи одинаковы и равны 100 мА. Масштаб по вертикали на время был увеличен до 5 В/дел. Время восстановления обратного сопротивления осталось равным 200 нс.

Опираясь на проведенные измерения, можно было заключить, что хорошим выбором для замены неизвестного диода с быстрым восстановлением могут быть UF4004 или UF4007. Я попросил Линду приобрести оба и предложить Лу первым испробовать 1000-вольтовый UF4007, чтобы, измерив падающее на нем обратное напряжение, определить, можно ли там использовать 400-вольтовый UF4004, чья вольтамперная характеристика ближе к неизвестному диоду.

Материалы по теме

  1. Datasheet ON Semiconductor 1N4002
  2. Datasheet Vishay 1N4148
  3. Datasheet Vishay MUR880
  4. Datasheet Vishay UF4004

Понравилась статья? Поделить с друзьями:
  • Как найти хороший перевод фильма
  • Как найти географическое положение телефона
  • Как найти монеты без карт
  • Мерцает экран на ноутбуке как исправить
  • Как найти темный дуб в майнкрафт командой