Как найти емкость плоского воздушного конденсатора

Конденсатор. Энергия электрического поля

  • Темы кодификатора ЕГЭ: электрическая ёмкость, конденсатор, энергия электрического поля конденсатора.

  • Ёмкость уединённого проводника

  • Ёмкость плоского конденсатора

  • Энергия заряженного конденсатора

  • Энергия электрического поля

Автор статьи — профессиональный репетитор, автор учебных пособий для подготовки к ЕГЭ Игорь Вячеславович Яковлев

Темы кодификатора ЕГЭ: электрическая ёмкость, конденсатор, энергия электрического поля конденсатора.

Предыдущие две статьи были посвящены отдельному рассмотрению того, каким образом ведут себя в электрическом поле проводники и каким образом — диэлектрики. Сейчас нам понадобится объединить эти знания. Дело в том, что большое практическое значение имеет совместное использование проводников и диэлектриков в специальных устройствах — конденсаторах.

Но прежде введём понятие электрической ёмкости.

к оглавлению ▴

Ёмкость уединённого проводника

Предположим, что заряженный проводник расположен настолько далеко от всех остальных тел, что взаимодействие зарядов проводника с окружающими телами можно не принимать во внимание. В таком случае проводник называется уединённым.

Потенциал всех точек нашего проводника, как мы знаем, имеет одно и то же значение varphi , которое называется потенциалом проводника. Оказывается, что потенциал уединённого проводника прямо пропорционален его заряду. Коэффициент пропорциональности принято обозначать 1/C, так что

varphi = frac{displaystyle q}{displaystyle C vphantom{1^a}}.

Величина C называется электрической ёмкостью проводника и равна отношению заряда проводника к его потенциалу:

C = frac{displaystyle q}{displaystyle varphi }. (1)

Например, потенциал уединённого шара в вакууме равен:

varphi = frac{displaystyle kq}{displaystyle R vphantom{1^a}}=frac{displaystyle q}{displaystyle 4 pi varepsilon_0R vphantom{1^a}},

где q — заряд шара, R — его радиус. Отсюда ёмкость шара:

C=4 pi varepsilon_0R. (2)

Если шар окружён средой-диэлектриком с диэлектрической проницаемостью varepsilon, то его потенциал уменьшается в varepsilon раз:

varphi = frac{displaystyle q}{displaystyle 4 pi varepsilon_0 varepsilon R vphantom{1^a}}.

Соответственно, ёмкость шара в varepsilon раз увеличивается:

C=4 pi varepsilon_0 varepsilon R. (3)

Увеличение ёмкости при наличии диэлектрика — важнейший факт. Мы ещё встретимся с ним при рассмотрении конденсаторов.

Из формул (2) и (3) мы видим, что ёмкость шара зависит только от его радиуса и диэлектрической проницаемости окружающей среды. То же самое будет и в общем случае: ёмкость уединённого проводника не зависит от его заряда; она определяется лишь размерами и формой проводника, а также диэлектрической проницаемостью среды, окружающей проводник. От вещества проводника ёмкость также не зависит.

В чём смысл понятия ёмкости? Ёмкость показывает, какой заряд нужно сообщить проводнику, чтобы увеличить его потенциал на 1 В. Чем больше ёмкость — тем, соответственно, больший заряд требуется поместить для этого на проводник.

Единицей измерения ёмкости служит фарад (Ф). Из определения ёмкости (1) видно, что Ф = Кл/В.

Давайте ради интереса вычислим ёмкость земного шара (он является проводником!). Радиус считаем приближённо равным 6400 км.

C = 4 pi varepsilon_0 R approx 4 cdot 3,14 cdot 8,85 cdot 10^{-12} cdot 6400 cdot 10^3 approx 712  мкФ.

Как видите, 1 Ф — это очень большая ёмкость.

Единица измерения ёмкости полезна ещё и тем, что позволяет сильно сэкономить на обозначении размерности диэлектрической постоянной varepsilon_0. В самом деле, выразим varepsilon_0 из формулы (2):

varepsilon_0 = frac{displaystyle C} {displaystyle 4 pi R vphantom{1^a}}.

Следовательно, диэлектрическая постоянная может измеряться в Ф/м:

varepsilon_0 = 8,85 cdot 10^{-12}   Ф.

Так легче запомнить, не правда ли?

к оглавлению ▴

Ёмкость плоского конденсатора

Ёмкость уединённого проводника на практике используется редко. В обычных ситуациях проводники не являются уединёнными. Заряженный проводник взаимодействует с окружающими телами и наводит на них заряды, а потенциал поля этих индуцированных зарядов (по принципу суперпозиции!) изменяет потенциал самого проводника. В таком случае уже нельзя утверждать, что потенциал проводника будет прямо пропорционален его заряду, и понятие ёмкости проводника самого по себе фактически утрачивает смысл.

Можно, однако, создать систему заряженных проводников, которая даже при накоплении на них значительного заряда почти не взаимодействует с окружающими телами. Тогда мы сможем снова говорить о ёмкости — но на сей раз о ёмкости этой системы проводников.

Наиболее простым и важным примером такой системы является плоский конденсатор. Он состоит из двух параллельных металлических пластин (называемых обкладками), разделённых слоем диэлектрика. При этом расстояние между пластинами много меньше их собственных размеров.

Для начала рассмотрим воздушный конденсатор, у которого между обкладками находится воздух left ( varepsilon =1 right ).

Пусть заряды обкладок равны +q и -q. Именно так и бывает в реальных электрических схемах: заряды обкладок равны по модулю и противоположны по знаку. Величина q — заряд положительной обкладки — называется зарядом конденсатора.

Пусть S — площадь каждой обкладки. Найдём поле, создаваемое обкладками в окружающем пространстве.

Поскольку размеры обкладок велики по сравнению с расстоянием между ними, поле каждой обкладки вдали от её краёв можно считать однородным полем бесконечной заряженной плоскости:

E_+ = E_-=frac{displaystyle sigma }{displaystyle 2 varepsilon_0 vphantom{1^a}}.

Здесь E_+ — напряжённость поля положительной обкладки, E_- — напряженность поля отрицательной обкладки, sigma — поверхностная плотность зарядов на обкладке:

sigma =frac{displaystyle q}{displaystyle S vphantom{1^a}}.

На рис. 1 (слева) изображены векторы напряжённости поля каждой обкладки в трёх областях: слева от конденсатора, внутри конденсатора и справа от конденсатора.

Рис. 1. Электрическое поле плоского конденсатора

Согласно принципу суперпозиции, для результирующего поля vec{E} имеем:

vec{E} = vec{E}_+ + vec{E}_-

Нетрудно видеть, что слева и справа от конденсатора поле обращается в нуль (поля обкладок погашают друг друга):

E = E_+ - E_-=0.

Внутри конденсатора поле удваивается:

E = E_+ + E_-= frac{displaystyle sigma }{displaystyle varepsilon_0},

или

E = frac{displaystyle q}{displaystyle varepsilon_0 S vphantom{1^a}}. (4)

Результирующее поле обкладок плоского конденсатора изображено на рис. 1 справа. Итак:

Внутри плоского конденсатора создаётся однородное электрическое поле, напряжённость которого находится по формуле (4). Снаружи конденсатора поле равно нулю, так что конденсатор не взаимодействует с окружающими телами.

Не будем забывать, однако, что данное утверждение выведено из предположения, будто обкладки являются бесконечными плоскостями. На самом деле их размеры конечны, и вблизи краёв обкладок возникают так называемые краевые эффекты: поле отличается от однородного и проникает в наружное пространство конденсатора. Но в большинстве ситуаций (и уж тем более в задачах ЕГЭ по физике) краевыми эффектами можно пренебречь и действовать так, словно утверждение, выделенное курсивом, является верным без всяких оговорок.

Пусть расстояние между обкладками конденсатора равно d. Поскольку поле внутри конденсатора является однородным, разность потенциалов U между обкладками равна произведению E на d (вспомните связь напряжения и напряжённости в однородном поле!):

U=Ed=frac{displaystyle qd}{displaystyle varepsilon_0 S vphantom{1^a}}. (5)

Разность потенциалов между обкладками конденсатора, как видим, прямо пропорциональна заряду конденсатора. Данное утверждение аналогично утверждению «потенциал уединённого проводника прямо пропорционален заряду проводника», с которого и начался весь разговор о ёмкости. Продолжая эту аналогию, определяем ёмкость конденсатора как отношение заряда конденсатора к разности потенциалов между его обкладками:

C=frac{displaystyle q}{displaystyle U vphantom{1^a}}. (6)

Ёмкость конденсатора показывает, какой заряд ему нужно сообщить, чтобы разность потенциалов между его обкладками увеличилась на 1 В. Формула (6), таким образом, является модификацией формулы (1) для случая системы двух проводников — конденсатора.

Из формул (6) и (5) легко находим ёмкость плоского воздушного конденсатора:

C=frac{displaystyle varepsilon_0 S}{displaystyle d vphantom{1^a}}. (7)

Она зависит только от геометрических характеристик конденсатора: площади обкладок и расстояния между ними.
Предположим теперь, что пространство между обкладками заполнено диэлектриком с диэлектрической проницаемостью varepsilon. Как изменится ёмкость конденсатора?

Напряжённость поля внутри конденсатора уменьшится в varepsilon раз, так что вместо формулы (4) теперь имеем:

E=frac{displaystyle q}{displaystyle varepsilon_0 varepsilon S vphantom{1^a}}. (8)

Соответственно, напряжение на конденсаторе:

U=Ed=frac{displaystyle qd}{displaystyle varepsilon_0 varepsilon S vphantom{1^a}}. (9)

Отсюда ёмкость плоского конденсатора с диэлектриком:

C=frac{displaystyle varepsilon_0 varepsilon S}{displaystyle d vphantom{1^a}}. (10)

Она зависит от геометрических характеристик конденсатора (площади обкладок и расстояния между ними) и от диэлектрической проницаемости диэлектрика, заполняющего конденсатор.

Важное следствие формулы (10): заполнение конденсатора диэлектриком увеличивает его ёмкость.

к оглавлению ▴

Энергия заряженного конденсатора

Заряженный конденсатор обладает энергией. В этом можно убедиться на опыте. Если зарядить конденсатор и замкнуть его на лампочку, то (при условии, что ёмкость конденсатора достаточно велика) лампочка ненадолго загорится.

Следовательно, в заряженном конденсаторе запасена энергия, которая и выделяется при его разрядке. Нетрудно понять, что этой энергией является потенциальная энергия взаимодействия обкладок конденсатора — ведь обкладки, будучи заряжены разноимённо, притягиваются друг к другу.

Мы сейчас вычислим эту энергию, а затем увидим, что существует и более глубокое понимание происхождения энергии заряженного конденсатора.

Начнём с плоского воздушного конденсатора. Ответим на такой вопрос: какова сила притяжения его обкладок друг к другу? Величины используем те же: заряд конденсатора q, площадь обкладок S.

Возьмём на второй обкладке настолько маленькую площадку, что заряд q_0 этой площадки можно считать точечным. Данный заряд притягивается к первой обкладке с силой

F_0 = q_0E_1,

где E_1 — напряжённость поля первой обкладки:

E_1=frac{displaystyle sigma }{displaystyle 2 varepsilon _0 vphantom{1^a}}=frac{displaystyle q}{displaystyle 2varepsilon_0 S vphantom{1^a}}.

Следовательно,

F_0=frac{displaystyle q_0q}{displaystyle 2 varepsilon_0 S vphantom{1^a}}.

Направлена эта сила параллельно линиям поля (т. е. перпендикулярно пластинам).

Результирующая сила F притяжения второй обкладки к первой складывается из всех этих сил F_0, с которыми притягиваются к первой обкладке всевозможные маленькие заряды q_0 второй обкладки. При этом суммировании постоянный множитель q/(2 varepsilon_0 S) вынесется за скобку, а в скобке просуммируются все q_0 и дадут q. В результате получим:

F=frac{displaystyle q^2}{displaystyle 2 varepsilon_0 S vphantom{1^a}}. (11)

Предположим теперь, что расстояние между обкладками изменилось от начальной величины d_1 до конечной величины d_2. Сила притяжения пластин совершает при этом работу:

A = F(d_1 - d_2).

Знак правильный: если пластины сближаются (d_2 < d_1), то сила совершает положительную работу, так как пластины притягиваются друг к другу. Наоборот, если удалять пластины (d_2 > d_1), то работа силы притяжения получается отрицательной, как и должно быть.

С учётом формул (11) и (7) имеем:

A=frac{displaystyle q^2}{displaystyle 2 varepsilon_0 S vphantom{1^a}}left ( d_1-d_2 right )=frac{displaystyle q^2d_1}{displaystyle 2varepsilon_0 S vphantom{1^a}}-frac{displaystyle q^2d_2}{displaystyle 2varepsilon_0 S vphantom{1^a}}=frac{displaystyle q^2}{displaystyle 2C_1 vphantom{1^a}}-frac{displaystyle q^2}{displaystyle 2C_2 vphantom{1^a}}=W_1-W_2,

где
W_1=frac{displaystyle q^2}{displaystyle 2C_1 vphantom{1^a}},
W_2=frac{displaystyle q^2}{displaystyle 2C_2 vphantom{1^a}}

Это можно переписать следующим образом:

A = -(W_2 - W_1) = - Delta W,

где

W=frac{displaystyle q^2}{displaystyle 2C vphantom{1^a}}. (12)

Работа потенциальной силы F притяжения обкладок оказалась равна изменению со знаком минус величины W. Это как раз и означает, что W — потенциальная энергия взаимодействия обкладок, или энергия заряженного конденсатора.

Используя соотношение q = CU, из формулы (12) можно получить ещё две формулы для энергии конденсатора (убедитесь в этом самостоятельно!):

W=frac{displaystyle qU}{displaystyle 2 vphantom{1^a}}, (13)

W=frac{displaystyle CU^2}{displaystyle 2 vphantom{1^a}}. (14)

Особенно полезными являются формулы (12) и (14).

Допустим теперь, что конденсатор заполнен диэлектриком с диэлектрической проницаемостью varepsilon. Сила притяжения обкладок уменьшится в varepsilon раз, и вместо (11) получим:

F=frac{displaystyle q^2}{displaystyle 2 varepsilon_0 varepsilon S vphantom{1^a}}.

При вычислении работы силы F, как нетрудно видеть, величина varepsilon войдёт в ёмкость C, и формулы (12)(14) останутся неизменными. Ёмкость конденсатора в них теперь будет выражаться по формуле (10).

Итак, формулы (12)(14) универсальны: они справедливы как для воздушного конденсатора, так и для конденсатора с диэлектриком.

к оглавлению ▴

Энергия электрического поля

Мы обещали, что после вычисления энергии конденсатора дадим более глубокое истолкование происхождения этой энергии. Что ж, приступим.

Рассмотрим воздушный конденсатор и преобразуем формулу (14) для его энергии:

W=frac{displaystyle CU^2}{displaystyle 2 vphantom{1^a}}=frac{displaystyle varepsilon_0 S}{displaystyle d vphantom{1^a}} cdot frac{displaystyle (Ed)^2}{displaystyle 2 vphantom{1^a}}=frac{displaystyle varepsilon_0 E^2}{displaystyle 2 vphantom{1^a}}Sd.

Но Sd = V — объём конденсатора. Получаем:

W=frac{displaystyle varepsilon_0 E^2}{displaystyle 2 vphantom{1^a}}V. (15)

Посмотрите внимательно на эту формулу. Она уже не содержит ничего, что являлось бы специфическим для конденсатора! Мы видим энергию электрического поля E, сосредоточенного в некотором объёме V.

Энергия конденсатора есть не что иное, как энергия заключённого внутри него электрического поля.

Итак, электрическое поле само по себе обладает энергией. Ничего удивительного для нас тут нет. Радиоволны, солнечный свет — это примеры распространения энергии, переносимой в пространстве электромагнитными волнами.

Величина omega = W/V — энергия единицы объёма поля — называется объёмной плотностью энергии. Из формулы (15) получим:

omega =frac{displaystyle varepsilon_0 E^2}{displaystyle 2 vphantom{1^a}}. (16)

В этой формуле не осталось вообще никаких геометрических величин. Она даёт максимально чистую связь энергии электрического поля и его напряжённости.

Если конденсатор заполнен диэлектриком, то его ёмкость увеличивается в varepsilon раз, и вместо формул (15) и (16) будем иметь:

W =frac{displaystyle varepsilon_0 varepsilon E^2}{displaystyle 2 vphantom{1^a}}V. (17)

omega =frac{displaystyle varepsilon_0 varepsilon E^2}{displaystyle 2 vphantom{1^a}}. (18)

Как видим, энергия электрического поля зависит ещё и от диэлектрической проницаемости среды, в которой поле находится.
Замечательно, что полученные формулы для энергии и плотности энергии выходят далеко за пределы электростатики: они справедливы не только для электростатического поля, но и для электрических полей, меняющихся во времени.

Благодарим за то, что пользуйтесь нашими публикациями.
Информация на странице «Конденсатор. Энергия электрического поля» подготовлена нашими редакторами специально, чтобы помочь вам в освоении предмета и подготовке к экзаменам.
Чтобы успешно сдать нужные и поступить в ВУЗ или техникум нужно использовать все инструменты: учеба, контрольные, олимпиады, онлайн-лекции, видеоуроки, сборники заданий.
Также вы можете воспользоваться другими материалами из разделов нашего сайта.

Публикация обновлена:
08.05.2023

Определение

Конденсатор служит для накопления электрического заряда. Он представляет собой два проводника, разделенных слоем диэлектрика.

Плоский конденсатор — система двух разноименно заряженных пластин.

Разность потенциалов U (В) между обкладками конденсатора (напряжение между пластинами), определяется произведением напряженности создаваемого ими электрического поля на расстояние между ними:

U=Ed

Электроемкость конденсатора

Определение

Электрическая емкость — характеристика проводника, мера его способности накапливать электрический заряд.

Электроемкость обозначается как C. Единица измерения электрической емкости — Фарад (Ф).

Электроемкость конденсатора определяется формулой:

C=ε0εSd

  • ε0 — диэлектрическая постоянная, равная 8,85∙10–12 Кл2/(Н∙м2);
  • ε — диэлектрическая проницаемость среды;
  • S2) — площадь каждой пластины.

Внимание! У воздушного конденсатора диэлектрическая проницаемость среды равна 1.

Связь между электроемкостью конденсатора, зарядом и напряжением определяется формулами:

C=QU=qU

Важно! Электроемкость конденсатора зависит только от площади его пластин, расстояния между ними и диэлектрической проницаемости среды. От заряда и напряжения эта величина не зависит.

Энергия конденсатора

Формула энергии конденсатора

Энергия конденсатора связана с его электроемкостью и вычисляется по следующим формулам:

Wэ=q22C=CU22

Подсказки к задачам

Конденсатор отключен от источника q = q′
Конденсатор подключен к источнику U = U′
Количество теплоты и энергия конденсатора Q = ∆Wэ

Пример №1. Вычислить электроемкость плоского воздушного конденсатора с квадратными пластинами со стороной 10 см, расположенными на расстоянии 1 мм друг от друга. Ответ округлить до десятых.

10 см = 0,1 м

1 мм = 0,001 м

Так как между обкладками конденсатора находится воздух, примем диэлектрическую проницаемость среды за единицу.

Площадь квадратной пластины равна квадрату ее стороны:

S = a2

Соединения конденсаторов

Последовательное соединение Параллельное соединение
Схема
Напряжение

U=U1+U2

U=U1=U2

Заряд

q=q1=q2

q=q1+q2

Электроемкость

1C=1C1+1C2

C=C1+C2

Подсказки к задачам

Два конденсатора, электроемкости которых C1 и C2, заряжены до напряжения U1 и U2. Найдите разность потенциалов после соединения конденсаторов одноименными полюсами. Схема соединения конденсаторов одноименными полюсами:

Заряд системы после соединения:

q
=C1U1+C2U2

Электрическая емкость системы:

C
=C1+C2

Напряжение:

U
=qC=C1U1+C2U2C1+C2

Два конденсатора, электроемкости которых C1 и C2, заряжены до напряжения U1 и U2. Найдите разность потенциалов после соединения конденсаторов разноименными полюсами.

Схема соединения конденсаторов разноименными полюсами:

Заряд системы после соединения:

q
=C1U1C2U2

Электрическая емкость системы:

C
=C1+C2

Напряжение:

U
=qC=C1U1C2U2C1+C2

Пример №2. К конденсатору, электрическая емкость которого C = 16 пФ, подключают два одинаковых конденсатора емкостью X: один параллельно, а второй — последовательно (см. рисунок). Емкость образовавшейся батареи конденсаторов равна емкости C. Какова емкость X? Ответ округлите до десятых.

Электрическая емкость параллельного соединения равна:

Cпарал=X+C

Электроемкость последовательного соединения:

1Cпослед=1Cпарал+1X=1X+C+1X

Учтем, что суммарная электроемкость равна C:

1C=1X+C+1X

Преобразуем, умножим выражение на CX(X+C):

X(X+C)=CX+C(X+C)

Раскроем скобки:

X2+XC=CX+CX+C2

X2CXC2=0

Решив уравнение, получим: X = 25,9 пФ.

Разбор задач на тему «Заряженная частица в поле конденсатора»

Шарик, находящийся в масле плотностью ρ, «висит» в поле плоского конденсатора. Плотность вещества шарика ρш > ρ, его радиус r, расстояние между обкладками конденсатора d. Каков заряд шарика, если электрическое поле направлено вверх, а разность потенциалов между обкладками U? Условие равновесия исходит из второго закона Ньютона:

Fтяж+FK+FA=0

ρш > ρ, поэтому Fтяж> FA. В этом случае сила Кулона направлена вверх, а заряд шарика положительный. Схематически это можно отобразить так:

Проекция второго закона Ньютона на ось ОУ:

FK+FA=Fтяж

Сила тяжести равна произведению объема на плотность шарика и на ускорение свободного падения:

Fтяж=ρш43πr3g

Архимедова сила равна произведению объема шарика на плотность масла и на ускорение свободного падения:

FА=ρ43πr3g

Сила Кулона:

FK=qUd

qUd+ρ43πr3g=ρш43πr3g

q=(ρш43πr3gρ43πr3g)dU=4πr3gd(ρшρ)3U

Маленький шарик с зарядом q и массой m, подвешенный на невесомой нити с коэффициентом упругости k, находится между вертикальными пластинами воздушного конденсатора. Расстояние между обкладками конденсатора d. Какова разность потенциалов между обкладками конденсатора U, если удлинение нити ∆l?

Условие равновесия исходит из второго закона Ньютона:

Fтяж+FK+Fупр=0

Проекции на оси ОХ и ОУ соответственно:

FупрsinαFK=0

Fупрcosαmg=0

Отсюда:

kΔlsinα=qUd

kΔlcosα=mg

Чтобы избавиться от угла α, возведем уравнения в квадрат и сложим их:

(kΔl)2sin2α+(kΔl)2cos2α=(qUd)2+(mg)2

(kΔl)2(sin2α+cos2α)=(qUd)2+(mg)2

sin2α+cos2α=1

(kΔl)2=(qUd)2+(mg)2

U=dq(kΔl)2(mg)2

Пластины плоского конденсатора расположены горизонтально на расстоянии d друг от друга. Напряжение на пластинах конденсатора U. В пространстве между пластинами падает капля жидкости. Масса капли m, ее заряд q. Определите расстояние между пластинами. Влиянием воздуха на движение капли пренебречь. Второй закон Ньютона в векторной форме:

Fтяж+FK=0

Проекция на вертикальную ось:

FтяжFK=0

Fтяж=mg

FK=qUd

mg=qUd

d=qUmg

Между двумя параллельными горизонтально расположенными диэлектрическими пластинами создано однородное электрическое поле с напряженностью E, направленное вертикально вниз. Между пластинами помещен шарик на расстоянии d от верхней пластины и b от нижней. Заряд шарика –q, масса m. Шарик освобождают, и он начинает двигаться. Через какой промежуток времени t шарик ударится об одну из пластин, если система находится в поле силы тяжести Земли? Второй закон Ньютона в векторной форме:

Fтяж+FK=ma

Согласно условию данной задачи, сила тяжести противоположно направлена силе Кулона. Построим рисунок:

Если Fтяж > FK, то шарик движется с ускорением вниз. Ускорение и перемещение в этом случае равны:

a=mgqEm

s=b

Если Fтяж < FK, то шарик движется с ускорением верх. Ускорение и перемещение в этом случае равны:

a=qEmgm

s=d

Начальная скорость шарика равна нулю. Поэтому перемещение также равно:

s=at22

Сделаем вычисления для случая Fтяж > FK:

at22=b

mgqEmt22=b

t=2bmmgqE

Выполняя вычисления для случая Сделаем вычисления для случая Fтяж < FK, получим:

t=2bmqEmg

Между двумя параллельными, вертикально расположенными диэлектрическими пластинами создано однородное электрическое поле, напряженность которого E и направлена слева направо. Между пластинами помещен шарик на расстоянии b от левой пластины и d от правой. Заряд шарика –q, масса m. Шарик освобождают, и он начинает двигаться. Найдите смещение шарика по вертикали ∆h до удара об одну из пластин. Пластины имеют достаточно большой размер. Второй закон Ньютона в векторной форме:

Fтяж+FK=ma

Если сила Кулона направлена вправо, то sx = d.

Если сила Кулона направлена вправо, то sx = b.

Учитывая, что заряд меньше нуля, а вектор напряженности направлен вправо, делаем вывод, что кулоновская сила направлена влево.

Из проекций второго закона Ньютона выразим проекции ускорения на оси ОХ и ОУ соответственно:

ax=qEm

ay=g

Проекции перемещений на эти же оси:

sx=axt22

sx=Δh=gt22

axt22=b

Или:

qEmt22=b

Так как время движения шарика по вертикали и горизонтали одинаково:

t2=2Δhg=2mbqE

Δh=mbgqE

Задание EF17979

Введите ответ в поле ввода
Плоский конденсатор подключён к гальваническому элементу. Как изменятся при уменьшении зазора между обкладками конденсатора три величины: ёмкость конденсатора, величина заряда на его обкладках, разность потенциалов между ними?

Для каждой величины определите соответствующий характер изменения:

  1. увеличится
  2. уменьшится
  3. не изменится

Запишите в таблицу выбранные цифры для каждой физической величины. Цифры в ответе могут повторяться.


Алгоритм решения

1.Определить, от чего зависит емкость конденсатора, и как она изменится при уменьшении зазора между его обкладками.

2.Определить, от чего зависит величина заряда конденсатора, и как она изменится после уменьшения зазора между его обкладками.

3.Определить, от чего зависит разность потенциалов между обкладками конденсатора, и как она изменится при уменьшении зазора.

Решение

Емкость конденсатора определяется формулой:

C=ε0εSd

Следовательно, емкость имеет обратно пропорциональную зависимость от расстояния между обкладками. Если расстояние уменьшить, то емкость увеличится.

Вот как взаимосвязана электроемкость и заряд конденсатора:

C=qU

Мы выяснили, что электроемкость увеличивается. Следовательно, увеличится и заряд, так как они имеют прямо пропорциональную зависимость.

С учетом того, что плоский конденсатор подключен к гальваническому элементу, разность потенциалов никак не зависит от расстояния между обкладками. Поэтому величина U остается неизменной.

Ответ: 113

pазбирался: Алиса Никитина | обсудить разбор

Задание EF18574

Воспользовавшись оборудованием, представленным на рис. 1, учитель собрал модель плоского конденсатора (рис. 2), зарядил нижнюю пластину положительным зарядом, а корпус электрометра заземлил. Соединённая с корпусом электрометра верхняя пластина конденсатора приобрела отрицательный заряд, равный по модулю заряду нижней пластины. После этого учитель сместил одну пластину относительно другой не изменяя расстояния между ними (рис. 3). Как изменились при этом показания электрометра (увеличились, уменьшились, остались прежними)? Ответ поясните, указав, какие явления и закономерности Вы использовали для объяснения. Показания электрометра в данном опыте прямо пропорциональны разности потенциалов между пластинами конденсатора.


Алгоритм решения

1.Проанализировать каждый этап эксперимента.

2.Установить, от чего зависит угол отклонения стрелки электрометра.

3.Выяснить, что поменяется при смещении одной пластины конденсатора относительно другой, и что при этом произойдет со стрелкой электрометра.

Решение

На первом рисунке стрелка и стержень электрометра, соединённые с нижней пластиной, но изолированные от корпуса, заряжаются положительно. Поэтому стрелка отклоняется на некоторый угол. В верхней пластине и металлическом корпусе электрометра происходит перераспределение свободных электронов таким образом, что верхняя пластина заряжается отрицательно.

На втором рисунке заряды пластин одинаковы по модулю и противоположны по знаку, пластины образуют конденсатор с ёмкостью:

C=ε0εSd

S — площадь перекрытия пластин, d — расстояние между ними, ε — диэлектрическая проницаемость диэлектрика между пластинами.

Характер изменения угла отклонения стрелки совпадает с изменением разности потенциалов между пластинами: при увеличении разности потенциалов увеличивается угол отклонения, при уменьшении разности потенциалов угол уменьшается.

На рисунке 3 площадь перекрытия пластин уменьшилась. Следовательно, уменьшилась электроемкость, которая имеет обратно пропорциональную зависимость от разности потенциалов:

C=qU

Заряд остается постоянным, поскольку система изолированная — заряду просто некуда деться. Поэтому с уменьшением электроемкость растет разность потенциалов. Поэтому показания электрометра увеличатся.

Ответ: Увеличатся

pазбирался: Алиса Никитина | обсудить разбор

Задание EF18695

Ученик изучает свойства плоского конденсатора. Какую пару конденсаторов (см. рисунок) он должен выбрать, чтобы на опыте обнаружить зависимость ёмкости конденсатора от расстояния между его обкладками?


Алгоритм решения

  1. Установить, какие величины в данном эксперименте должны быть переменными, а какие — постоянными.
  2. Найти рисунок с парой конденсаторов, удовлетворяющий требованиям, выявленным в шаге 1.

Решение

Чтобы на опыте обнаружить зависимость ёмкости конденсатора от расстояния между его обкладками, нужно сохранить все величины постоянными, кроме самого расстояния. Поэтому площади обкладок должны быть одинаковыми, но расстояние между ними разными, как на рисунке 1.

Ответ: а

pазбирался: Алиса Никитина | обсудить разбор

Задание EF18703

Протон влетает в электрическое поле конденсатора параллельно его пластинам в точке, находящейся посередине между пластинами (см. рисунок). Найдите минимальную скорость υ, с которой протон должен влететь в конденсатор, чтобы затем вылететь из него. Длина пластин конденсатора 5 см, расстояние между пластинами 1 см, напряжённость электрического поля конденсатора 5000 В/м. Поле внутри конденсатора считать однородным, силой тяжести пренебречь.

Ответ записать в км/с, округлив до десятков.


Алгоритм решения

1.Записать исходные данные и перевести единицы измерения величин в СИ.

2.Выполнить рисунок. Указать направление движения протона и силы, действующие на него.

3.Выяснить, при каком условии протон успеет вылететь из конденсатора.

4.Выполнить решение в общем виде.

5.Подставить известные данные и вычислить искомую величину.

Решение

Запишем исходные данные:

 Масса протона: m = 1,67∙10–27 кг.

 Заряд протона: q = 1,6∙10–19 Кл.

 Расстояние между обкладками конденсатора: d = 1 см.

 Длина пластин конденсатора: l = 5 см.

 Напряженность однородного поля внутри конденсатора: E = 5000 В/м.

1 см = 0,01 м

5 см = 0,05 м

Сделаем рисунок:

Изначально протон обладает только горизонтальной скоростью v, равной vx. Влетев в однородное электростатическое поле внутри конденсатора, протон обретает вертикальную компоненту скорости, которая растет за счет ускорения, придаваемого кулоновскими силами. Положительно заряженный протон притягивается нижней отрицательно зараженной пластиной конденсатора.

Чтобы протон вылетел из конденсатора, его горизонтальная компонента скорости должна быть достаточной для того, чтобы частица не притянулась к нижней пластине раньше. Время, которое понадобится протону для преодоления длины пластин конденсатора со скоростью vx:

t=lvx=lv

Протон влетел в пространство между обкладками конденсатора на одинаковом расстоянии от них. Следовательно, прежде чем он упадет на нижнюю пластину, по оси OY он переместится на расстояние, равное 0,5d. Так как начальная компонента скорости равна нулю (мы пренебрегаем силой тяжести):

0,5d=at22

Протон вылетит из конденсатора, а не упадет на его пластину, если время горизонтального перемещения до конца пластин будет как минимум равно времени падения. Выразим время падения:

t=da

Приравняем правые части уравнений времени и получим:

lv=da

Отсюда скорость равна:

v=al2d

Ускорение выразим из второго закона Ньютона:

FK=ma=qUd

a=qUmd

Но известно, что:

U=Ed

Поэтому:

a=qEdmd=qEm

Отсюда:

Минимальная скорость, с которой протон должен влететь в конденсатор, составляет 346∙103 м/с. Округлим до десятков и переведем в км/с. Получим 350 км/с.

Ответ: 350

pазбирался: Алиса Никитина | обсудить разбор

Алиса Никитина | Просмотров: 6k

Главная

Примеры решения задач ТОЭ

Электроемкость. Емкость конденсатора

Электроемкость. Емкость конденсатора

Электроемкость. Емкость конденсатора

Основные положения и соотношения

1. Закон Кулона

F= Q 1 ⋅ Q 2 4π⋅ ε a ⋅ R 2 ,  (1)

здесь

F — сила взаимодействия между зарядами;

Q1 и Q2 — точечные заряды;

R — расстояние между ними;

εa — абсолютная диэлектрическая проницаемость среды, равная ε0·εr;

εr — относительная диэлектрическая проницаемость;

ε 0 = 1 4π⋅ с 2 ⋅ 10 −7 ≈8,85418782⋅ 10 −12    Ф м

 – электрическая постоянная.

2. Напряженность электростатического поля точечного заряда Q на расстоянии R от него

E= Q 4π⋅ ε a ⋅ R 2 .  (2)

Напряженность поля в любой точке между пластинами плоского конденсатора вдалеке от краев

E= U d ,  (3)

здесь d — расстояние между пластинами конденсатора, U — напряжение.

Напряженность поля в точке, отстоящей на расстоянии r от бесконечно длинной заряженной оси с линейной плотностью τ

E= τ 2π⋅ ε a ⋅r .  (4)

Напряженность поля в точке, отстоящей на расстоянии r от оси цилиндрического конденсатора (r1 <r < r2)

E= U r⋅ln r 2 r 1 ,  (5)

здесь U — напряжение конденсатора, r1 и r2 — соответственно внутренний и внешний радиусы конденсатора.

Напряженность поля в точке, отстоящей на расстоянии R от центра сферического конденсатора (R1 < R < R2)

E= U⋅ R 1 ⋅ R 2 R 2 ⋅( R 2 − R 1 ) ,  (6)

здесь U — напряжение конденсатора, R1 и R2 — соответственно внутренний и внешний радиусы конденсатора.

3. Вектор электрического смещения

D → = ε a ⋅ E → .  (7)

4. Общее выражение емкости конденсатора

C= Q U .  (8)

Емкость плоского конденсатора

C= ε a ⋅S d = ε r ⋅ ε 0 ⋅S d ,  (9)

здесь S — поверхность каждой пластины конденсатора; d — расстояние между ними.
Скачать статью Вывод формулы емкости плоского конденсатора

Емкость цилиндрического конденсатора

C= 2π⋅ ε a ⋅l ln r 2 r 1 ,  (10)

здесь l — длина конденсатора, r1 и r2 — соответственно внутренний и внешний радиусы конденсатора.
Скачать статью Вывод формулы емкости коаксиального кабеля

Емкость сферического конденсатора

C= 4π⋅ ε a ⋅ R 1 ⋅ R 2 R 2 − R 1 ,  (11)

здесь R1 и R2 — соответственно внутренний и внешний радиусы конденсатора.
Скачать статью Вывод формулы емкости сферического конденсатора

Емкость двухпроводной линии

C= π⋅ ε a ⋅l ln[ D 2a + ( D 2a ) 2 −1 ] ,  (12)

здесь l — длина линии, D — расстояние между осями проводов, a — радиус проводов.

Емкость однопроводной линии

C= 2π⋅ ε a ⋅l ln[ h a + ( h a ) 2 −1 ] ,  (13)

здесь l — длина линии, h — высота подвеса провода над землей, a — радиус провода.

5. При параллельном соединении конденсаторов С1, С2, …, Сn эквивалентная емкость равна

C= C 1 + C 2 +…+ C n = ∑ k=1 n C k .  (14)

При последовательном соединении конденсаторов эквивалентная емкость определяется из формулы

1 C = 1 C 1 + 1 C 2 +…+ 1 C n = ∑ k=1 n 1 C k .  (15)

Для двух последовательно соединенных конденсаторов эквивалентная емкость составляет

C= C 1 ⋅ C 2 C 1 + C 2 ,  (16)

а напряжения между отдельными конденсаторами распределяются обратно пропорционально их емкостям

U 1 =U⋅ C 2 C 1 + C 2 ;    U 2 =U⋅ C 1 C 1 + C 2 .  (17)

6. Энергия электростатического поля конденсатора

W= C⋅ U 2 2 = Q⋅U 2 = Q 2 2C .  (18)

Удельная энергия электростатического поля (на единицу объема диэлектрика) выражается следующим образом

w= dW dV = E⋅D 2 = ε a ⋅ E 2 2 .  (19)

Общая величина энергии электростатического поля выражается интегралом величины удельной энергии по всему объему диэлектрика конденсатора

W= ∫ V ε a ⋅ E 2 2 dV .  (20)

7. Расчет распределения зарядов в сложных цепях, содержащих источники э. д. с. и конденсаторы, производится путем составления уравнений по двум законам:

1) По закону сохранения электричества (закон сохранения электрического заряда): алгебраическая сумма зарядов на обкладках конденсаторов, соединенных в узел и не подключенных к источнику энергии, равна алгебраической сумме зарядов, имевшихся на этих обкладках до их соединения:

ΣQ=Σ Q ′ .  (21)

2) По второму закону Кирхгофа: алгебраическая сумма э. д. с. в замкнутом контуре равна алгебраической сумме напряжений на участках контура, в том числе на входящих в него конденсаторах:

∑ k=1 n E k = ∑ k=1 n U C k = ∑ k=1 n Q k C k .  (22)

Задача 1. Имеется конденсатор переменной емкости от 500 до 1500 пФ. Указать, какой добавочный конденсатор с минимальным диапазоном переменной емкости следует взять и как его включить, чтобы эквивалентная емкость изменялась от 100 до 250 пФ.

Ответ: 125 — 300 пФ, включить параллельно.

Смотрите key54.ru ремонт замка зажигания.


Задача 2. Емкость плоского конденсатора, имеющего слюдяной диэлектрик, равна 44,3 пФ. Площадь каждой пластины конденсатора составляет 25 см2, расстояние между пластинами равно 3 мм.

Чему равна относительная диэлектрическая проницаемость слюды? Принимая пробивное напряжение слюды равным 80 кВ/мм, определить, при каком максимальном напряжении может работать этот конденсатор, чтобы он имел трехкратный запас прочности.

Начертить график изменения потенциала между пластинами конденсатора.

Ответ: εr = 6; Umax = 80 кВ; график падения потенциала вычерчивается по уравнению φ = U·(1 — x/d), здесь U — потенциал положительно заряженной обкладки, принятый равным напряжению конденсатора, d — расстояние между пластинами, x — переменное расстояние до положительной обкладки конденсатора.


Задача 3. Доказать, что многопластинчатый конденсатор (рис. 1), состоящий из n одинаковых пластин, площадью S каждая, с рас стоянием между двумя соседними пластинами d, с диэлектриком, абсолютная диэлектрическая проницаемость которого ε, имеет емкость, равную

C= ε a ⋅S⋅( n−1 ) d .

Многопластинчатый конденсатор

Рис. 1

Подсчитать, сколько надо взять листов станиоля, каждый площадью S = 40 см2, чтобы получить многопластинчатый конденсатор емкостью 0,5 мкФ при условии, что диэлектриком является парафинированная бумага (εr = 1,8) толщиною 0,05 мм.

Ответ: 393 листа.


Задача 4. Плоский слоистый конденсатор (рис. 2), поверхность каждой пластины которого S = 12 см2, имеет диэлектрик, состоящий из слюды (εr1 = 6) толщиною d1 = 0,3 мм и стекла (εr2 = 7) толщиною d2 =0,4 мм.

Пробивные напряженности слюды и стекла соответственно равны E1 = 77 кВ/мм, E2 = 36 кВ/мм.

Емкость плоского двухслойного конденсатора

Рис. 2

Вычислить емкость конденсатора и предельное напряжение, на которое его можно включать, принимая для более слабого слоя двойной запас электрической прочности.

Решение

Эквивалентная емкость слоистого конденсатора определится как емкость двух последовательно соединенных конденсаторов

C= C 1 ⋅ C 2 C 1 + C 2 = ε a1 ⋅S d 1 ⋅ ε a2 ⋅S d 2 ε a1 ⋅S d 1 + ε a2 ⋅S d 2 = ε a1 ⋅ ε a2 ⋅S ε a1 ⋅ d 2 + ε a2 ⋅ d 1 .

Подставляя сюда числовые значения, предварительно заменив εa1 = ε0εr1 и εa2 = ε0εr2, получим

C= ε 0 ⋅ ε r1 ⋅ ε r2 ⋅S ε r1 ⋅ d 2 + ε r2 ⋅ d 1 =8,85⋅ 10 −12 ⋅ 6⋅7⋅12⋅ 10 −4 6⋅0,4⋅ 10 −3 +7⋅0,3⋅ 10 −3 =99⋅ 10 −12   Ф.

Обозначим общее напряжение, подключаемое к слоистому конденсатору, через Uпр, при этом заряд конденсатора будет равен

Q = C·Uпр.

Напряжения на каждом слое будут равны

U 1 = Q C 1 = C⋅ U пр ε a1 ⋅S d 1 = ε a2 ⋅ d 1 ε a1 ⋅ d 2 + ε a2 ⋅ d 1 ⋅ U пр ; U 2 = Q C 2 = C⋅ U пр ε a2 ⋅S d 2 = ε a1 ⋅ d 2 ε a1 ⋅ d 2 + ε a2 ⋅ d 1 ⋅ U пр .

Напряженности электростатического поля в каждом слое

E 1 = U 1 d 1 = ε a2 ε a1 ⋅ d 2 + ε a2 ⋅ d 1 ⋅ U ′ пр ; E 2 = U 2 d 2 = ε a1 ε a1 ⋅ d 2 + ε a2 ⋅ d 1 ⋅ U ″ пр .

Здесь U’np — общее напряжение, подключаемое к конденсатору, при котором пробивается первый слой, a np — общее напряжение, при котором происходит пробой второго слоя.

Из последнего выражения находим

U ′ пр = E 1 ⋅ ε a1 ⋅ d 2 + ε a2 ⋅ d 1 ε a2 =49,5  кВ; U ″ пр = E 2 ⋅ ε a1 ⋅ d 2 + ε a2 ⋅ d 1 ε a1 =27,0  кВ.

Таким образом, более слабым слоем является второй; согласно условию, принимая для него двойной запас прочности, находим, что конденсатор может быть включен на напряжение, равное

27,0 кВ / 2 = 13,5 кВ.


Задача 5. Вычислить емкость 1 км коаксиального кабеля типа 2,6/9,4. В этом кабеле изоляция осуществлена с помощью полиэтиленовых шайб (εr = 2,2) толщиною a = 2,2 мм, размещенных через равные промежутки b = 25 мм, остальное пространство между шайбами заполнено воздухом (рис. 3). Диаметр жилы d = 2,6 мм, внутренний диаметр наружного провода D = 9,4 мм.

Емкость коаксиального кабеля с изоляцией из полиэтиленовых шайб

Рис. 3

Указание. Емкость кабеля может быть подсчитана, исходя из того, что отдельные его участки соединены параллельно.

Ответ: 48·10–9 Ф/км = 48 нФ/км.


Задача 6. Силовой одножильный кабель с резиновой изоляцией в свинцовой оболочке марки СРГ имеет сечение жилы 25 мм2. Известно, что наибольшая напряженность электростатического поля в изоляции кабеля не должна превышать 6 кВ/мм. Определить толщину слоя резиновой изоляции, если при испытании кабеля между жилой и оболочкой включают напряжение, равное 10 кВ.

Принимая потенциал жилы кабеля равным U = 10 кВ, построить график падения потенциала в диэлектрике кабеля в зависимости от расстояния до центра кабеля.

Ответ: 2,25 мм. График строится по уравнению φ( r )= U⋅ln r 2 r ln r 2 r 1 .


Задача 7. Цилиндрический конденсатор длиною l = 5 см имеет двухслойный диэлектрик (рис. 4).

Емкость двухслойного цилиндрического конденсатора

Рис. 4

Внутренний радиус r1 = 1 см, внешний — r2 = 3 см, радиус разграничения слоев диэлектриков r3 = 1.5 см. Относительные диэлектрические проницаемости: внутреннего слоя изоляции εr1 = 2, наружного εr2 = 4.

Вычислить емкость конденсатора и начертить кривые изменения напряженностей и потенциалов в каждом из слоев, если конденсатор находится под напряжением U = 2 кВ.

Указание. При помощи теоремы Гаусса находятся напряженности электростатического поля в каждом из слоев

E 1 = τ 2π⋅ ε a1 ⋅r ;    E 2 = τ 2π⋅ ε a2 ⋅r ,

где τ — линейная плотность заряда (заряд на единицу длины конденсатора). Затем вычисляется напряжение между обкладками конденсатора по формуле

U= ∫ r 1 r 3 E 1 dr + ∫ r 3 r 2 E 2 dr .

Отсюда определяется линейная плотность заряда

τ= 2π⋅U 1 ε a1 ln r 3 r 1 + 1 ε a2 ln r 2 r 3 .

Емкость конденсатора вычисляется по формуле (8). Потенциал φ1 в любой точке области первого слоя диэлектрика (r3 > r > r1) определяется из выражения

φ r 1 − φ 1 = ∫ r 1 r E 1 dr ,

а потенциал φ2 в любой точке области второго слоя (r2 > r > r3) диэлектрика вычисляется из выражения

φ r 2 − φ 2 = ∫ r 2 r E 2 dr .

В последних формулах φr1 = U — потенциал внутренней обкладки конденсатора, φr2 — потенциал на границе раздела диэлектриков. Внешняя оболочка заземлена: φ2(r2) = 0.

Ответ:

C= 2π⋅l 1 ε a1 ln r 3 r 1 + 1 ε a2 ln r 2 r 3 ; E 1 ( r )= U r⋅( ln r 3 r 1 + ε a1 ε a2 ln r 2 r 3 ) ;    E 2 ( r )= U r⋅( ε a2 ε a1 ln r 3 r 1 +ln r 2 r 3 ) ; φ 1 ( r )=U⋅( 1− ln r r 1 ln r 3 r 1 + ε a1 ε a2 ln r 2 r 3 );     φ 2 ( r )= U⋅ ε a1 ε a2 ln r 2 r ln r 3 r 1 + ε a1 ε a2 ln r 2 r 3 .

Пример вывода формулы емкости двухслойного цилиндрического конденсатора при помощи теоремы Гаусса


Задача 8. Чему равен внешний радиус сферического конденсатора емкостью 20 пФ, внутренний радиус которого 2 см. а относительная Диэлектрическая проницаемость изоляции εr = 3. При каком напряжении конденсатор будет пробит, если пробивное напряжение изоляции равно 15 кВ/мм?

Ответ: 3 см, 100 кВ.


Задача 9. Найти емкость сферического конденсатора, изображенного на рис. 5.

Емкость сферического конденсатора

Рис. 5

Даны радиусы R1, R2 и R3; изоляция однородная, ее абсолютная диэлектрическая проницаемость равна ε.

Указание. Данный конденсатор может быть рассмотрен как два Параллельно соединенных конденсатора.

Ответ: C= 4π⋅ ε a ⋅ R 2 2 ⋅( R 3 − R 1 ) ( R 3 − R 2 )( R 2 − R 1 ) .


Задача 10. К пластинам плоского двухслойного конденсатора приложено напряжение 3 кВ. Площадь пластины равна 5 см2. Толщины первого и второго слоев конденсатора равны соответственно 4 и 6 мм, а диэлектрические проницаемости — 6 и 1.

Построить графики изменения напряженности и потенциала между пластинами в зависимости от расстояния до положительной пластины, потенциал которой принять равным + 3 кв.


Задача 11. Имеется два одинаковых конденсатора переменной емкости. Емкость каждого конденсатора можно плавно изменять от 20 до 200 пФ.

Какие границы изменения емкости можно получить при различном соединении этих конденсаторов между собой?

Ответ: от 10 до 400 пФ.


Задача 12. Определить емкость воздушной двухпроводной линии длиной 2 км, если диаметр проводов равен 3 мм и расстояние между осями проводов составляет 30 см.


Задача 13. Определить емкость однопроводной телеграфной линии длиною 180 км, если диаметр провода равен 3 мм, а средняя высота подвеса провода над землей составляет 7 м.

Начертить кривую зависимости емкости этого провода в функции расстояния от земли.

Ответ: 1,1 мкФ.


Задача 14. Обкладки плоского конденсатора с воздушным диэлектриком расположены на расстоянии d1 = 1 см друг от друга. Площадь обкладок S = 50 см2. Конденсатор заряжается до напряжения U = 120 В и затем отсоединяется от источника электрической энергии.

Определить, какую надо совершить работу, если увеличить расстояние между пластинами до d2 = 10 см. Краевым эффектом можно пренебречь; другими словами, емкость конденсатора можно считать обратно пропорциональной расстоянию между обкладками.

Решение

Энергия заряженного плоского конденсатора равна

W 1 = C 1 ⋅ U 2 2 = ε 0 ⋅S d 1 ⋅ U 2 2 ,

где С1 — емкость до раздвижения обкладок.

Так как конденсатор отключен от источника, то при изменении расстояния между обкладками его заряд остается постоянным. Поэтому из~ соотношения

Q = C2·U2,

где C2 — емкость конденсатора после раздвижения обкладок, следует, что, так как C 2 = ε 0 ⋅S d 2  стало меньше в 10 раз (d2 увеличилось в 10 раз), то напряжение на конденсаторе U2 увеличилось в 10 раз, т. е. U2 = 10U.

Таким образом, энергия конденсатора после отключения и раздвижения обкладок на расстояние d2 будет больше первоначальной

W 2 = ε 0 ⋅S d 2 ⋅ U 2 2 2 = ε 0 ⋅S 10 d 1 ⋅ ( 10U ) 2 2 =10⋅ ε 0 ⋅S d 1 ⋅ U 2 2 =10⋅ W 1 .

Увеличение энергии произошло за счет работы внешних сил, затраченной на раздвижение обкладок.

Таким образом, надо совершить работу, равную

W 2 − W 1 =9⋅ W 1 =9⋅ ε 0 ⋅S d 1 ⋅ U 2 2 =2,86⋅ 10 −7   Дж.


Задача 15. Плоский конденсатор с воздушным диэлектриком заряжается от источника электрической энергии с напряжением U.

Определить, как изменится энергия конденсатора, если после отключения его от источника энергии расстояние между обкладками увеличить вдвое.

Ответ: энергия увеличится в два раза.


Задача 16. Плоский конденсатор с диэлектриком из эбонита (εr = 2,5) в виде пластинки толщиной d = 5 см присоединен к полюсам батареи. После зарядки эбонитовая пластинка вынимается. Как нужно изменить расстояние между обкладками конденсатора, чтобы энергия конденсатора осталась без изменения?

Задачу решить в двух случаях: 1) если конденсатор остается присоединенным к батарее и 2) если конденсатор отключить от батареи.

Ответ: в обоих случаях пластины должны отстоять друг от друга на расстоянии 2 см.


Задача 17. Конденсатор емкостью C1 = 40 мкФ заряжен от сети до напряжения U1 = 220 В; другой конденсатор емкостью C2 = 10 мкФ заряжен от другой сети до напряжения U2 = 110 В.

Положительные зажимы конденсаторов после отсоединения от источников соединяются вместе:

а) Чему равна разность потенциалов между отрицательными зажимами конденсаторов?

б) Чему равны заряды до и после последующего соединения друг с другом отрицательных зажимов конденсаторов?

в) Чему равны напряжения на конденсаторах после соединения их отрицательных зажимов?

г) Чему равна энергия каждого конденсатора до. и после соединения отрицательных зажимов?

Ответ: а) 110 В, б) до соединения: Q1 = 8800 мкКл, Q2 = 1100 мкКл; после соединения: Q1 = 7920 мкКл, Q2 = 1980 мкКл, в) 198 В, г) до соединения: W1 = 0,97 Дж, W2 = 0,06 Дж; после соединения: W1 = 0,784 Дж, W2 = 0,196 Дж.


Задача 18. Три последовательно соединенных конденсатора, емкости которых 2, 10 и 15 мкФ, заряжаются от сети с напряжением 120 В. После отключения от сети конденсаторы разъединяются друг от друга без потери заряда. Если затем конденсаторы соединить параллельно, то чему будет равно напряжение на их зажимах?

Ответ: 20 В.


Список литературы

1. Бессонов Л.А. Теоретические основы электротехники. Электромагнитное поле. — М.: Гардарики, 2001.– 317 с.

2. Демирчян К.С., Нейман Л.Р., Коровкин Н.В., Чечурин В.Л. Теоретические основы электротехники: в 3-х тт.: Учебник для вузов. Том 3. –4-е изд. — СПб.: Питер, 2003. — 377 с.

3. Купалян С.Д. Теоретические основы электротехники / Под ред. Г.И. Атабекова. — М.-Л.: Госэнергоиздат, 1963. — ч. 3. Электромагнитное поле. — 112 с.

4. Теоретические основы электротехники. т. 2. Нелинейные цепи и основы теории электромагнитного поля. Под ред. П.А. Ионкина. Учебник для электротехн. вузов. Изд. 2-е, перераб. и доп. — М.: Высш. шк., 1976. — 383 с.

5. Поливанов, К.М. Теоретические основы электротехники: в 3-х ч. / К.М. Поливанов. ч. 3: Теория электромагнитного поля. — М.: Энергия, 1969. — 352 с.

6. Бессонов Л.А. Сборник задач по теоретическим основам электротехники: Учебное пособие для вузов / Бессонов Л.А., Демидова И.Г. и др.; Под ред. Л.А. Бессонова. — М., Высшая школа, 2000. — 528с.: ил.

7. Колли Я.Н. и др. Задачник по теоретическим основам электротехники (теория поля). Уч. пособие для вузов. Под ред. Поливанова К.М. — М., «Энергия», 1972.

8. Ионкин П.А. Сборник задач и упражнений по теоретическим основам электротехники: Учебное пособие. — М., Энергоиздат, 1982. — 768с.

9. Татур Т.А. Основы теории электромагнитного поля: Справочное пособие. — М.: Высш. шк., 1989 . — 270 с.

электрическая постоянная,
емкость конденсатора,
электроемкость,
емкость плоского конденсатора,
емкость цилиндрического конденсатора,
сферический конденсатор,
емкость двухпроводной линии,
емкость однопроводной линии,
емкость коаксиального кабеля

Содержание:

  • Плоские конденсаторы
  • Конденсатор сферического типа
  • Конденсатор цилиндрического типа
  • Расчёт емкостных батарей, соединений конденсаторов

Определение 1

Конденсатором называют любые два проводника, разделённые диэлектрическим слоем. Такие проводники должны обладать зарядами одинаковыми по величине, но противоположными по знаку. 

Возникающее электрическое поле будет полностью расположено внутри, между проводниками. По этой причине на электрическую ёмкость конденсатора не влияет его внешнее окружение. А на разность потенциалов между пластинами не влияет величина заряда.

Выражение для электроёмкости выглядит так:

$ C=frac{q}{phi_1-phi_2} = frac{q}{U} $

Величины $ {phi_1-phi_2=U}$ определяют разность потенциалов, которая также носит название «напряжение» и обозначается «U». Как следует из определения, ёмкость — положительная величина.  Её размер определяется габаритами пластин конденсатора, их взаимным расположением, типом диэлектрика. Форма пластин, конструкция конденсатора создаются таким образом, чтобы максимально снизить влияние на внутреннее поле со стороны любых внешних сил или полей. Электрическое поле конденсатора начинается на обкладке с зарядом «+» и заканчивается на обкладке со знаком «-». Ёмкость конденсаторов измеряют так же, как и ёмкость проводников, в международной системе СИ для этого используют Фарады (Ф). Один Фарад — ёмкость конденсатора, где при заряде 1 Кельвин, разность потенциалов 1 Вольт.

Существуют три основных типа конденсаторов: плоские, сферические, цилиндрические. Вычислить ёмкость можно, если найти напряжение на обкладках и определить величину заряда.  

Плоские конденсаторы

Определение 2

Плоский конденсатор — элемент состоящий из двух или нескольких плоских пластин, расположенных друг напротив друга, имеющих одинаковый по величине, но разный по знаку заряд. Чтобы не возникало воздушного разряда, пластины разделяют слоем диэлектрика.

Для вычисления ёмкости плоского конденсатора используется выражение: 

$C=frac{epsilonepsilon_0 S}{d}$. 

Здесь S — площадь пластин, чем она больше, тем выше ёмкость. Величина зазора между пластинами — d. Чем меньше d, тем больше ёмкость. Диэлектрическая проницаемость — ε. Она также оказывает значительное влияние на величину ёмкости.

Пример 1

Возьмём конденсатор состоящий из двух пластин, между которыми воздух, и определим его ёмкость. Затем поместим между пластинами диэлектрик, параметр ε которого выше, чем у воздуха. Измерения показывают, что ёмкость конденсатора увеличивается существенно, прямо пропорционально повышению диэлектрической проницаемости.

Чаще всего, при создании плоских конденсаторов делают не две пластины, а «пакет» обкладок в несколько слоёв. Электрическая ёмкость такого элемента, имеющего n слоёв, вычисляется с учётом толщины каждого i-го слоя $d_i$, а также диэлектрической проницаемости каждого слоя $ε_i$.

Конденсатор сферического типа

Определение 3

Сферический конденсатор отличается формой обкладок, у него они представляют собой сферы. И внешняя, и внутренняя — обе оболочки выполнены в виде сфер.

В отличии от плоского конденсатора, в сферическом площадь поверхности разнозаряженных пластин отличается. И формула для вычисления ёмкости элемента изменится: 

$ C = 4piepsilonepsilon_0frac{R_1 R_2}{R_2-R_1} $, 

где $ R_1 $ и $ R_2 $ являются радиусами обкладок. 

Конденсатор цилиндрического типа

Отдельная формула используется для вычисления параметров конденсатора цилиндрической формы:

$ C = 2piepsilonepsilon_0 frac{l}{ln{frac{R_2}{R_1}}} $.

В уравнении использованы следующие параметры: l — высота, $R_1 и R_2$ – радиусы пластин. Конденсатор цилиндрического вида выполнен в виде вложенных друг в друга соосных цилиндрических пластин. Они выполнены из проводящего материала, а между ними находится диэлектрик.

Определение 4

Параметр, характеризующий конденсаторы — пробивное напряжение. Эта характеристика показывает минимальную величину напряжения, при которой произойдёт «пробой» диэлектрика. То есть сквозь толщу материала пройдёт сквозной электрический разряд, закорачивающий заряженные пластины.

Значение $U_max$ зависит как от характеристик диэлектрического вещества, его толщины, так и от формы конденсатора. 

Расчёт емкостных батарей, соединений конденсаторов

Конденсаторы могут применяться как сами по себе – отдельно по видам, так и в виде групп элементов, соединённых параллельно или последовательно. Комбинирование конденсаторов в электроцепи позволяет с помощью стандартизированных деталей получать любые необходимые значения ёмкостей. При параллельном соединении емкость увеличивается. Если у нас имеется несколько конденсаторов, где $C_i$ — емкость i-го конденсатора, то можно записать для всей системы: 

$ C=sum_{i=1}^NC_i $

Когда конденсаторы соединяют последовательно, то результирующая ёмкость будет меньше, чем ёмкость самого маленького конденсатора в системе. Итоговая ёмкость — сумма величин обратных емкости каждого из конденсаторов.

236

проверенных автора готовы помочь в написании работы любой сложности

Мы помогли уже 4 430 ученикам и студентам сдать работы от решения задач до дипломных на отлично! Узнай стоимость своей работы за 15 минут!

Пример 2

Покажем на простом примере, как рассчитать емкость плоского конденсатора, если известны площадь его пластин, величина промежутка между ними и тип вещества, заполняющего пространство. Площадь S=1 см2, зазор d=1 мм. Промежуток между пластинами заполнен вакуумом. При таких начальных условиях рассчёт ёмкости будет вестись по формуле:

$C=frac{epsilonepsilon_0 S}{d}$

Выпишем параметры, которые заданы в условии:

ε=1, $ ε_ 0=8,85⋅10^{-12} frac{Ф}{м}$; S=1см2=10 −4 м2; d=1 мм=10 − 3 м. 

Применяя их в формуле, получаем выражение следующего вида: 

$ С = frac{8,85cdot10^{-12}cdot10^{-4}}{10^{-13}} $

Результат:

$Сapprox 0,9 пФ$

Пример 3

Для конденсатора со сферическими пластинами произведём вычисление напряжённости поля. Величина промежутка между обкладками x = 1 см = 10-2 м. Радиусы обкладок заданы следующим образом: внутренний R1=1 см=10-2 м, внешний R2=3 см=3·10-2 м. Величина напряжения U=103 В. 

Заряженные обкладки создают электростатическое поле. Его напряжённость не трудно вычислить, воспользовавшись формулой: 

$ E = frac{1}{4piepsilonepsilon_0 r^2} cdotfrac{q}{r^{2}} $, 

Удалённость от центра r вычисляем как R1+x. 

Заряд внутренней сферической пластины, q, определяем через известные напряжение и ёмкость конденсатора: 

q=CU. 

Для емкости сферического конденсатора берём формулу:

$ С = 4piepsilonepsilon_0cdotfrac{R_1R_2}{R_2-R_1} $,

где $R_1$ и $R_2$ — радиусы пластин.

Подставим выражение емкости в формулу для напряженности: 

$E=frac{1}{4piepsilonepsilon_0 r^2}cdot4piepsilonepsilon_0frac{R_1R_2}{R_2-R_1}$

$=frac{U}{(x+R_1)^2}cdotfrac{R_1R_2}{R_2-R_1}$

Подставляя числовые значения, в результате получим $E=3,45cdot10^4 frac{В}{м}$

Понравилась статья? Поделить с друзьями:
  • Как найти код для разблокировки модема
  • Как найти смысловую часть текста
  • Ведьмак как найти символ смерть
  • Как найти телефон по локации где он
  • Как найти дирекционные углы сторон