Как найти емкость при резонансе токов

Нахождение резонансной емкости

В общем
случае резонанс напряжений в цепи,
содержащей реактивные элементы, наступает
при равной нулю мнимой составляющей
комплексного сопротивления ZIm=0.
Рассмотрим это на примере простой цепи,
содержащей последовательно соединённые
резистор, катушку и конденсатор.

R

C

L

Найдём
комплексное сопротивление ветви:

Таким
образом, в рассматриваемой цепи мнимая
составляющая комплексного сопротивления
равна нулю при равенстве сопротивлений
конденсатора и катушки:

Или,
если выразить реактивные сопротивления
через параметры LиC:

Нетрудно
увидеть, что при резонансе в рассматриваемой
цепи сопротивление минимально. В
соответствии с законом Ома:
,
ток при резонансе максимален.

Для
экспериментального определения величины
ёмкости, при которой в цепи наступит
резонанс, пользуются зависимостью тока
от ёмкости.

В
заданной цепи изменяют ёмкость в
определённых пределах, и снимают значение
величины тока в ветви с конденсатором.
Точка, в которой ток максимален показывает
резонансную ёмкость.

§2.9. Примеры и задачи

2.9.1. Синусоидальные величины и их символическое изображение

Мгновенные
значения синусоидальной величины
определяются выражением:

,

где
– амплитуда;

– действующее значение;

– угловая частота, [с-1];


линейная частота, [Гц];

– период колебаний [c];

 –
начальная фаза, [рад].

Расчет
цепей переменного тока облегчается,
если изображать гармонические токи,
напряжения и ЭДС векторами на комплексной
плоскости.

Совокупность
векторов, изображающих синусоидальные
функции в заданный момент времени,
называется векторной диаграммой.

Комплексное
число может быть представлено в
алгебраической и показательной форме:

.

Переход
из показательной формы в алгебраическую
форму осуществляется по формуле Эйлера:

.

При
обратном переходе:
,
если вещественная часть алгебраической
формы положительная, тоа если вещественная часть отрицательная,
то

.

Комплексная
синусоидальная функция представляется
в виде вращающегося вектора на комплексной
плоскости:

;

,

,

(при t
= 0).

Мгновенное
значение синусоидальной функции есть
проекция вращающегося вектора на мнимую
ось:

.

Обозначения:

i,
u, e
мгновенные значения тока, напряжения,
ЭДС.

Im,Um,Em– комплексные амплитудные значения
тока, напряжения, ЭДС.

I,U,E– комплексные действующие значения
тока, напряжения, ЭДС.

Примеры

1.1. Дано
синусоидальное напряжение
.

Записать
выражения для комплексного амплитудного
и действующего значения.

Решение:

;

.

1.2.
Комплексное действующее значение тока
.

Записать
выражение для мгновенных значений тока.

Решение:

;

.

2.10.2. Расчет линейных цепей с гармоническими источниками электрической энергии

2.10.2.1. Закон Ома в комплексной форме

Таблица 2.1.

Элемент

Связь между мгновенными значениями
напряжения и тока

Связь между комплексными действующими
значениями напряжения и тока

Векторная диаграмма

Применение

Напряжение совпадает по фазе с током.

Напряжение опережает ток на
.

Напряжение отстает от тока на
.

2.10.2.2. Комплексное сопротивление двухполюсника


активное сопротивление резистораR,
[Ом];

– реактивное сопротивление катушки,
[Ом];


индуктивность катушки, [Гн];

– угловая частота, [с -1];

– реактивное сопротивление конденсатора,
[Ом];

– емкость конденсатора, [Ф];

– комплексное сопротивление резистора;

– комплексное сопротивление катушки;

– комплексное сопротивление конденсатора.

Для
цепи (рис. 1) комплексное сопротивление:

где
– модуль комплексного сопротивления
или полное сопротивление;

– угол сдвига фаз между напряжением и
током.

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]

  • #
  • #
  • #
  • #
  • #
  • #
  • #
  • #
  • #
  • #
  • #

Содержание:

Резонанс токов:

При рассмотрении параллельного соединения катушки и конденсатора был отмечен случай равенства активной и реактивной проводимостей Резонанс токов

Условия возникновения резонанса

Так же как и резонанс напряжений, резонанс токов возникает, когда частота источника энергии равна резонансной частоте ωр, а Резонанс токов

Режим электрической цепи при параллельном соединении участков с индуктивностью и емкостью, характеризующийся равенством индуктивной и емкостной проводимостей, называют резонансом токов.

Сначала рассмотрим этот режим для схемы идеализированной цепи (рис. 17.6, а). В этой схеме параллельно резистору R включены идеальные катушки L и конденсатор С, потери энергии в которых не учитываются.

Резонанс токов

Рис. 17.6. К вопросу о резонансе токов

Реактивные проводимости зависят от частоты вынужденных колебаний. Для рассматриваемой схемы:
активная проводимость
Резонанс токов
реактивные проводимости
Резонанс токов  Резонанс токов
При резонансе токов
Резонанс токовРезонанс токовРезонанс токов
Отсюда определяют резонансную частоту:
Резонанс токов
Выражение для резонансной частоты в данном случае такое же, какое было получено при рассмотрении резонанса напряжений [см. формулу (17.8)] и для частоты собственных колебаний в контуре без потерь.
Резонанс токов, так же как и резонанс напряжений, можно получить изменением параметров L и С или изменением частоты источника энергии.

Резонансные кривые

На рис. 17.6, б показаны зависимости проводимостей от частоты. Полная проводимость цепи Y при резонансной частоте ωр оказывается наименьшей, равной активной проводимости G. При изменении частоты в обе стороны от резонансной полная проводимость увеличивается.

При заданном напряжении источника энергии ток в цепи пропорционален проводимости (рис. 17.6, в): Резонанс токов, поэтому кривая I(ω) по форме повторяет кривую Y(ω). Состояние резонанса токов характеризуется наименьшей величиной тока в цепи и равенством нулю угла сдвига фаз между напряжением и током (φр = 0).

При резонансе токов отношение тока индуктивного или емкостного к току в неразветвленной части цепи равно отношению волновой проводимости Резонанс токов к активной проводимости цепи G.
Реактивные проводимости при резонансе
Резонанс токов
Поэтому
Резонанс токов

Добротность контура

При параллельном соединении элементов качество резонансной цепи считается тем выше, чем больше отношение Резонанс токов, которое и в этом случае называется добротностью:
Резонанс токов
Чем меньше потери энергии в цепи (этому соответствует большая величина R), тем больше добротность.

Параметры реальных катушек и конденсаторов (R, L, С) измеряются и задаются в справочниках применительно к их схемам замещения с последовательным соединением активных и реактивных элементов (см. рис. 14.11, б).
Условие резонанса токов — равенство реактивных проводимостей обеих ветвей Резонанс токов — остается справедливым, и в этом случае
Резонанс токов  Резонанс токов,
где R1 и R2 — активные сопротивления катушки и конденсатора с потерями.
Приравнивая реактивные проводимости, получим исходное уравнение для определения резонансной частоты

Резонанс токов
или
Резонанс токов
откуда

Резонанс токов
Из «того выражения видно, что резонансная частота зависит от активных сопротивлений катушки и конденсатора. Если потери энергии в катушке и конденсаторе малы (R1 и R2 малы) и ими можно пренебречь, для резонансной частоты получается выражение, найденное раньше для идеализированной цепи.

Компенсация реактивной мощности в электрических сетях с помощью конденсаторов

Было отмечено, что в электрической цепи переменного тока, в которой имеются катушка индуктивности и конденсатор, включенные последовательно или параллельно, общая реактивная мощность цепи всегда меньше, чем реактивная мощность каждого из элементов.

Благодаря взаимному обмену энергией между катушкой и конденсатором и рис. 14.5 источник частично или полностью освобождается от поставки реактивной энергии в цепь.

В этом случае говорят о компенсации реактивной мощности катушки реактивной мощностью конденсатора и наоборот (реактивные мощности QL и QС имеют противоположные знаки). Полная компенсация реактивной мощности имеет место при резонансе.

Компенсация реактивной мощности в электрических сетях имеет большое технико-экономическое значение. Далее кратко рассмотрены общие сведения по этому вопросу и принцип применения конденсаторов для компенсации реактивной мощности.

Реактивная мощность электрических установок

Энергетический процесс в катушке индуктивности, включенной в цепь переменного тока, характеризуется активной мощностью Резонанс токов и реактивной мощностью Резонанс токов.

В электрической схеме замещения такая катушка представлена активным сопротивлением R и индуктивностью L, или активной проводимостью G и реактивной проводимостью Y.

В этом отношении катушке индуктивности подобны многочисленные устройства переменного тока: асинхронные двигатели, индукционные нагревательные установки, трансформаторы, воздушные линии и др.
Получая от генераторов электрическую энергию, эти устройства передают или преобразуют ее в другие виды энергии (активная мощность Р), т. е. выполняют те функции, для которых созданы.

Одновременно они обмениваются энергией с источниками (реактивная мощность Q), что является процессом хотя и нежелательным, но неизбежным, так как без магнитного поля и периодического накопления энергии в нем перечисленные устройства работать не могут.

Если реактивная мощность устройства не равна нулю, то отношение Резонанс токов, а коэффициент мощности Резонанс токов.

На каждом предприятии одновременно работают электродвигатели (их может быть десятки и сотни), трансформаторы и другие устройства. Чем больше их число и чем меньше их коэффициент мощности, тем больше общая реактивная мощность электрооборудования производственного участка, цеха, всего предприятия.

Величина общей реактивной мощности электрической установки или электрооборудования предприятия в целом зависит еще и от правильного выбора, степени загрузки электродвигателей, трансформаторов, от соблюдения правил эксплуатации электрооборудования.

Далее будет показано, что за счет реактивной мощности потребителей электрический ток в сетях оказывается больше, чем требуется по величине активной нагрузки. С этим связана одна из проблем проектирования и эксплуатации электрических сетей. При передаче электрической энергии, особенно на большие расстояния, из-за наличия индуктивных и емкостных сопротивлений в элементах сети переменного тока возникает также проблема поддержания заданного уровня напряжения на всех приемниках.
Для обеспечения оптимальной величины тока и требуемых величин напряжения в сети необходимо иметь оптимальный баланс реактивных мощностей (индуктивной и емкостной).

Влияние величины реактивной мощности на технико-экономические показатели электроустановок

Для выяснения влияния величины реактивной мощности на экономические показатели электротехнических установок рассмотрим приемник энергии (например, асинхронный электродвигатель), работающий с постоянной активной мощностью при постоянном напряжении в сети.
Ток в приемнике, а следовательно, и в проводах, соединяющих его с источником энергии, при этих условиях зависит от величины реактивной мощности Q:
Резонанс токов
Чем больше реактивная мощность приемника, тем больший ток должен быть в самом приемнике, в генераторе, соединительных проводах, трансформаторе и других элементах сети электроснабжения.
Мощность тепловых потерь, согласно закону Ленца — Джоуля, пропорциональна квадрату тока и сопротивлению проводов:
Резонанс токов
Очевидно, чем больше ток приемника, тем больше потери энергии во всех элементах электрической цепи.

Стоимость потерянной энергии входит в эксплуатационные расходы. Уменьшение реактивной мощности приемников ведет к уменьшению их токов, сокращению потерь энергии и эксплуатационных расходов.
Если электрическая установка спроектирована с относительно большей величиной реактивной мощности, то оборудование (коммутационная аппаратура, приборы контроля и т. д.) и провода необходимо выбрать на большие токи, чем при меньшей величине реактивной мощности.
Это значит, что оборудование должно быть установлено относительно больших размеров, а провода — большего сечения. Последнее повлечет за собой увеличение объема зданий, утяжеление фундаментов и опор и т. п.
Уменьшение реактивной мощности приемников энергии сокращает капитальные затраты.

Генераторы электрической энергии и трансформаторы характеризуются номинальной мощностью — произведением номинальных величин напряжения и тока: Резонанс токов

Наиболее полное использование генераторов и трансформаторов соответствует режиму работы с номинальным током при номинальном напряжении (особые случаи, когда допускается некоторая перегрузка оборудования при эксплуатации, здесь не учитываются).

Величина активной мощности генератора равна активной мощности питающихся от него приемников.

Если реактивная мощность приемников равна нулю, то генератор может развивать активную мощность, равную его номинальной мощности , т. е. основная функция генератора — преобразование энергии — может быть выполнена наиболее полно, а первичный двигатель (например, турбина), также рассчитанный на номинальную мощность, будет работать с полной нагрузкой.
При наличии у приемников реактивной мощности активная мощность генератора меньше номинальной, хотя он работает при номинальных напряжении и токе. Таким образом, генератор и первичный двигатель по мощности недогружены, что приводит к снижению их коэффициента полезного действия.

Компенсация реактивной мощности

Из приведенных рассуждений следует, что реактивную мощность установок, потребляющих электрическую энергию, надо по возможности сокращать.
На практике это достигается путем правильного выбора мощности электродвигателей переменного токаи трансформаторов, рациональной эксплуатации их без недогрузки и работы вхолостую. Эти и некоторые другие меры уменьшения реактивной мощности, связанные с выбором и эксплуатацией электрооборудования, называют естественными.

В тех случаях, когда естественные меры не могут обеспечить оптимальной величины реактивной мощности установки, принимают искусственные меры для ее компенсации.

Одной из таких мер является включение параллельно к приемникам батареи конденсаторов.

Для определения мощности и емкости батареи конденсаторов должны быть известны величины напряжения сети U, реактивной мощности установки до компенсации (Q1) и после компенсации (Q2).

Можно установить батарею конденсаторов мощностью QC = Q1, тогда Q2 = 0. Полная компенсация реактивной мощности освобождает полностью сеть от реактивного тока.

Однако технико-экономические расчеты показывают, что полная компенсация в большинстве случаев не является оптимальным решением вопроса, так как компенсационное устройство оказывается более сложным и дорогим, чем при некоторой оптимальной величине реактивной мощности Q2, которую определяют на основе технико-экономического сопоставления вариантов (Определение оптимальной величины Q2, выбор вида компенсирующего устройства и места его установки в сети рассматриваются в специальных курсах).

Мощность батареи конденсаторов

Резонанс токов
а емкость
Резонанс токов
Резонанс токов
Рис. 17.7. К вопросу о компенсации реактивной мощности

Сущность компенсации реактивной мощности с помощью конденсаторов видна из векторной диаграммы (рис. 17.7, б), построенной для схемы (рис. 17.7, а), на которой параллельно приемнику, например асинхронному двигателю (группе двигателей), может быть включена конденсаторная батарея. До включения конденсаторов ток в подводящих проводах Iд отстает по фазе от напряжения на угол φ1. После включения батареи реактивная составляющая I тока двигателя частично компенсируется емкостным током IC, в связи с чем ток в подводящих проводах уменьшается до I, а угол сдвига фаз — до φ2 (в обменном энергетическом процессе между генератором и приемником участвует меньшее количество электромагнитной энергии).

Активная составляющая тока в проводах не изменяется, следовательно, по активной мощности режим цепи остается прежним:
Резонанс токов
Ток батареи конденсаторов имеет величину
Резонанс токов
Резонанс токов
где Р — активная мощность приемника (в данном случае двигателя);
Резонанс токов
Емкость батареи конденсаторов

Резонанс токов
Мощность батареи конденсаторов
Резонанс токов
Нетрудно заметить, что мощность конденсаторов можно найти, не подсчитывая тока IC:
Резонанс токов
 

Задача 17.7.

К трансформатору номинальной мощностью Резонанс токов и номинальным напряжением 220 В подключена группа электродвигателей, общая активная мощность которых Резонанс токов Резонанс токов при частоте Резонанс токов (рис. 17.8, а). Если параллельно группе двигателей включить батарею конденсаторов, реактивная мощность установки (двигатели — батарея конденсаторов) уменьшится и соответственно уменьшится нагрузка трансформатора.
Определить емкость и мощность батареи конденсаторов и дополнительную осветительную нагрузку, которые нужно подключить к трансформатору так, чтобы реактивная мощность установки уменьшилась до величины, при которой коэффициент мощности Резонанс токов при полной загрузке трансформатора.
Определить емкость и мощность батареи конденсаторов в том случае, когда Резонанс токов при отсутствии дополнительной осветительной нагрузки.
Решение. 1. В первоначальном режиме трансформатор был загружен до номинальной мощности
Резонанс токов
Дополнительную осветительную нагрузку можно присоединить только за счет разгрузки трансформатора от части реактивной мощности путем включения батареи конденсаторов.
Согласно условию задачи, трансформатор после компенсации части реактивной мощности остается полностью загруженным, следовательно, при неизменном напряжении ток трансформатора должен остаться прежним: Резонанс токов
Резонанс токов
Рис. 17.8. К задаче 17.7

Из векторной диаграммы (рис. 17.8, б) следует выражение для тока конденсатора:
Резонанс токов
при Резонанс токов

при Резонанс токов

Ток установки до компенсации реактивной мощности
Резонанс токов

Ток батареи конденсаторов
Резонанс токов

Емкость батареи конденсаторов
Резонанс токов
Мощность батареи конденсаторов
Резонанс токов

Активный ток дополнительной осветительной нагрузки
Резонанс токов

Мощность осветительной нагрузки
Резонанс токов
2. При отсутствии дополнительной осветительной нагрузки необходимый ток в батарее конденсаторов (рис. 17.8, в)
Резонанс токов
Резонанс токов
Емкость батареи конденсаторов
Резонанс токов
Мощность батареи конденсаторов
Резонанс токов

  • Трехфазные симметричные цепи
  • Трехфазные несимметричные цепи
  • Вращающееся магнитное поле
  • Электрические цепи синусоидального тока
  • Соединение звездой и треугольником в трехфазных цепях
  • Принцип действия асинхронного и синхронного двигателей
  • Метод симметричных составляющих
  • Цепи периодического несинусоидального тока

В цепь синусоидального тока напряжением U =100В и частотой f = 50Гц включена катушка с активным сопротивлением R и индуктивным сопротивлением Х.
Определить:
1. Ток Ik катушки.
2. Емкость конденсатора, который необходимо подключить параллельно катушке для получения в цепи резонанса токов.

схема.png
схема.png (53.82 КБ) 613 просмотров

Дано:
U = 100 В
f = 50 Гц
R = 3 Ом
XL = 5 Ом
Решение:
Полное сопротивление [math]Z=sqrt{R^2+X_L^2}=5,83 Ом
Ток в катушке [math]I_k=frac{U}{Z_k} =frac{100}{5,83}=17,15 А
Резонансную емкость Со найдем из условия резонанса токов (из равенства индуктивной и емкостной проводимостей параллельных ветвей):

расчет.gif
расчет.gif (6.26 КБ) 613 просмотров

Простое объяснение явления резонанса токов и напряжений. Условия возникновения резонанса и его применение на практике.

Явление резонанса токов и напряжений наблюдается в цепях индуктивно-емкостного характера. Это явление нашло применение в радиоэлектронике, став основным способов настройки приемника на определенную волну. К сожалению, резонанс может нанести вред электрооборудованию и кабельным линиям. В физике резонансом является совпадение частот нескольких систем. Давайте рассмотрим, что такое резонанс напряжений и токов, какое значение он имеет и где используется в электротехнике. Содержание:

  • Реактивные сопротивления индуктивности и емкости
  • Емкость и индуктивность в цепи переменного тока
  • Резонанс напряжений
  • Резонанс токов
  • Применение на практике
  • Заключение

Реактивные сопротивления индуктивности и емкости

Индуктивностью называется способность тела накапливать энергию в магнитном поле. Для нее характерно отставание тока от напряжения по фазе. Характерные индуктивные элементы — дросселя, катушки, трансформаторы, электродвигатели.

Емкостью называются элементы, которые накапливают энергию с помощью электрического поля. Для емкостных элементов характерно отставание по фазе напряжения от тока. Емкостные элементы: конденсаторы, варикапы.

Приведены их основные свойства, нюансы в пределах этой статьи во внимание не берутся.

Кроме перечисленных элементов другие также имеют определенную индуктивность и емкость, например в электрических кабелях распределенные по его длине.

Емкость и индуктивность в цепи переменного тока

Если в цепях постоянного тока емкость в общем смысле представляет собой разорванный участок цепи, а индуктивность — проводник, то в переменном конденсаторы и катушки представляют собой реактивный аналог резистора.

Реактивное сопротивление катушки индуктивности определяется по формуле:

Что такое резонанс токов и напряжений

Векторная диаграмма:

Реактивное сопротивление конденсатора:

Здесь w — угловая частота, f — частота в цепи синусоидального тока, L — индуктивность, C — емкость.

Векторная диаграмма:

Стоит отметить, что при расчете соединенных последовательно реактивных элементов используют формулу:

Обратите внимание, что емкостная составляющая принимается со знаком минус. Если в цепи присутствует еще и активная составляющая (резистор), то складывают по формуле теоремы Пифагора (исходя из векторной диаграммы):

От чего зависит реактивное сопротивление? Реактивные характеристики зависят от величины емкости или индуктивности, а также от частоты переменного тока.

Если посмотреть на формулу реактивной составляющей, то можно заметить, что при определенных значениях емкостной или индуктивной составляющей их разность будет равна нулю, тогда в цепи останется только активное сопротивление. Но это не все особенности такой ситуации.

Резонанс напряжений

Если последовательно с генератором соединить конденсатор и катушку индуктивности, то, при условии равенства их реактивных сопротивлений, возникнет резонанс напряжений. При этом активная часть Z должно быть как можно меньшей.

Стоит отметить, что индуктивность и емкость обладает только реактивными качествами лишь в идеализированных примерах. В реальных же цепях и элементах всегда присутствует активное сопротивление проводников, хоть оно и крайне мало.

При резонансе происходит обмен энергией между дросселем и конденсатором. В идеальных примерах при первоначальном подключении источника энергии (генератора) энергия накапливается в конденсаторе (или дросселе) и после его отключения происходят незатухающие колебания за счет этого обмена.

Напряжения на индуктивности и емкости примерно одинаковы, согласно закону Ома:

U=I/X

Где X — это Xc емкостное или XL индуктивное сопротивление соответственно.

Цепь, состоящую из индуктивности и емкости, называют колебательным контуром. Его частота вычисляется по формуле:

Период колебаний определяется по формуле Томпсона:

Так как реактивное сопротивление зависит от частоты, то сопротивление индуктивности с ростом частоты увеличивается, а у ёмкости падает. Когда сопротивления равны, то общее сопротивление сильно снижается, что отражено на графике:

Основными характеристиками контура являются добротность (Q) и частота. Если рассмотреть контур в качестве четырехполюсника, то его коэффициент передачи после несложных вычислений сводится к добротности:

K=Q

А напряжение на выводах цепи увеличивается пропорционально коэффициенту передачи (добротности) контура.

Uк=Uвх*Q

При резонансе напряжений, чем выше добротность, тем больше напряжение на элементах контура будет превышать напряжение подключенного генератора. Напряжение может повышаться в десятки и сотни раз. Это отображено на графике:

Потери мощности в контуре обусловлены только наличием активного сопротивления. Энергия из источника питания берется только для поддержания колебаний.

Коэффициент мощности будет равен:

cosФ=1

Эта формула показывает, что потери происходят за счет активной мощности:

S=P/Cosф

Резонанс токов

Резонанс токов наблюдается в цепях, где индуктивность и емкость соединены параллельно.

Явление заключается в протекании токов большой величины между конденсатором и катушкой, при нулевом токе в неразветвленной части цепи. Это объясняется тем, что при достижении резонансной частоты общее сопротивление Z возрастает. Или простым языком звучит так – в точке резонанса достигается максимальное общее значение сопротивления Z, после чего одно из сопротивлений увеличивается, а другое снижается в зависимости от того растет или снижается частота. Это наглядно отображено на графике:

В общем, всё аналогично предыдущему явлению, условия возникновения резонанса токов следующие:

  1. Частота питания аналогична резонансной у контура.
  2. Проводимости у индуктивности и ёмкости по переменному току равны BL=Bc, B=1/X.

Применение на практике

Рассмотрим, какая польза и вред резонанса токов и напряжений. Наибольшую пользу явления резонанса принесли в радиопередающей аппаратуре. Простыми словами, а схеме приемника установлены катушка и конденсатор, подключенные к антенне. С помощью изменения индуктивности (например, перемещая сердечник) или величины емкости (например, воздушным переменным конденсатором) вы настраиваете резонансную частоту. В результате чего напряжение на катушке повышается и приемник ловит определенную радиоволну.

Вред эти явления могут на нести в электротехнике, например, на кабельных линиях. Кабель представляет собой распределенную по длине индуктивность и емкость, если на длинную линию подать напряжение в режиме холостого хода (когда на противоположном от источника питания конце кабеля нагрузка не подключена). Поэтому есть опасность того, что произойдет пробой изоляции, во избежание этого подключается нагрузочный балласт. Также аналогичная ситуация может привести к выходу из строя электронных компонентов, измерительных приборов и другого электрооборудования – это опасные последствия возникновения этого явления.

Заключение

Резонанс напряжений и токов — интересное явление, о котором нужно знать. Он наблюдается только в индуктивно-емкостных цепях. В цепях с большим активным сопротивлениям он не может возникнуть. Подведем итоги, кратко ответив на основные вопросы по этой теме:

  1. Где и в каких цепях наблюдается явление резонанса?

В индуктивно-емкостных цепях.

  1. Какие условия возникновения резонанса токов и напряжений?

Возникает при условии равенства реактивных сопротивлений. В цепи должно быть минимальное активное сопротивление, а частота источника питания совпадать с резонансной частотой контура.

  1. Как найти резонансную частоту?

В обоих случаях по формуле: w=(1/LC)^(1/2)

  1. Как устранить явление?

Увеличив активное сопротивление в цепи или изменив частоту.

Теперь вы знаете, что такое резонанс токов и напряжений, каковы условия его возникновения и варианты применения на практике. Для закрепления материала рекомендуем просмотреть полезное видео по теме:

Материалы по теме:

  • Причины потерь электроэнергии на больших расстояниях
  • Измерение частоты переменного тока
  • Как рассчитать сопротивление провода

Материал взят с сайта: ​https://samelectrik.ru/​​​

Понравилась статья? Поделить с друзьями:
  • Как правильно составить инструкцию образцы
  • Как в экселе найти повторяющиеся номера
  • Как найти периметр многоугольника зная радиус окружности
  • Как найти название города по времени
  • War thunder как найти друга