Как найти емкость конденсатора переменного тока

Как работает конденсатор и катушка в цепи переменного тока

Содержание

  • 1 Особенности работы конденсатора
  • 2 Формула ёмкости
  • 3 Особенности электроцепи с емкостью и индуктивностью
  • 4 Виды конденсаторов
  • 5 Различные характеристики конденсаторов
  • 6 Где используются конденсаторы
  • 7 Видео по теме

Работа многих электрических схем строится на использовании конденсаторов. Основной особенностью этих радиоэлементов является то, что они хорошо проводят переменный ток, но не пропускают постоянный.

Разнообразие конденсаторов

Особенности работы конденсатора

Радиодеталь представляет собой две пластины, к которым прикреплены металлические выводы. Пластины не соприкасаются между собой. Обычно между ними проложен слой изолятора. Постоянный электроток через конденсатор проходить не может, так как нет контакта между проводниками, но для переменного он не является препятствием.

Схема устройства конденсатора

Когда конденсатор включен в цепь переменного тока, частота напряжения меняется по закону синусоиды. Сначала электродвижущая сила растёт до своего максимума. После этого она уменьшается до нуля, а затем переходит в отрицательную область, где постепенно возрастает до амплитуды, взятой со знаком минус. Затем отрицательная ЭДС уменьшается по абсолютной величине до нуля и начинает возрастать в положительной области до наибольшего значения. Описанный цикл изменений повторяется снова и снова.

Конденсатор в переменной электроцепи

Когда конденсатор работает в цепи переменного тока, в нем циклически происходят следующие процессы:

  • При возрастании амплитуды от нулевого значения до максимального происходит накопление заряда. Пластины накапливают равные по абсолютной величине, но противоположные по знаку заряды.
  • При уменьшении до нуля накопление прекращается, заряд уменьшается, так как начинает стекать с пластин конденсатора.
  • Когда напряжение меняется на противоположное, на пластины начинают поступать заряды, которые имеют знаки, противоположные тем, что были раньше.
  • Как только ЭДС достигнет максимального отрицательного значения и станет уменьшаться по абсолютной величине, начнётся разрядка конденсатора.

Описанный здесь цикл повторится с началом возрастания ЭДС. Он будет осуществляться до тех пор, пока переменный ток не будет отключён.

Изменение параметров радиодетали

Формула ёмкости

Одна из самых важных характеристик конденсатора — ёмкость. Её обозначают символом C. Несмотря на то, что контакта между пластинами нет, ток будет идти через конденсатор в цепи переменного тока то к пластинам, то от них. Это обусловлено циклически происходящими процессами зарядки и разрядки конденсатора.

Величина ёмкости характеризует способность конденсатора накапливать заряд при поступлении на обкладки определённой разности потенциалов. Ее можно найти по формуле:

Формула ёмкости

Используя эту формулу наряду с законом изменения напряжения, можно узнать силу тока, возникающего в процессе зарядки или разрядки пластин конденсатора в цепи переменного тока. Но для этого необходимо сделать соответствующие преобразования.

Сначала находим напряжение, возникающее на конденсаторе в цепи переменного тока, воспользовавшись формулами для определения ёмкости и разности потенциалов. После преобразований получаем выражение:

Напряжение на входах конденсатора

Из него находим величину заряда:

Формула для заряда

Теперь можно получить выражение для электротока в цепи с конденсатором:

Выражение для силы тока

Надо сказать, что при выводе формулы для нахождения силы электрического тока были использованы следующие приемы:

  • От выражения для заряда была взята производная по времени.
  • Затем было выполнено эквивалентное тригонометрическое преобразование.
  • Um соответствует максимальному значению амплитуды колебаний электронапряжения.

Полученное выражение позволяет узнать ток зарядки и разрядки конденсатора в любой момент. Изменения тока опережают напряжение на половину «пи». Величина тока будет максимальной при нулевом напряжении. И, наоборот, значение тока станет нулевым, когда напряжение достигнет максимума.

Для определения ёмкости может быть использована еще такая формула:

Определение емкости с учетом площади пластин

Как видно из формулы, ёмкость конденсатора увеличивается при увеличении площади пластин и уменьшении расстояния между ними.

Емкостное сопротивление — ещё одна важная характеристика конденсатора. Его можно найти по формуле:

Определение емкостного сопротивления

Если взять формулу для определения амплитуды электротока:

Определение амплитуды электротока

И подставить в нее значение ХС, то получим:

Определение силы электротока

После изучения данной формулы становится понятно, что емкостное и активное сопротивление из закона Ома играют одну и ту же роль. Поэтому емкостное можно считать сопротивлением конденсатора переменному электротоку.

Пример использования формул для решения простых задач по нахождению емкости конденсатора можно увидеть на изображении ниже:

Задача на нахождение емкости конденсатора

Особенности электроцепи с емкостью и индуктивностью

Рассматривая ранее цепь переменного тока с включенным конденсатором, мы могли видеть, что частота колебаний электротока на конденсаторе опережает частоту колебаний электронапряжения на π/2. При включении катушки индуктивности наблюдается обратное явление, то есть, электроток отстает от электронапряжения на π/2. Его амплитуда определяется по формуле:

Определение электротока для катушки индуктивности

Знаменатель в данной формуле представляет собой выражение, используемое для определения индуктивного сопротивления:

Индуктивное сопротивление

В итоге получаем формулу для силы электротока:

Значение силы электротока

Индуктивное сопротивление, как и емкостное, зависит от частоты электротока. Поэтому катушка, включенная в постоянную цепь, будет иметь нулевое индуктивное сопротивление.

Схема колебательного контура

Конденсатор и катушка индуктивности в цепи переменного тока образуют, так называемый, колебательный контур. Его колебания определяются по формуле:

Формула для определения колебаний контура

При вынужденных колебаниях сила элетротока достигает максимума, если колебания электронапряжения и самого контура становятся равными:

Значение вынужденных колебаний

Виды конденсаторов

На данный момент существует огромный выбор конденсаторов:

  • Наиболее распространены радиодетали с двумя обкладками, но их может быть и больше.
  • Плоский конденсатор состоит из двух пластин, между которыми расположен тонкий слой диэлектрика. Его толщина должна быть небольшой по сравнению с размерами пластин.
  • В цилиндрическом конденсаторе обе пластины имеют цилиндрическую форму. Одна из них находится внутри другой. Между цилиндрами имеется равномерный тонкий промежуток, который заполнен диэлектриком.
  • Существуют сферические конденсаторы, обкладки которых представляют собой сферы, одна из которых находится внутри другой.

Конденсаторы различаются в зависимости от вида диэлектрика. В частности, может использоваться не только твёрдый, но и жидкий или газообразный диэлектрик. Есть также вакуумные конденсаторы, в которых внутри между обкладками находится вакуум.

Вакуумные конденсаторы

Существуют оксидно-полупроводниковые конденсаторы. Один из их электродов является анодом. Диэлектриком выступает покрывающий его оксид. Катодом является полупроводниковый слой, который наносится на слой оксида.

Для изолирующего слоя могут использоваться как органические, так и неорганические материалы. В первом случае применяются бумажные или плёночные материалы. Неорганический диэлектрик выполняется из керамики, стекла, слюды или неорганических синтетических плёнок. Есть и такие, внутри которых содержится электролитический раствор. Конденсаторы с подобным диэлектриком характеризуются относительно высокой ёмкостью.

Схема электролитического конденсатора

Еще одна разновидность конденсаторов — подстроечные. Их использование предоставляет возможность изменять значение емкости в определенных пределах, чтобы деталь могла работать наиболее эффективно.

Подстроечные конденсаторы

Наряду с конденсаторами общего назначения существуют и те, которые предназначены для специального применения. Примерами таких видов являются дозиметрические, высоковольтные, пусковые, импульсные, помехоподавляющие и некоторые другие радиоэлементы.

Различные характеристики конденсаторов

Основной характеристикой конденсатора является ёмкость. Но при выборе необходимо учитывать и другие.

Для каждого конденсатора существует номинальное напряжение. Если эксплуатация детали будет осуществляться исключительно при таком значении, производитель гарантирует качественную работу в течение всего срока службы.

При увеличении подаваемого на пластины напряжения заряд будет увеличиваться. Если разность потенциалов станет слишком большой, произойдёт пробой радиодетали. В результате между обкладками пройдёт искра, а сам конденсатор станет неисправной. Конденсатор в цепи переменного тока необходимо эксплуатировать в строго заданных параметрах. Иначе срок его эксплуатации существенно сокращается.

Принцип работы конденсатора

Ещё одна характеристика — удельная ёмкость. Она равна отношению ёмкости и массы используемого диэлектрика. С её повышением улучшаются характеристики, но возрастает вероятность пробоя.

В формуле для определения ёмкости используется понятие диэлектрической проницаемости диэлектрика, который находится между пластинами. Эта характеристика определяет то, насколько сильно данное вещество ослабляет влияние электрического поля между обкладками.

В диэлектриках электроны сильно привязаны к ядрам атомов, из-за чего они не перемещаются под действием электрического поля и не образуют электрический ток. Однако при воздействии электрического поля осуществляется поляризация атомов за счет смещения электронов внутри них. Следствием этого является ослабление электрического поля. Его величина зависит от того, какое вещество используется в качестве диэлектрика. Возмущение электрического поля, создаваемое диэлектриком, ослабляет то, которое было приложено к пластинам, и препятствует притоку заряда к пластинам.

Поляризация диэлектрика

Где используются конденсаторы

Радиодетали этого вида находят применение в разных сферах деятельности современного человека:

  • Конденсатор и катушка индуктивности в цепи переменного тока образуют колебательный контур, его используют во многих устройствах.
  • Конденсаторы меняют свои характеристики в зависимости от температуры или влажности окружающей среды, поэтому применяются в самых разных измерительных приборах.
  • Еще одна сфера применения— блоки питания.
  • Используются в цепях с преобразователями переменного тока в постоянный.
  • Применяются в частотных фильтрах.
  • Без конденсатора трудно представить усилитель.
  • Конденсатор является важным элементом для процессоров и других микросхем.

Здесь приведены только некоторые варианты использования. На самом деле их гораздо больше.

Видео по теме



Разнообразие конденсаторов

Разнообразие конденсаторов

Продолжаем изучать электронику, и на очереди у нас разбор того, как ведет себя конденсатор в цепи переменного тока, постоянного тока, для чего он нужен, а также несколько примеров практического применения.

Содержание

  • Назначение конденсаторов
    • Свойства и выполняемые функции
    • Понятие полярности для конденсаторов и их выход из строя
    • Прочие параметры
    • Типы конденсаторов
    • Применение конденсаторов
  • Конденсатор в цепях электрического тока
    • Цепь постоянного тока
    • Цепь переменного тока

Назначение конденсаторов

Конденсатор является пассивным элементом электронной схемы, состоящей их двух токопроводящих обкладок, которые разделены каким-нибудь диэлектриком.

Конденсатор в цепи переменного тока – что нужно накапливать и для чего
Конденсатор в цепи переменного тока – что нужно накапливать и для чего
Конденсатор в цепи переменного тока – что нужно накапливать и для чего
Конденсатор в цепи переменного тока – что нужно накапливать и для чего

Свойства и выполняемые функции

Основной задачей конденсатора является накопление определенного объема электростатического заряда на обкладках, после включения его в цепь под напряжением.  Когда питание отключается, конденсатор сохраняет полученный заряд.

  • Если конденсатор подключен к замкнутой цепи, но уже без питания, или напряжение в ней будет ниже, чем то, что накоплено в конденсаторе, то произойдет полная либо частичная разрядка элемента с высвобождение накопленной энергии.

Как рассчитать емкость конденсатора для переменного тока

Как рассчитать емкость конденсатора для переменного тока

  • Тут же введем понятие о емкости конденсатора. Простыми словами – это количество электрической энергии, которую способен накопить элемент, включенный в сеть. Обозначается этот параметр латинской буквой «С», а измеряется он в Фарадах (F).

Интересно знать! Конденсаторы переменного тока большой емкости способны создавать при быстром разряде очень мощные импульсы. Использовать их можно, к примеру, в мощных фотовспышках.

  • Рассчитывается емкость по следующей формуле: C=q/U, где q – это заряд на одной обкладке в Кулонах (количество энергии, прошедшей через проводник за 1 сек при силе тока в 1 Ампер); а U – Напряжение в Вольтах между оболочками.

Обозначение емкости в микро Фарадах

Обозначение емкости в микро Фарадах

  • На корпусе любого конденсатора содержатся данные о его основных параметрах, среди которых есть и емкость. На фото выше выделено красным, такое обозначение. Там же можно узнать рабочие напряжение и температуру.
  • Все просто, однако стоит учитывать, что указанная емкость является номинальной, тогда как реальная ее величина может довольно сильно отличаться, на что оказывает влияние множество факторов.
  • Емкость конденсатором может разниться от единиц пикофарад до десятков фарад, что зависит от площади электрода (чаще алюминиевой фольги).

Интересно знать! Чтобы увеличить полезную емкость фольгу сворачивают в рулоны – так получаются цилиндрические конденсаторы.

Конденсатор в разрезе – слои фольги чередуются с бумагой

Конденсатор в разрезе – слои фольги чередуются с бумагой

Если в схеме требуется большая емкость конденсаторов, то их подключают параллельно. В таком случае сохраняется рабочее напряжение, но емкость будет увеличиваться прямопропорционально, то есть составит сумму емкостей подключенных конденсаторов.

Соединения конденсаторов в цепях переменного тока: расчет емкости при последовательном и параллельном подключении

Соединения конденсаторов в цепях переменного тока: расчет емкости при последовательном и параллельном подключении

Если конденсаторы соединить последовательно, то емкость изменяться не будет, точнее она будет немного меньше, чем минимальная емкость, включенная в цепь. Для чего же нужно такое подключение? При нем вероятность пробоя одного из конденсаторов сводится  минимуму, то есть они как бы распределяют нагрузку.

  • Для конденсаторов характерен и такой параметр, как удельная емкость. Это прямое отношение емкости электро детали к массе или объему диэлектрика. Максимальные значения этого параметра могут быть достигнуты при наименьшей толщине диэлектрической прокладки, однако для пробоя такого конденсатора требуется меньшее напряжение, про которое мы сейчас и поговорим.
  • Маркировка детали также указывает номинальное напряжение. Тут все предельно просто – это значение показывает максимальный уровень напряжения в цепи, при которой радиодеталь сможет отработать весь свой срок службы, не меняя при этом сильно своих заданных параметров.
  • Отсюда простой вывод – напряжение на конденсаторе не должно превышать номинального, иначе его может пробить.
  • На уровень номинального напряжения влияют материалы, из которых конденсатор собран.

Понятие полярности для конденсаторов и их выход из строя

Интересно знать! У многих типов конденсаторов допустимое напряжение будет уменьшаться по мере его нагрева, поэтому на корпусах изделий также указывается и максимальная рабочая температура.

Данные конденсаторы вышли из строя без взрыва, об этом можно судить по вздувшимся крышкам бочонков

Данные конденсаторы вышли из строя без взрыва, об этом можно судить по вздувшимся крышкам бочонков

Выход из строя конденсаторов очень распространенная поломка в электротехнике. «Умирать» они могут по-тихому, просто вздувшись, или под канонаду нехилого взрыва, заливая все ближайшие детали электролитом, под «сценический дым» и прочие эффекты.

Именно поэтому диагностировать выход из строя этого элемента можно чисто визуально, без применения тестовой аппаратуры, но не всегда.

Конденсатор не выдержал нагрузки

Конденсатор не выдержал нагрузки

Многие электролитические конденсаторы (с оксидным диэлектриком), из-за особенностей  взаимодействия диэлектрика и электролита, способны работать только при соблюдении определенной полярности, о чем обязательно гласит соответствующая маркировка на корпусе детали.

Разные обозначения полярности конденсаторов

Разные обозначения полярности конденсаторов

  • При попытке включить их в цепь в обратной полярности, конденсаторы обычно моментально выходят из строя – разрушается диэлектрик, закипает электролит, в результате чего произойдет тот самый взрыв.
  • Взрываются конденсаторы довольно часто, особенно в импульсных устройствах. Происходит это из-за перегрева, по причине утечки или увеличения эквивалентного последовательного сопротивления по мере старения детали.
  • Не секрет, что поврежденная деталь в любой схеме может быть заменена на новую, и устройство будет функционировать как и раньше, однако последствия взрыва могут быть достаточно серьезны — повредятся соседние элементы, что сильно осложнит ремонт, плюс возрастет его цена.

Для уменьшения последствий на корпусах конденсаторов большой емкости устанавливают клапан или же делают насечку с торца в виде букв «Х, К, и Т». Такие конденсаторы взрываются очень редко, из-за того, что либо клапан, либо разрушившийся по насечке корпус выпускают электролит в виде едких испарений, то есть давление внутри корпуса снижается.

Прочие параметры

Помимо тех параметров, что мы уже разобрали, конденсаторы обладают индуктивностью и собственным сопротивлением, поэтому схему реального конденсатора можно представить следующим образом.

Строение конденсатора с учетом всех его основных параметров

Строение конденсатора с учетом всех его основных параметров

Данные параметры можно назвать паразитическими, так как они препятствуют идеальной работе детали.

К таковым относятся (обозначаем как в схеме выше):

  • Сопротивление изоляции конденсатора (r) – значение определяемое соотношением фактического напряжения приложенного к конденсатору к току утечки.
  • Эквивалентное последовательное сопротивление (R) – это электрическое сопротивление материала, из которого изготовлены обкладки, выводов конденсатора и контактов с платой. Сюда же стоит включать потери в диэлектрике. ЭПС начинает увеличиваться с возрастанием частоты тока.
  • Поглощение диэлектрика. При быстрой разрядке конденсатора в момент подключения нагрузки с низким сопротивлением, если снять нагрузку, то, спустя какое то время, можно увидеть, что напряжение на выводах конденсатора начнет медленно увеличиваться. Это явление называется еще абсорбцией электрического заряда. Насколько интенсивно будет проявляться этот эффект зависит от свойств применяемого в конденсаторе диэлектрика.

Также к паразитным параметрам относятся тангенс угла потерь и  температурный коэффициент емкости, однако лезть так глубоко в дебри в ознакомительной статье мы не будем.

Типы конденсаторов

Классифицируются конденсаторы, прежде всего, по типу используемого в них диэлектрика, который и определяет все электрические параметры элемента.

Конденсатор вакуумного типа

Конденсатор вакуумного типа

  • Вакуумные конденсаторы – строение их таково, что несколько коаксиальных цилиндров, которые встроены один в один, располагаются во внешнем стеклянном цилиндре. Для этих устройств характерна наибольшая мощность в единице объема.

Конденсатор воздушный для переменного тока

Конденсатор воздушный для переменного тока

  • Воздушные или газовые конденсаторы – бывают постоянной и переменной емкости. Применяются они в основном в электроизмерительном оборудовании, радиоприемниках и передатчиках, так как позволяют настраивать колебательные контуры.
  • Конденсаторы с жидким диэлектриком;

Керамический однослойный конденсатор

Керамический однослойный конденсатор

  • Конденсаторы с твердыми неорганическими диэлектриками – к ним относятся модели на стеклоэмалях, стеклокерамике, стеклопленках, слюде, керамике и прочем. Для таких конденсаторов характерна очень большая емкость, несмотря на их скромные габариты.

Конденсатор бумажный

Конденсатор бумажный

  • Конденсаторы с твердыми органическими диэлектриками – здесь разнообразие тоже велико: бумажные и металлобумажные, пленочные и комбинированные.

Электрический танталовый конденсатор

Электрический танталовый конденсатор

  • Отдельно можно выделить конденсаторы электролитические и оксидно-полупроводниковые, так как их отличает большая удельная емкость. В качестве диэлектрика в них используется слой оксида вокруг металлического анода. Вторая обкладка в нем – это либо электролит, в первом случае, либо полупроводник – во втором. Анод, в зависимости от конденсатора, может быть изготовлен из танталовой, ниобиевой или алюминиевой фольги, а также из спеченного порошка.

Такая классификация не единственная и различают конденсаторы и по возможности изменения их емкости:

  • Постоянные – это конденсаторы, емкость которых является постоянной в течение срока службы, не считая изменений связанных со старением детали.

Воздушный конденсатор может менять свою емкость

Воздушный конденсатор может менять свою емкость

  • Переменные – этот вид способен менять свою емкость во время работы оборудования. Управление такими конденсаторами реализуется через механику, электрическое напряжение, а также температуру.

Конденсаторы подстроечные

Конденсаторы подстроечные

  • Подстроечные – емкость этих конденсаторов также может меняться, но происходит это не во время работы аппаратуры, а разово, при установке или настройке. Применяются они в основном при выравнивании начальных емкостей у сопрягаемых контуров, а также для регулировки параметров цепей схем.

Применение конденсаторов

Заканчивая первую часть статьи, не можем не обратить внимание на сферы применения этих элементов электрических цепей. А применяются они повсеместно.

  • Их комбинируют с катушками индуктивности и резисторами, чтобы получать цепи, в которых свойства тока будут зависеть от его частоты, например, фильтр частот или цепь обратной связи колебательного контура.
  • В системах, где требуется создание мощного импульса, про которые мы уже сегодня упоминали – вспышки фотоаппаратов, импульсные лазеры, генераторы Маркса и прочее.
  • Применяются конденсаторы и в качестве элемента памяти, так как способны сохранять заряд достаточно длительное время. Это же свойство применяется в устройствах, предназначенных для хранения энергии.
  • Если говорить об электротехнике промышленного уровня, то конденсаторы применяются для компенсации реактивной мощности и в качестве фильтров высших гармоник.

И это далеко не все сферы, но мы думаем, что этого пока достаточно. Давайте лучше перейдем к опытам и посмотрим, что же происходит с током, когда он проходит через конденсатор.

Конденсатор в цепях электрического тока

Итак, мы приблизительно поняли, что такое конденсатор, но как работает сей элемент, еще толком не разобрали.

Цепь постоянного тока

Если говорить простыми словами, то конденсатор, или «кондер», как его называют в народе – это небольшой элемент, который словно аккумулятор способен накапливать в себе некий заряд, который он готов разрядить за считанные доли секунды

Интересно знать! В отличие от аккумулятора в конденсаторе отсутствует источник ЭДС.

Чтобы кондеру разрядиться, ему нужно замкнуть контакты напрямую, либо через цепь. Вроде бы все ясно, но как происходит течение тока в конденсаторе при подключении его в сеть.

  • Начнем с постоянного тока, и проведем один небольшой опыт. Для этого нам понадобятся сам конденсатор, источник постоянного тока на 12 Вольт и лампочка с проводами, тоже на 12 Вольт.

Все элементы собраны в цепь

Все элементы собраны в цепь

  • Подключаем все это вместе, как показано на фото выше, и видим, что ничего не происходит – лампочка не горит.

Подключение в обход конденсатора

Подключение в обход конденсатора

  • Меняем положение «крокодила» так, чтобы пустить ток в обход конденсатора. И, о чудо! Лампочка загорелась! Почему же так происходит?
  • Все просто, достаточно помнить, что ток через конденсатор протекает, только когда он заряжается и разряжается, причем напряжение всегда будет отставать от тока.
  • Разряженный конденсатор сродни короткому замыканию в цепи – при его подключении к источнику напряжения, в первый момент времени напряжения в нем нет, но зато имеется ток, который в этот момент времени является максимальным (вот вам и отставание).
  • Ток течет через конденсатор, и тот начинает накапливать заряд, увеличивая свое внутреннее напряжение до тех пор, пока оно не сравняется с напряжением источника питания и кондер не заполнит всю свою емкость.
  • В этот момент времени ток перестает течь, а так как конденсатор не может разрядиться, то, соответственно, и лампочка гореть не будет.
  • Сравнить этот процесс можно с водяной системой в виде сообщающегося сосуда, разделенного заслонкой, при том, что одна часть пустая, а вторая полная. Уберите препятствие, и вода потечет во второй сосуд, пока давления не выровняются, то есть напор не спадет до нуля.
  • А что было бы, если бы конденсатор отсоединился от цепи и закоротился? Да все то же самое! В первый момент времени ток будет максимальным при неизменном напряжении. Ток побежит вперед, а напряжение вслед за ним, пока весь заряд не уйдет.
  • Снова в качестве примера берем водяную систему, состоящую из полного бачка, который будет играть роль конденсатора, и краника на нем, через который можно осуществить слив воды. Открывает кран и видим, что вода тут же потекла, при этом давление (напряжение) будет падать плавно, по мере опустошения емкости.

Эти же закономерности характерны и для синусоидального тока, о чем мы сейчас и поговорим.

Цепь переменного тока

Давайте для начала проведем некоторый опыт, а потом так же его объясним простым языком.

Резистор можно заменить лампочкой при наличии генератора достаточной мощности

Резистор можно заменить лампочкой при наличии генератора достаточной мощности

Нам понадобятся: конденсатор емкостью 1 микрофарад, обычный резистор на 100 Ом и генератор частот. Соединяем это все, как показано на следующем фото.

Собранная экспериментальная схема

Собранная экспериментальная схема

Далее по схеме подключаем цифровой осциллограф, который будет работать в двухканальном режиме, чтобы видеть сигналы на входе и на выходе: первый канал (красный) – это то, что выдает генератор, а второй (желтый) – снимаемый с нагрузки, то есть с резистора.

Включение в цепь осциллографа

Включение в цепь осциллографа

  • Итак, то, что конденсатор постоянный ток (ток с нулевой частотой) не пропускает, мы уже убедились. А что будет, если подать частоту в 100 Гц?

Показания каналов при частоте в 100Гц

Показания каналов при частоте в 100Гц

  • С генератора подается сигнал с амплитудой в 2 Вольта и частотой в 100Гц. На втором канале мы видим ту же частоту, но значительно меньшую амплитуду в 136 миливольта. Сигнал при этом искажают помехи, которые ловятся из окружающего пространства.
  • Желтый график сместился влево, опережая красный. Перед вами тот самый сдвиг фаз.

Совет! Тут стоит понимать, что опережает только фаза, а не сигнал. В противном случае перед нами бы была простейшая машина времени, а так все в пределах понимания.

  • То есть, имеется в виду разница между начальными фазами напряжений, имеющих одинаковую частоту.

Работа на частоте в 500 Гц

Работа на частоте в 500 Гц

  • Теперь увеличим частоту до 500 Гц. Видим, что амплитуда сигнала возросла до 560 миливольт, а сдвиг фаз стал меньшим.

Частота 1 кГц

Частота 1 кГц

  • Наращиваем частоту до 2 кГц – тенденция сохраняется.

Частота 10 кГц

Частота 10 кГц

  • Теперь выставляем частоту в 10 кГц, и видим, что амплитуда практически сравнялась, а сдвиг фаз практически незаметен.

Частота в 100 кГц

Частота в 100 кГц

  • Даем на генераторе максимальную частоту и видим, что показатели каналов практически выровнялись.

Что же это все означает? Сопротивление конденсатора в цепи переменного тока тем меньше, чем выше его частота. При этом уходит и сдвиг фаз.

Интересно знать! При подключении постоянного тока, частота которого равна нулю, величина фазового сдвига составляет π/2 или 90 градусов.

Но только ли частота влияет на сопротивление конденсаторов в цепи переменного тока? Давайте повторим наш опыт, но уже с конденсатором меньшей емкости, скажем – 0,1 микрофарад.

Течение переменного тока в конденсаторе: частота в 100 Гц

Течение переменного тока в конденсаторе: частота в 100 Гц

  • Начинаем, как и в прошлый раз, с частоты в 100 Гц. Сразу заметно, что амплитуда уменьшилась до 101 миливольта, тогда как ранее она составляла 136.

Частота 500 Гц

Частота 500 Гц

  • Амплитуда по-прежнему меньше.

Частота 100 кГц

Частота 100 кГц

  • На максимальных частотах сопротивление уже малое, но и сдвиг фаз и меньшая амплитуда остаются.

Делаем нехитрые выводы, и понимаем, что сопротивление конденсатора еще зависит и от его емкости – чем она больше, тем ниже сопротивление.

В попытке ответить на вопрос, как рассчитать сопротивление конденсатора переменному току, математики и физики вывели следующую формулу:

Формула сопротивления конденсатора в цепи переменного тока

Формула сопротивления конденсатора в цепи переменного тока

Поставьте в эту формулу частоту равную нулю, и вы получите ноль, или бесконечное сопротивление. На практике мы имеем фактический фильтр высоких частот – впаяйте конденсатор перед динамиком, и вы услышите, что он воспроизводит только высокие частоты. Поставить такой фильтр легко своими руками – инструкция нужна лишь при расчете параметров сопротивления.

Ну, а что же происходит внутри самого конденсатора в этот момент?

Заряд и разряд конденсатора при переменном токе

Заряд и разряд конденсатора при переменном токе

Вспоминаем, что есть синусоидальный ток. Состоит такой ток из повторяющегося периода, первую половину которого он течет в одном направлении, а вторую – в обратном. Периоды делятся на полупериоды, каждый из которых имеет фазы возрастания, пика и убывания напряжения.

  • Итак, первый четвертьпериод мы фактически разобрали на примере постоянного тока – конденсатор заряжается, пока его напряжение не достигнет пикового значения.
  • В начале второго четвертьпериода, напряжение на генераторе начинает, ускоряясь, убывать. Образующаяся разница напряжений заставляет конденсатор разряжаться, отдавая ток в направлении генератора, то есть в обратном, чем он тек при заряде — оказывает сопротивление.
  • В момент, когда заканчивается первый полупериод, напряжение в цепи и конденсаторе становится нулевым, тогда как ток, наоборот – максимальным (эту зависимости мы разобрали выше).
  • Начинается третья четверть, и конденсатор снова заряжается, только уже в обратной полярности. При этом ток, продолжая течь в ту же сторону, начиная убывать, с ростом напряжения внутри конденсатора.
  • Четвертая четверть аналогична второй – конденсатор разряжается, и ток течет в обратном направлении. То есть два полупериода являются буквально зеркальными копиями друг друга.

По итогу мы имеем, что за один период конденсатор дважды успевает зарядиться и разрядиться, что говорит о постоянном прохождении в цепи зарядный и разрядных токов, то есть что ток здесь переменный.

Если бы мы в нашем опыте вместо резистора использовали лампочку, то увидели бы ее свечение. Однако ток ее питающий был бы током заряда и разряда, а не проходящим сквозь диэлектрик конденсатора.

Качественный конденсатор из Британии

Качественный конденсатор из Британии

Чем больше емкость конденсатора, тем больший заряд передается в цепи во время циклов заряда и разряда этого элемента, а, следовательно, сопротивление становится меньше. Увеличение частоты дает такой же эффект, но уже за счет количества передачи заряда за то же время, отчего ток тоже растет. Это как два коммерсанта – один получает доход, сделав большую накрутку  продав разово вещь, а второй имеет то же самое, но за счет большего оборота с меньшей наценкой.

Из-за этой простой зависимости, сопротивление, которое оказывает конденсатор току в цепи, называется емкостным.

На этом, пожалуй, закончим. Мы популярно объяснили, что представляет собой электрическая цепь переменного тока с реальным конденсатором. Да, материал не прост в освоении, но если разобраться – все не так страшно. В дополнение обязательно посмотрите подобранное нами видео, чтобы снять все возможные вопросы окончательно.

Господа, в сегодняшней статье я хотел бы рассмотреть такой интересный вопрос, как конденсатор в цепи переменного тока. Эта тема весьма важна в электричестве, поскольку на практике конденсаторы повсеместно присутствуют в цепях с переменным током и, в связи с этим, весьма полезно иметь четкое представление, по каким законам изменяются в этом случае сигналы. Эти законы мы сегодня и рассмотрим, а в конце решим одну практическую задачу определения тока через конденсатор.

Господа, сейчас для нас наиболее интересным моментом является то, как связаны между собой напряжение на конденсаторе и ток через конденсатор для случая, когда конденсатор находится в цепи переменного сигнала.

Почему сразу переменного? Да просто потому, что конденсатор в цепи постоянного тока ничем не примечателен. Через него течет ток только в первый момент, пока конденсатор разряжен. Потом конденсатор заряжается и все, тока нет (да-да, слышу, уже начали кричать, что заряд конденсатора теоретически длится бесконечно долгое время, да еще у него может быть сопротивление утечки, но пока что мы этим пренебрегаем). Заряженный конденсатор для постоянного тока это как разрыв цепи. Когда же у нас случай переменного тока тут все намного интереснее. Оказывается, в этом случае через конденсатор может протекать ток и конденсатор в этом случае как бы эквивалентен резистору с некоторым вполне определенным сопротивлением (если пока забить забыть про всякие там сдвиги фазы, об этом ниже). Нам надо каким-нибудь образом получить связь между током и напряжением на конденсаторе.

Пока мы будем исходить из того, что в цепи переменного тока находится только конденсатор и все. Без каких-либо других компонентов типа резисторов или индуктивностей. Напомню, что в случае, когда у нас в цепи находится исключительно одни только резисторы, подобная задача решается очень просто: ток и напряжения оказываются связанными между собой через закон Ома. Мы про это уже не один раз говорили. Там все очень просто: делим напряжение на сопротивление и получаем ток. А как же быть в случае конденсатора? Ведь конденсатор-то это не резистор. Там совсем иная физика протекания процессов, поэтому вот так вот с наскока не получится просто связать между собой ток и напряжение. Тем не менее, сделать это надо, поэтому давайте попробуем порассуждать.

Сперва давайте вернемся назад. Далеко назад. Даже очень далеко. К самой-самой первой моей статье на этом сайте. Старожилы должно быть помнят, что это была статья про силу тока. Вот в этой самой статье было одно интересное выражение, которое связывало между собой силу тока и заряд, протекающий через сечение проводника. Вот это самое выражение

Кто-нибудь может возразить, что в той статье про силу тока запись была через Δq и Δt – некоторые весьма малые величины заряда и времени, за которое этот заряд проходит через сечение проводника. Однако здесь мы будем применять запись через dq и dt через дифференциалы. Такое представление нам потребуется в дальнейшем. Если не лезть глубоко в дебри матана, то по сути dq и dt здесь особо ничем не отличаются от Δq и Δt. Безусловно, глубоко сведущие в высшей математике люди могут поспорить с этим утверждением, но да сейчас я не хочу концентрировать внимание на данных вещах.

Итак, выражение для силы тока мы вспомнили. Давайте теперь вспомним, как связаны между собой емкость конденсатора С, заряд q, который он в себе накопил, и напряжение U на конденсаторе, которое при этом образовалось. Ну, мы же помним, что если конденсатор накопил в себе какой-то заряд, то на его обкладках неизбежно возникнет напряжение. Про это все мы тоже говорили раньше, вот в этой вот статье. Нам будет нужна вот эта формула, которая как раз и связывает заряд с напряжением

Давайте-ка выразим из этой формулы заряд конденсатора:

А теперь есть очень большой соблазн подставить это выражение для заряда конденсатора в предыдущую формулу для силы тока. Приглядитесь-ка повнимательнее – у нас ведь тогда окажутся связанными между собой сила тока, емкость конденсатора и напряжение на конденсаторе! Сделаем эту подстановку без промедлений:

Емкость конденсатора у нас является величиной постоянной. Она определяется исключительно самим конденсатором, его внутренним устройством, типом диэлектрика и всем таким прочим. Про все это подробно мы говорили в одной из прошлых статей. Следовательно, емкость С конденсатора, поскольку это константа, можно смело вынести за знак дифференциала (такие вот правила работы с этими самыми дифференциалами). А вот с напряжением U нельзя так поступить! Напряжение на конденсаторе будет изменяться со временем. Почему это происходит? Ответ элементарный: по мере протекания тока на обкладках конденсатора, очевидно, заряд будет изменяться. А изменение заряда непременно приведет к изменению напряжения на конденсаторе. Поэтому напряжение можно рассматривать как некоторую функцию времени и его нельзя выносить из-под дифференциала. Итак, проведя оговоренные выше преобразования, получаем вот такую вот запись:

Господа, спешу вас поздравить – только что мы получили полезнейшее выражение, которое связывает между собой напряжение, приложенное к конденсатору, и ток, который течет через него. Таким образом, если мы знаем закон изменения напряжения, мы легко сможем найти закон изменения тока через конденсатор путем простого нахождения производной.

А как быть в обратном случае? Допустим, нам известен закон изменения тока через конденсатор и мы хотим найти закон изменения напряжения на нем. Читатели, сведущие в математике, наверняка уже догадались, что для решения этой задачи достаточно просто проинтегрировать написанное выше выражение. То есть, результат будет выглядеть как-то так:

По сути оба этих выражений про одно и тоже. Просто первое применяется в случае, когда нам известен закон изменения напряжения на конденсаторе и мы хотим найти закон изменения тока через него, а второе – когда нам известно, каким образом меняется ток через конденсатор и мы хотим найти закон изменения напряжения. Для лучшего запоминания всего этого дела, господа, я приготовил для вас поясняющую картинку. Она изображена на рисунке 1.

Рисунок 1 – Поясняющая картинка

На ней, по сути, в сжатой форме изображены выводы, которые хорошо бы запомнить.

Господа, обратите внимание – полученные выражения справедливы для любого закона изменения тока и напряжения. Здесь не обязательно должен быть синус, косинус, меандр или что-то другое. Если у вас есть какой-то совершенно произвольный, пусть даже совершенно дикий, не описанный ни в какой литературе, закон изменения напряжения U(t), поданного на конденсатор, вы, путем его дифференцирования можете определить закон изменения тока через конденсатор. И аналогично если вы знаете закон изменения тока через конденсатор I(t) то, найдя интеграл, сможете найти, каким же образом будет меняться напряжение.

Итак, мы выяснили как связать между собой ток и напряжение для абсолютно любых, даже самых безумных вариантов их изменения. Но не менее интересны и некоторые частные случаи. Например, случай успевшего уже нам всем полюбиться синусоидального тока. Давайте теперь разбираться с ним.

Пусть напряжение на конденсаторе емкостью C изменяется по закону синуса вот таким вот образом

Какая физическая величина стоит за каждой буковкой в этом выражении мы подробно разбирали чуть раньше. Как же в таком случае будет меняться ток? Используя уже полученные знания, давайте просто тупо подставим это выражение в нашу общую формулу и найдем производную

Или можно записать вот так

Господа, хочу вам напомнить, что синус ведь только тем и отличается от косинуса, что один сдвинут относительно другого по фазе на 90 градусов. Ну, или, если выражаться на языке математики, то . Не понятно, откуда взялось это выражение? Погуглите формулы приведения . Штука полезная, знать не помешает. А еще лучше, если вы хорошо знакомы с тригонометрическим кругом, на нем все это видно очень наглядно.

Господа, отмечу сразу один момент. В своих статьях я не буду рассказывать про правила нахождения производных и взятия интегралов. Надеюсь, хотя бы общее понимание этих моментов у вас есть. Однако даже если вы не знаете, как это делать, я буду стараться излагать материал таким образом, чтобы суть вещей была понятна и без этих промежуточных выкладок. Итак, сейчас мы получили немаловажный вывод – если напряжение на конденсаторе изменяется по закону синуса, то ток через него будет изменяться по закону косинуса. То есть ток и напряжение на конденсаторе сдвинуты друг относительно друга по фазе на 90 градусов. Кроме того, мы можем относительно легко найти и амплитудное значение тока (это множители, которые стоят перед синусом). Ну то есть тот пик, тот максимум, которого ток достигает. Как видим, оно зависит от емкости C конденсатора, амплитуды приложенного к нему напряжения Um и частоты ω. То есть чем больше приложенное напряжение, чем больше емкость конденсатора и чем больше частота изменения напряжения, тем большей амплитуды достигает ток через конденсатор. Давайте построим график, изобразив на одном поле ток через конденсатор и напряжение на конденсаторе. Пока без конкретных цифр, просто покажем качественный характер. Этот график представлен на рисунке 2 (картинка кликабельна).

Рисунок 2 – Ток через конденсатор и напряжение на конденсаторе

На рисунке 2 синий график – это синусоидальный ток через конденсатор, а красный – синусоидальное напряжение на конденсаторе. По этому рисунку как раз очень хорошо видно, что ток опережает напряжение (пики синусоиды тока находятся левее соответствующих пиков синусоиды напряжения, то есть наступают раньше).

Давайте теперь проделаем работу наоборот. Пусть нам известен закон изменения тока I(t) через конденсатор емкостью C. И закон этот пусть тоже будет синусоидальным

Давайте определим, как в таком случае будет меняться напряжение на конденсаторе. Воспользуемся нашей общей формулой с интегральчиком:

По абсолютнейшей аналогии с уже написанными выкладками, напряжение можно представить вот таким вот образом

Здесь мы снова воспользовались интересными сведениями из тригонометрии, что . И снова формулы приведения придут вам на помощь, если не понятно, почему получилось именно так.

Какой же вывод мы можем сделать из данных расчетов? А вывод все тот же самый, какой уже был сделан: ток через конденсатор и напряжение на конденсаторе сдвинуты по фазе друг относительно друга на 90 градусов. Более того, они не просто так сдвинуты. Ток опережает напряжение. Почему это так? Какая за этим стоит физика процесса? Давайте разберемся.

Представим, что незаряженный конденсатор мы подсоединили к источнику напряжения. В первый момент никаких зарядов в конденсаторе вообще нет: он же разряжен. А раз нет зарядов, то нет и напряжения. Зато ток есть, он возникает сразу при подсоединении конденсатора к источнику. Замечаете, господа? Напряжения еще нет (оно не успело нарасти), а ток уже есть. И кроме того, в этот самый момент подключения ток в цепи максимален (разряженный конденсатор ведь по сути эквивалентен короткому замыканию цепи). Вот вам и отставание напряжения от тока. По мере протекания тока, на обкладках конденсатора начинает накапливаться заряд, то есть напряжение начинает расти а ток постепенно уменьшаться. И через некоторое время накопится столько заряда на обкладках, что напряжение на конденсаторе сравняется с напряжением источника и ток в цепи совсем прекратится.

Теперь давайте этот самый заряженный конденсатор отцепим от источника и закоротим накоротко. Что получим? А практически то же самое. В самый первый момент ток будет максимален, а напряжение на конденсаторе останется таким же, какое оно и было без изменений. То есть снова ток впереди, а напряжение изменяется вслед за ним. По мере протекания тока напряжение начнет постепенно уменьшаться и когда ток совсем прекратится, оно тоже станет равным нулю.

Для лучшего понимания физики протекающих процессов можно в который раз уже использовать водопроводную аналогию. Представим себе, что заряженный конденсатор  это некоторый бачок, полный воды. У этого бачка есть внизу краник, через который можно спустить воду. Давайте этот краник откроем. Как только мы его откроем, вода потечет сразу же. А давление в бачке будет падать постепенно, по мере того, как вода будет вытекать. То есть, грубо говоря, ручеек воды из краника опережает изменение давления, подобно тому, как ток в конденсаторе опережает изменение напряжения на нем. 

Подобные рассуждения можно провести и для синусоидального сигнала, когда ток и напряжения меняются по закону синуса, да и вообще для любого. Суть, надеюсь, понятна.

Давайте проведем небольшой практический расчет переменного тока через конденсатор и построим графики.

Пусть у нас имеется источник синусоидального напряжения, действующее значение равно 220 В, а частота 50 Гц. Ну, то есть все ровно так же, как у нас в розетках. К этому напряжению подключают конденсатор емкостью 1 мкФ. Например, пленочный конденсатор К73-17, рассчитанный на максимальное напряжение 400 В (а на меньшее напряжение конденсаторы ни в коем случае нельзя подключать в сети 220 В), выпускается с емкостью 1 мкФ. Чтобы вы имели представление, с чем мы имеем дело, на рисунке 3 я разместил фотографию этого зверька (спасибо Diamond за фото )

Рисунок 3 – Ищем ток через этот конденсатор

Требуется определить, какая амплитуда тока будет протекать через этот конденсатор и построить графики тока и напряжения.

Сперва нам надо записать закон изменения напряжения в розетке. Если вы помните, амплитудное значение напряжения в этом случае равно около 311 В. Почему это так, откуда получилось, и как записать закон изменения напряжения в розетке, можно прочитать вот в этой статье. Мы же сразу приведем результат. Итак, напряжение в розетке будет изменяться по закону

Теперь мы можем воспользоваться полученной ранее формулой, которая свяжет напряжение в розетке с током через конденсатор. Выглядеть результат будет так

Мы просто подставили в общую формулу емкость конденсатора, заданную в условии, амплитудное значение напряжения и круговую частоту напряжения сети. В результате после перемножения всех множителей имеем вот такой вот закон изменения тока

Вот так вот, господа. Получается, что амплитудное значение тока через конденсатор чуть меньше 100 мА. Много это или мало? Вопрос нельзя назвать корректным. По меркам промышленной техники, где фигурируют сотни ампер тока, очень мало. Да и для бытовых приборов, где десятки ампер не редкость – тоже. Однако для человека даже такой ток представляет большую опасность! Отсюда следует вывод, что хвататься за такой конденсатор, подключенный к сети 220 В не следует . Однако на этом принципе возможно изготовление так называемых источников питания с гасящим конденсатором. Ну да это тема для отдельной статьи и здесь мы не будем ее затрагивать.

Все это хорошо, но мы чуть не забыли про графики, которые должны построить. Надо срочно исправляться! Итак, они представлены на рисунке 4 и рисунке 5. На рисунке 4 вы можете наблюдать график напряжения в розетке, а на рисунке 5 – закон изменения тока через конденсатор, включенный в такую розетку.

Рисунок 4 – График напряжения в розетке

Рисунок 5 – График тока через конденсатор

Как мы можем видеть из этих рисунков, ток и напряжение сдвинуты на 90 градусов, как и должно быть. И, возможно, у читателя возникла мысль если через конденсатор течет ток и на нем падает какое-то напряжение, вероятно, на нем должна выделяться и некоторая мощность. Однако спешу предупредить вас для конденсатора дело обстоит совершенно не так. Если рассматривать идеальный конденсатор, то мощность на нем не будет вообще выделяться, даже при протекании тока и падении на нем напряжения. Почему? Как же так? Об этом в будущих статьях. А на сегодня все. Спасибо что читали, удачи, и до новых встреч!

Вступайте в нашу группу Вконтакте

Вопросы и предложения админу: This email address is being protected from spambots. You need JavaScript enabled to view it.

Принцип работы

Конденсатор может быть выполнен по-разному, но суть работы и основные его элементы остаются неизменными в любом случае. Чтобы понять принцип работы, необходимо рассмотреть самую простую его модель. У простейшего устройства имеются две обкладки: одна из них заряжена положительно, другая — наоборот, отрицательно. Заряды эти хоть и противоположны, но равны. Они притягиваются с определенной силой, которая зависит от расстояния. Чем ближе друг к другу располагаются обкладки, тем больше между ними сила притяжения. Благодаря этому притяжению заряженное устройство не разряжается.

Однако достаточно проложить какой-либо проводник между двумя обкладками и устройство мгновенно разрядится. Все электроны от отрицательно заряженной обкладки сразу же перейдут на положительно заряженную, в результате чего заряд уравняется. Иными словами, чтобы снять заряд с конденсатора, необходимо лишь замкнуть две его обкладки.

Как рассчитать время разряда и заряда конденсатора через резистор

Чтобы осуществить заряд устройства, нужно включить устройство в цепь и присоединить к зажимам генератора. Как вы уже знаете, генератор имеет внутреннее сопротивление.

Если резистор подключить к заряженному конденсатору то ключ будет замкнут и конденсатор начнёт зарядку до напряжения между обкладками, которая станет равна э.д.с генератора и равна Uc=E. При этом, обкладка которая соединена с положительным зажимом, получит положительный заряд, вторая же получит отрицательный заряд.

Чтобы обе обкладки устройства полностью зарядились, нужно, чтобы одни из них приобрела определенное количество электронов, а вторая столько же потеряла.

Зарядный ток в цепи будет протекать сотые доли секунды, пока величина напряжения на устройстве достигнет такой же уровня, что и на генераторе. В то время, пока конденсатор будет заряжаться, по всей цепи будет проходить зарядный ток. Вначале он будет иметь максимальную величину, т.к. величина напряжения станет равна 0.

По мере того как конденсатор станет заряжаться, величина R на нём будет падать.

Время процесса зарядки будет зависеть от следующих величин:

  1. Внутреннее сопротивление электрического генератора.
  2. Способность конденсатора принять количество тока.

Для того, чтобы разрядить устройство нужно отключить его от генератора переменного тока и присоединить к его обкладкам сопротивление. Дело в том, что на обкладках уже есть разность потенциалов, поэтому в цепи потечет ток.

Он будет проходить от одной обкладки через сопротивление к другой. Процесс разряда будет проходить до тех пор, пока обе обкладки не станут равны, т.е. пока напряжение между ними станет равно 0.

В самом начале, напряжение будет максимальным, сила тока – наибольшая. Как только начнется разрядка, напряжение и сила тока будут уменьшаться.

Продолжительность разряда устройства имеет зависимость от:

  • Отношению заряда к разности потенциалов;
  • Удельному электрическому сопротивлению.

Чем значение сопротивления выше, тем дольше будет происходить разряд конденсатора. Это можно объяснить тем, что при максимальном сопротивлении, сила тока небольшая, а величина заряда станет медленно уменьшаться.

Для того, чтобы рассчитать время заряда и разряда на устройстве, лучше всего воспользоваться онлайн калькулятором.

Описание конденсатора постоянного тока

Электрические цепи бывают двух видов — постоянными или переменными. Все зависит от того, как в них протекает электроток. Устройства в этих цепях ведут себя по-разному.

Чтобы рассмотреть, как будет вести себя конденсатор в цепи постоянного тока, нужно:

  1. Взять блок питания постоянного напряжения и определить значение напряжения. Например, «12 Вольт».
  2. Установить лампочку, рассчитанную на такое же напряжение.
  3. В сеть установить конденсатор.

Никакого эффекта не будет: лампочка так и не засветится, а если убрать из цепи конденсатор, то свет появится. Если устройство будет включено в сеть переменного тока, то она попросту не будет замыкаться, поэтому и никакой электроток здесь пройти не сможет. Постоянный — не способен проходить по сети, в которую включен конденсатор. Всему виной обкладки этого устройства, а точнее, диэлектрик, который разделяет эти обкладки.
Убедиться в отсутствии напряжения в сети постоянного электротока можно и другими способами. Подключать к сети можно, что угодно, главное, чтобы в цепь был включен источник постоянного электротока. Элементом же, который будет сигнализировать об отсутствии напряжения в сети или, наоборот, о его присутствии, также может быть любой электроприбор. Лучше всего для этих целей использовать лампочку: она будет светиться, если электроток есть, и не будет гореть при отсутствии напряжения в сети.

Можно сделать вывод, что конденсатор не способен проводить через себя постоянный ток, однако это заключение неправильное. На самом деле электроток сразу после подачи напряжения появляется, но мгновенно и исчезает. В этом случае он проходит в течение лишь нескольких долей секунды. Точная продолжительность зависит от того, насколько емким является устройство, но это, как правило, в расчет не берется.

Общее описание

Физически электронное устройство — конденсатор — представляет собой две обкладки, выполненные из проводящего материала, между которыми находится диэлектрический слой. С поверхности пластин выводятся два электрода, предназначенные для подключения в электрическую цепь. Конструктивно прибор может быть различного размера и формы, но его структура остаётся неизменной, то есть всегда происходит чередование проводящего и диэлектрического слоев.

Слово «конденсатор» произошло от латинского «condensatio» — «накопление». Научное определение гласит, что накопительный электрический прибор — это двухполюсник, характеризующийся постоянным и переменным значениями ёмкости и большим сопротивлением. Предназначен он для накопления энергии и заряда. За единицу измерения ёмкости принят фарад (F).

Принцип действия конденсатора заключается в следующем: при включении прибора в электрическую цепь напряжение в ней будет иметь нулевую величину. В этот момент устройство начинает получать и накапливать заряд. Электрический ток, подающийся в схему, будет максимально возможным. Через некоторое время на одном из электродов прибора начнут накапливаться заряды положительного знака, а на другом — отрицательного.

Длительность этого процесса зависит от ёмкости прибора и активного сопротивления. Расположенный между выводами диэлектрик мешает перемещению частиц между обкладками. Но это будет происходить лишь до того момента, пока разность потенциалов источника питания и напряжение на выводах конденсатора не сравняются. В этот момент ёмкость станет максимально возможной, а электроток — минимальным.

Если на элемент перестают подавать напряжение, то при подключении нагрузки конденсатор начинает отдавать свой накопленный заряд ей. Его ёмкость уменьшается, а в цепи снижаются уровни напряжения и тока. Иными словами, накопительный прибор сам превращается в источник питания. Поэтому если конденсатор подключить к переменному току, то он начнёт периодически перезаряжаться, то есть создавать определённое сопротивление в цепи.

Особенности устройства с переменным электротоком

Чтобы определить, будет ли проходить переменный электроток, необходимо устройство подключить в соответствующую цепь. Основным источником электроэнергии в таком случае должно являться устройство, генерирующее именно переменный электроток.
Постоянный электрический ток не идет через конденсатор, а вот переменный, наоборот, протекает, причем устройство постоянно оказывает сопротивление проходящему через него электротоку. Величина этого сопротивления связана с частотой. Зависимость здесь обратно пропорциональная: чем ниже частота, тем выше сопротивление. Если к источнику переменного электротока подключить кондер, то наибольшее значение напряжения здесь будет зависеть от силы тока.

Сферы применения

Можно смело сказать, что конденсаторы используют практически во всех электронных и радиотехнических схемах. Чтобы иметь представление о том, где и зачем нужен конденсатор, следует вспомнить его способность сохранять заряд и разряжаться в нужное время, а также пропускать переменный ток и не пропускать постоянный. А это значит, что такие устройства используются во многих технических сферах, например:

  • телефонии;
  • в производстве счётных и запоминающих устройств;
  • автоматике;
  • при создании измерительных приборов и многих других.

Советуем изучить — Что такое датчик частоты вращения? как устроен, где применяется?

Нужно сказать, что накопители применяют и в сферах, не связанных с электрикой, например, в производстве металла и добыче угля, где используют конденсаторные электровозы.

Как правильно соединять конденсаторы?

У многих начинающих любителей электроники в процессе сборки самодельного устройства возникает вопрос: “Как правильно соединять конденсаторы?”

Казалось бы, зачем это надо, ведь если на принципиальной схеме указано, что в данном месте схемы должен быть установлен конденсатор на 47 микрофарад, значит, берём и ставим. Но, согласитесь, что в мастерской даже заядлого электронщика может не оказаться конденсатора с необходимым номиналом!

Похожая ситуация может возникнуть и при ремонте какого-либо прибора. Например, необходим электролитический конденсатор ёмкостью 1000 микрофарад, а под рукой лишь два-три на 470 микрофарад. Ставить 470 микрофарад, вместо положенных 1000? Нет, это допустимо не всегда. Так как же быть? Ехать на радиорынок за несколько десятков километров и покупать недостающую деталь?

Как выйти из сложившейся ситуации? Можно соединить несколько конденсаторов и в результате получить необходимую нам ёмкость. В электронике существует два способа соединения конденсаторов: параллельное и последовательное.

В реальности это выглядит так:

Параллельное соединение Принципиальная схема параллельного соединения Последовательное соединение Принципиальная схема последовательного соединения

Также можно комбинировать параллельное и последовательное соединение. Но на практике вам вряд ли это пригодиться.

Как рассчитать общую ёмкость соединённых конденсаторов?

Помогут нам в этом несколько простых формул. Не сомневайтесь, если вы будете заниматься электроникой, то эти простые формулы рано или поздно вас выручат.

Общая ёмкость параллельно соединённых конденсаторов:

Как подключать конденсаторы

В электротехнике есть два основных вида соединения деталей — параллельное и последовательное. Конденсаторы также можно подключать по любому из указанных способов. Есть ещё особая — мостовая схема. Она имеет собственную область использования.

В схеме может быть последовательное и параллельное соединение конденсаторов

Параллельное подключение конденсаторов

При параллельном соединении все конденсаторы объединены двумя узлами. Чтобы параллельно подключить конденсаторы, скручиваем попарно их ножки, обжимаем пассатижами, потом пропаиваем. У некоторых конденсаторов большие корпуса (банки), а выводы маленькие. В таком случае используем провода (как на рисунке ниже).

Так физически выглядит параллельное подключение конденсаторов

Если конденсаторы электролитические, следите за полярностью. На них должны стоять «+» или «-«. При их параллельном подключении соединяем одноимённые выводы — плюс к плюсу, минус — к минусу.

Советуем изучить — Где в москве принимают опасные бытовые отходы

Расчёт суммарной ёмкости

При параллельном подключении конденсаторов их номинальная ёмкость складывается. Просто суммируете номиналы всех подключённых элементов, сколько бы их ни было. Два, три, пять, тридцать. Просто складываем. Но следите, чтобы размерность совпадала. Например, складывать будем в микрофарадах. Значит, все значения переводим в микрофарады и только после этого суммируем.

Расчёт ёмкости при параллельном подключении конденсаторов

Когда на практике применяют параллельное соединение конденсаторов? Например, тогда, когда надо заменить «пересохший» или сгоревший, а нужного номинала нет и бежать в магазин некогда или нет возможности. В таком случае подбираем из имеющихся в наличии. В сумме они должны дать требуемое значение. Все их проверяем на работоспособность и соединяем по приведенному выше принципу.

Пример расчёта

Например, включили параллельно два конденсатора — 8 мкФ и 12 мкФ. Следуя формуле, их номиналы просто складываем. Получаем 8 мкФ + 12 мкФ = 20 мкФ. Это и будет суммарная ёмкость в данном случае.

Пример расчёта конденсаторов при параллельном подключении

Последовательное соединение

Последовательным называется соединение, когда выход одного элемента соединяется со входом другого. Сравнить можно с вагонами или цепочкой из лампочек. По такому же принципу последовательно соединяют и конденсаторы.

Вот что значит последовательно соединить конденсаторы

При подключении полярных электролитических «кондеров» надо следить за соблюдением полярности. Плюс первого конденсатора подаете на минус второго и так далее. Выстраиваете цепочку.

Как определить ёмкость последовательно соединенных конденсаторов

При последовательном соединении конденсаторов суммарная ёмкость элементов будет меньше самого маленького номинала в цепочке. То есть, ёмкость последовательно соединённых конденсаторов уменьшается. Это также может пригодиться при ремонте техники — замена конденсатора требуется часто.

Последовательно соединённые конденсаторы

Использовать формулу расчёта приведённую выше не очень удобно, поэтому её обычно используют в преобразованном виде:

Формула расчёта ёмкости при последовательном соединении

Это формула для двух элементов. При увеличении их количества она становится значительно сложнее. Хотя, редко можно встретить больше двух последовательных конденсаторов.

Пример расчёта

Какая суммарная ёмкость будет если конденсаторы на 12 мкФ и 8 мкФ соединить последовательно? Считаем: 12*8 / (12+8) = 96 / 20 = 4,8 мкФ. То есть, такая цепочка соответствует номиналу 4,8 мкФ.

Пример расчета ёмкости при последовательном подключении конденсаторов

Как видите, значение меньше чем самый маленький номинал в последовательности. А если подключить таким образом два одинаковых конденсатора, то результат будет вполовину меньше номинала. Например, рассчитаем для двух ёмкостей по 12 мкФ. Получим: 12*12 / (12 + 12) = 144 / 24 = 6 мкФ. Проверим для 8 мкФ. Считаем: 8*8 / (8+8) = 64 / 16 = 4 мкФ. Закономерность подтвердилась. Это правило можно использовать при подборе номинала.

цифровая электроника вычислительная техника встраиваемые системы

Делаем простой настроечный конденсатор для УКВ своими руками

Если вы заядлый радиолюбитель и любите собирать радиоприемники, то, наверное, могли заметить, что у поставщиков электронных компонентов ассортимент настроечных конденсаторов переменной емкости несколько поубавился. Было время, когда почти в каждом радиоприемнике имелся хотя бы один подстроечный конденсатор, но теперь с появлением варикапа и синтезатора частот такой конденсатор настройки антенного контура является редкостью. Они все еще производятся, но стоят не дешево, и они не будут появляться в вашем ящике для компонентов также быстро, как это было раньше.

К счастью, конденсатор переменной емкости представляет собой удивительно простое устройство. Причем вы можете сделать его самостоятельно, по крайней мере, конденсатор емкостью в несколько десятков пикофарад собирается из подручных материалов.

Для сборки самодельного конденсатора вам понадобятся болт, пара гаек, кусок медной проволоки с покрытием (длина 30 см, калибр AWG22, т.е. диаметр 0.64 мм) и маленький кусочек текстолита.

Для начала накрутите гайки на болт и нанесите на одну из граней каждой гайки олово, затем припаяйте данный болт с гайками к куску медного текстолита, как показано на рисунках ниже.

Болт желательно брать длиной 16 мм. Если такового под рукой не оказалось, то можно взять длиннее, но придется обрезать его до длины. Теперь обмотайте край болта медной проволокой. Сделайте 12 колец, после двенадцатого оборота отрежьте лишние концы проволоки, оставив примерно по 12-15 мм с каждой стороны.

На рисунке ниже показан предпоследний шаг. На этом этапе нужно сделать меленькую пластмассовую прокладку и поместить ее между гайками. Это необходимо для надежной фиксации конструкции при вращении болта во время настройки такого самодельного конденсатора. Кусок такой пластмассы может быть от чего угодно и любого типа пластика. В данном случае использовался кусок пластиковой трубы.

На заключительном этапе нужно просто согнуть внешний конец провода катушки по направлению к внутреннему концу, затем срежьте излишки. Далее возьмите нож или другое лезвие и снимите эмаль с конца провода. В конечном итоге возьмите отрезанный кусок провода, зачистите его весь и припаяйте его к куску текстолита между двумя гайками. Сделайте так, чтобы оба конца катушки имели длину около 12-15 мм. Теперь вы можете подключать этими концами ваш самодельный настроечный конденсатор переменной емкости к вашему радиоприемнику.

Провод, припаянный к печатной плате, действует в качестве ротора, а провод, идущий от катушки, действует в качестве статора. С помощью такого конденсатора можно получать емкость от 5 до 27 пФ.

Ток через конденсатор

Конденсаторы — это приборы, накапливающие электрическую энергию в виде зарядов. Аппараты не могут пропускать через себя постоянный ток. Будучи включёнными в цепь с переменным током, он уподобляется пружине, подвергающейся внешнему воздействию. Примечательно, что они не будет пропускать и ток, однако при его прохождении случится перезарядка накопителя, из-за чего покажется, что он проходит через обкладки. Если к ним в разряженном состоянии приложить постоянное напряжение, то по цепи пойдет ток, который снижается по мере зарядки накопителя. Когда достигается паритет значений напряжения на источнике питания и пластинах, он прекращает протекать, что приводит к разрыву.

Принцип работы конденсатора

Подключение прибора к постоянному источнику приводит к тому, что в начальный момент происходит аккумуляция в обкладках из-за электростатической индукции, а сопротивление в этот момент приравнивается нулю. Электрическая индукция провоцирует поле к притяжению разноимённых зарядов на разные обкладки, расположенные друг напротив друга.

Такое свойство получило название ёмкость, которая характерна для всех типов материалов, в том числе и диэлектриков, однако в случае с проводниками она существенно больше. Именно поэтому обкладки изготавливаются из проводника. Увеличение ёмкости способствует накоплению большего количества зарядок на обкладках.

Важно! Когда аккумулируются заряды, происходят ослабление поля и наращивание двухполюсника.

Происходит это из-за уменьшения места в обкладках, воздействия одноимённых зарядов друг на друга. Одновременно с этим напряжение приравнивается к источнику тока. Прекращение электричества в цепи происходит после того, когда обкладки полностью заполнятся электричеством. Из-за этого пропадает индукция и остаётся только поле, удерживающее и не пропускающее заряды.

Диэлектрик между обкладками

Электротоку будет некуда деться, а на двухполюснике напряжение приравнивается к ЭДС. Когда ЭДС повышается, поле сильнее воздействует на диэлектрик из-за отсутствия места в обкладках. Если внутреннее конденсаторное напряжение будет выше предельных значений, тогда пробьёт диэлектрик.

READ Терминал verifone vx520 как подключить к интернету

Конденсатор преобразуется в проводник, и происходит освобождение зарядов, из-за чего электроток начинает идти. Чтобы применять двухполюсник при высоком напряжении повышают размер диэлектрика и наращивают расстояние, имеющееся между обкладками на фоне снижения ёмкости. Диэлектрик располагается между обкладками и не даёт проходить постоянному, выполняя в отношении него барьерную функцию.

Электрическая индукция

Обратите внимание! Именно постоянное напряжение способно формировать электростатическую индукцию, но только в случае замыкания в момент зарядки конденсатора. Благодаря этому механизму сохраняется энергия до момента подсоединения к нему потребителю.

Конденсатор в цепи постоянного тока

Чтобы понять, как работает накопитель в цепи постоянного тока, надо добавить в схему лампочку, которая станет загораться только при зарядке, в процессе которой от электротока остаётся напряжение, как бы догоняющее его из-за плавного нарастания. Заряды электричества затрачивают какое-то время для перемещения к обкладкам, именно это и есть время зарядки, продолжительность которого определяется частотой и ёмкостью напряжения. Когда зарядка завершается, лампочка тухнет, и постоянный электроток перестаёт проходить через пассивный электронный компонент.

Конденсатор в цепи переменного тока

Если у источника изменить полярность, то это приведёт к разрядке конденсатора в цепи переменного тока и его повторной зарядке. Формируется постоянная электростатическая индукция при переменном. Всегда при изменении электричеством своего направления запускается механизм зарядки и разрядки, из-за чего он и пропускает переменный. Увеличение частоты приводит к снижению ёмкостного сопротивления двухполюсника.

Где и зачем применяются конденсаторы

Где и почему используются эти приборы, которые могут работать в радиотехнических, электронных и электротехнических устройствах? Накопители используются в электротехнике при включении асинхронных моторов для сдвига фаз, без чего двигатель в составе однофазной цепи не будет функционировать. Если ёмкость составляет несколько фарад, то их применяют в электромобилях для питания мотора.

Применение возможно в разных сферах

Правильное использование этих приборов позволит получить лучший результат. Понимание основных принципов физики упрощает эксплуатацию оборудования. Неправильное применение чревато негативными последствиями, вызванными несоблюдением техники безопасности.

Источник

Почему идет переменный ток через конденсатор

Конденсатор — это разрыв, поскольку его прокладки не касаются друг друга из-за нахождения между ними диэлектрика, не проводящего постоянный электроток. Однако будучи подключённым к постоянной цепи, он всё же может его проводить в момент подсоединения, поскольку происходит зарядка или перезарядка.

Когда завершается переходный процесс, ток перестаёт проходить через пассивный электронный компонент из-за разделения его обкладок диэлектриком. Будучи подключённым к такой цепи он проводит его колебания вследствие циклической перезарядки. Здесь прибор входит в колебательный контур и вместе с катушкой выполняет функцию накопителя энергии.

Такой симбиоз способствует преобразованию электричества в магнитную энергию или, наоборот, с равной их собственной частотной скоростью, которая рассчитывается по формуле: omega = 1 / sqrt(C × L).

Почему идёт переменный ток

Действительность такова, что конденсатор не способен пропускать через себя переменный ток. Сначала он его аккумулирует на обкладках. Возникает ситуация, в которой на одной из них имеет место переизбыток электронов, а на другой их, напротив, мало. В результате конденсатор отдаёт эти заряды, из-за чего электроны, находящиеся во внешней цепи, перемещаются в одну и в другую сторону от одной обкладки к другой.

К сведению! Результат выражается в том, что электроны перемещаются внутри внешней цепи, но не в самом пассивном компоненте. Энергия перераспределяется внутри поля между конденсаторными пластинками, что называют токами смещения, отличающимися от электротоков проводимости.

Формулы вычисления тока в конденсаторе

Ёмкость конденсатора, включенного в цепь переменного тока, рассчитывается по формуле: C = q / U, где:

Конденсаторы бывают разной формы, поэтому и их расчёт осуществляется по нескольким формулам:

Обратите внимание! Сопротивление в переменной цепи, которое может оказывать резистор, включённый в электрическую цепь, вычислить нельзя, так как она считается бесконечно большим. Однако в данном случае, это можно сделать по формуле: Хс = 1 / 2πvC = 1 / wC.

READ Телефункен телевизор как подключить цифровое тв

Напряжение конденсатора в цепи переменного тока вычисляется по следующей формуле: Wp = qd E / 2.

Напряжение рассчитывается по определенной формуле

Чтобы рассчитать напряжение на конденсаторе в цепи переменного тока, необходимо воспользоваться актуальными формулами.

Что такое конденсатор

Конденсаторы — это пассивные элементы, используемые при формировании разнообразных электротехнических схем, блокирующих и защитных устройств. Будучи включённым в переменную цепь накопитель аккумулирует и возвращает энергию. Если подключается переменный, то энергия возвращается в систему, при этом поддерживается периодичность, которая соответствует рабочей частоте.

Что собой представляют конденсаторы

К сведению! Когда через конденсатор протекает переменный ток, то он непрерывно оказывает ему сопротивление, величина которого обратно пропорционально зависит от частоты.

Уменьшение частоты приводит к повышению сопротивления. Когда источник, генерирующий такой ток, подключается к накопителю, то максимальное напряжение определяется силой.

Чтобы на примере убедиться в возможности проведения переменного тока, формируют простую электрическую цепь, включающую следующие компоненты:

Будучи включённым в переменную конденсатор время от времени перезаряжается, приобретая и отдавая заряды. Следовательно, происходит обмен электричеством между источником и двухполюсником, что приводит к формированию реактивной энергии.

Обратите внимание! Прибор не допускает пропускание по постоянной сети, поскольку в этом случае имеющееся сопротивление будет равно бесконечности. Если проходит переменный, то у сопротивления будет конечное значение.

Конденсатор в цепи переменного тока

Если конденсатор включить в цепь постоянного тока, то такая цепь будет разомкнутой, так как обкладки конденсатора разделяет диэлектрик, и ток в цепи идти не будет. Иначе происходит в цепи переменного тока. Переменный ток способен течь в цепи, если она содержит конденсатор. Это происходит не из-за того, что заряды вдруг получили возможность перемещаться между пластинами конденсатора. В цепи переменного тока происходит периодическая зарядка и разрядка конденсатора, который в нее включен благодаря действию переменного напряжения.

Рассмотрим цепь на рис.1, которая включает конденсатор. Будем считать, что сопротивление проводов и обкладок конденсатора не существенно, напряжение переменного тока изменяется по гармоническому закону:

    [U=U_m{cos left(omega tright)} qquad (1)]

Конденсатор в цепи переменного тока, рисунок 1

По определению емкость на конденсаторе равна:

    [C=frac{q}{U} qquad (2)]

Следовательно, напряжение на конденсаторе:

    [U=frac{q}{C}=U_m{cos left(omega tright)} qquad (3)]

Из выражения (3), очевидно, что заряд на конденсаторе будет изменяться по гармоническому закону:

    [q=CU_m{cos left(omega tright)} qquad (4)]

Сила тока равна:

    [I=frac{dq}{dt}=-CU_m{omega  sin left(omega tright)=CU_momega {cos left(omega t+frac{pi}{2}right)}} qquad (5)]

Сравнивая законы колебаний напряжения на конденсаторе и силы тока, видим, что колебания тока опережают напряжение на frac{pi}{2}. Этот факт отражает то, что в момент начала зарядки конденсатора сила тока в цепи является максимальной при равенстве нулю напряжения. В момент времени, когда напряжение достигает максимума, сила тока падает до нуля.

В течение frac{1}{4} периода, при зарядке конденсатора до максимального напряжения, энергия, поступающая в цепь, запасается на конденсаторе, в виде энергии электрического поля. За следующую четверть периода данная энергия возвращается обратно в цепь, когда конденсатор разряжается.

Амплитуда силы тока (I_m), исходя из выражения (5), равна:

    [I_m=CU_momega qquad (6)]

Емкостное сопротивление конденсатора

Физическую величину, равную обратному произведению циклической частоты на емкость конденсатора называют его емкостным сопротивлением (X_C):

    [X_C=frac{1}{omega C} qquad (7)]

Роль емкостного сопротивления уподобляют роли активного сопротивления (R) в законе Ома:

    [R=frac{U_m}{I_m} qquad (8)]

где I_m – амплитудное значение силы тока; U_m – амплитуда напряжения. Для емкостного сопротивления действующая величина силы тока имеет связь с действующим значением напряжения аналогичную выражению (8) (как сила тока и напряжение для постоянного тока):

    [X_C=frac{U}{I} qquad (9)]

На основании (9) говорят, что X_C сопротивление конденсатора переменному току.

При увеличении емкости конденсатора растет ток перезарядки. Тогда как сопротивление конденсатора постоянному току является бесконечно большим (в идеальном случае), ёмкостное сопротивление конечно. С увеличением емкости и (или) частоты X_C уменьшается.

Примеры решения задач

Понравилась статья? Поделить с друзьями:
  • Как найти коран на русском
  • Как составить видение примеры
  • Как составить соглашение об алиментах на жену
  • Как исправить контрольную сумму в прошивке
  • Как найти того кто ворует электроэнергию