Как найти энергию света в физике


Загрузить PDF


Загрузить PDF

В одной из своих революционных научных работ, опубликованной в 1905 году, Альберт Эйнштейн предложил формулу E=mc2, где Е − энергия, m − масса, с − скорость света в вакууме.[1]
С тех пор она стала одной из самых известных формул в мире. Даже люди, далекие от физики, хотя бы раз слышали об этой формуле и о той важной роли, которую она играет в наших представлениях об окружающем мире. Однако далеко не все понимают, что именно означает данное уравнение. Попросту говоря, эта формула выражает эквивалентность энергии и массы, связанных между собой простым соотношением.[2]
Это соотношение, изменившее наше представление об энергии, нашло широкое практическое применение.

  1. Изображение с названием Understand E=mc2 Step 1

    1

    Рассмотрим величины, входящие в уравнение. Для понимания какой-либо формулы первым делом следует определить, какие величины в нее входят. В нашем случае E − это энергия, m − масса, и c − скорость света.

    • Скорость света в вакууме − это постоянная величина, приблизительно равная 3,00×108 метров в секунду. Ввиду фундаментальных свойств энергии она возводится в квадрат: тело, движущееся в два раза быстрее, обладает в четыре раза большей энергией.[3]
    • Скорость света является константой, так как если вы превратите какое-либо тело в чистую энергию, эта энергия будет перемещаться со скоростью света.[4]
  2. Изображение с названием Understand E=mc2 Step 2

    2

    Рассмотрим понятие энергии. Существует множество видов энергии, в том числе тепловая, электрическая, химическая, ядерная и так далее.[5]
    Энергия может переходить из одного вида в другой, и различные тела или системы могут обмениваться энергией. Основной единицей измерения энергии служит джоуль (Дж).

    • Энергия не может бесследно исчезнуть или появиться из ничего, она лишь принимает различные формы. Например, уголь обладает большим количеством потенциальной энергии, которая превращается в тепловую при его сгорании.
    • Кинетическая энергия какого-либо тела пропорциональна его массе, умноженной на квадрат скорости. Общая энергия тела равна его массе, умноженной на квадрат скорости света в вакууме.[6]
  3. Изображение с названием Understand E=mc2 Step 3

    3

    Рассмотрим понятие массы. Масса тела определяется как количество составляющего его вещества.[7]
    Следует различать массу и вес. Вес − это сила тяжести, действующая на тело, в то время как масса представляет собой количество вещества, содержащегося в этом теле. Масса тела может измениться лишь в том случае, когда меняется оно само, а вес зависит от гравитационного поля, в котором находится данное тело. Масса измеряется в килограммах (кг), а вес − в ньютонах (Н).

    • Как и энергия, масса не может возникнуть из ничего или бесследно исчезнуть, но она способна изменять свою форму. Например, кубик льда может растаять и превратиться в воду, однако масса вещества при этом не изменится.
  4. Изображение с названием Understand E=mc2 Step 4

    4

    Энергия и масса эквивалентны.[8]
    Рассматриваемое равенство свидетельствует о том, что энергия эквивалентна массе, и из него мы можем определить, какое количество энергии содержится в определенной массе вещества. Характерно, что даже в малой массе содержится довольно большое количество энергии.[9]

    Реклама

  1. Изображение с названием Understand E=mc2 Step 5

    1

    Из чего производится полезная энергия? Большая часть потребляемой нами энергии выделяется при сгорании угля и природного газа. При этом высвобождается энергия их валентных электронов (неспаренных электронов во внешних электронных оболочках атомов), задействованных в связях с другими химическими элементами. При нагревании эти связи разрушаются, и при этом выделяется энергия, используемая для различных целей.

    • Данный способ получения энергии не очень эффективен и довольно вреден для окружающей среды.
  2. Изображение с названием Understand E=mc2 Step 6

    2

    Рассмотрим уравнение Эйнштейна, чтобы найти более эффективные источники энергии. Из равенства E=mc2 мы видим, что намного больше энергии заключено внутри атомных ядер, а не во внешних валентных электронах.[10]
    При расщеплении атомного ядра выделяется гораздо больше энергии, чем при разрыве электронных связей.

    • Ядерная энергетика основана именно на этом законе. В ядерных реакторах происходит распад (расщепление) атомов, при котором выделяется большое количество энергии.
  3. Изображение с названием Understand E=mc2 Step 7

    3

    На уравнении Эйнштейна основаны многие технологии. Формула E=mc2 привела к развитию множества новых технологий, без которых невозможно представить современный мир:[11]

    • В позитрон-эмисионной томографии явление радиоактивности используется для того, чтобы увидеть внутренние органы человека.
    • Уравнение Эйнштейна сделало возможным развитие спутниковой мобильной связи.
    • Основанный на формуле Эйнштейна радиоуглеродный анализ позволяет установить возраст древних объектов.
    • Ядерная энергетика − это более чистый и эффективный способ получения энергии.

    Реклама

Об этой статье

Эту страницу просматривали 214 629 раз.

Была ли эта статья полезной?

Фотоны

  • Темы кодификатора ЕГЭ: фотоны, энергия фотона, импульс фотона.

  • Энергия фотона

  • Импульс фотона

  • Давление света

  • Двойственная природа света

Автор статьи — профессиональный репетитор, автор учебных пособий для подготовки к ЕГЭ Игорь Вячеславович Яковлев

Темы кодификатора ЕГЭ: фотоны, энергия фотона, импульс фотона.

В результате исследования явлений, связанных с взаимодействием света и вещества (тепловое излучение и фотоэффект), физики пришли к выводу, что свет состоит из отдельных порций энергии — фотонов. Излучение света, его распространение и поглощение происходит строго этими порциями.

Фотоны обладают энергией и импульсом и могут обмениваться ими с частицами вещества (скажем, с электронами или атомами). При этом мы говорим о столкновении фотона и частицы. При упругом столкновении фотон меняет направление движения — свет рассеивается. При неупругом столкновении фотон поглощается отдельной частицей или совокупностью частиц вещества — так происходит поглощение света.

Словом, фотон ведёт себя как частица и поэтому — наряду с электроном, протоном, нейтроном и некоторыми другими частицами — причислен к разряду элементарных частиц.

к оглавлению ▴

Энергия фотона

Выражение для энергии фотона с частотой nu мы уже знаем:

E = h nu. (1)

Часто бывает удобно работать не с обычной частотой nu, а с циклической частотой omega = 2 pi nu.

Тогда вводят другую постоянную Планка «аш с чертой»:

h^{mkern -14mu -} = frac{displaystyle h}{displaystyle 2 pi vphantom{1^a}} = 1,05 cdot 10^{-34}  Дж · с.

Выражение (1) для энергии фотона примет вид:

E = h^{mkern -14mu -} omega.

Фотон движется в вакууме со скоростью света c и потому является релятивистской частицей: описывая фотон, мы должны привлекать формулы теории относительности. А там имеется такая формула для энергии тела массы m, движущегося со скоростью v:

E = frac{displaystyle mc^2}{displaystyle sqrt{1 - frac{displaystyle v^2}{displaystyle c^2vphantom{1^a}}} vphantom{1^a}}. (2)

Если предположить, что m neq 0, то формула (2) приводит к бессмысленному заключению: энергия фотона должна быть бесконечной. Чтобы избежать этого противоречия, остаётся признать, что масса фотона равна нулю. Формула (2) позволяет сделать и более общий вывод: только безмассовая частица может двигаться со скоростью света.

к оглавлению ▴

Импульс фотона

Обладая энергией, фотон должен обладать и импульсом. Действительно, важнейшая формула теории относительности даёт связь энергии и импульса частицы:

E^2 = p^2c^2 + m^2c^4. (3)

Для фотона, имеющего нулевую массу, эта формула сводится к простому соотношению:

E = pc.

Отсюда для импульса фотона получаем:

p = frac{displaystyle E}{displaystyle cvphantom{1^a}} = frac{displaystyle h nu}{displaystyle cvphantom{1^a}}. (4)

Направление импульса фотона совпадает с направлением светового луча.

Учитывая, что отношение c/ nu есть длина волны lambda, формулу (4) можно переписать так:

p =frac{displaystyle h}{displaystyle lambda vphantom{1^a}}. (5)

В видимом диапазоне наименьшими значениями энергии и импульса обладают фотоны красного света — у них самая маленькая частота (и самая большая длина волны). При движении в сторону фиолетового участка спектра энергия и импульс фотона линейно возрастают с частотой.

к оглавлению ▴

Давление света

Свет оказывает давление на освещаемую поверхность. Такой вывод был сделан Максвеллом из теоретических соображений и получил экспериментальное подтверждение в знаменитых опытах П.Н. Лебедева. Если понимать
свет как поток фотонов, обладающих импульсом , то можно легко объяснить давление света и вывести формулу Максвелла.

Предположим, что на некоторое тело падает свет частоты nu. Лучи направлены перпендикулярно поверхности тела; площадь освещаемой поверхности равна S (рис. 1).

Рич. 1. Давление света

Пусть n — концентрация фотонов падающего света, то есть число фотонов в единице объёма.

За время t на нашу поверхность попадают фотоны, находящиеся внутри цилиндра высотой ct.

Их число равно:

N = nV = nSct.

При падении света на поверхность тела часть световой энергии отражается, а часть — поглощается. Пусть rкоэффициент отражения света; величина r < 1 показывает, какая часть световой энергии отражается от поверхности. Соответственно, величина 1 - r — это доля падающей энергии, поглощаемая телом.

Как мы теперь знаем, энергия света пропорциональна числу фотонов. Поэтому можно написать, какое количество фотонов (из общего числа N) отразится от поверхности, а какое — поглотится ею:

N_{o} = rN,   N_{n} = (1 - r)N.

Импульс каждого падающего фотона равен p = h nu/c. Поглощённый фотон испытывает неупругое столкновение с телом и передаёт ему импульс p. Отражённый фотон после упругого столкновения меняет направление своего импульса на противоположное, и поэтому импульс, переданный телу отражённым фотоном, равен 2p.

Таким образом, от каждого фотона, входящего в световой поток, тело получает некоторый импульс. Вот простая и очевидная причина того, что свет оказывает давление на освещаемую поверхность.

Суммарный импульс, полученный телом от N падающих фотонов, равен:

P = 2p cdot N_o + p cdot N_n = 2prN + p(1 - r)N = (1 + r)pN.

На нашу поверхность S действует сила F, равная импульсу, полученному телом в единицу времени:

F = frac{displaystyle P}{displaystyle t vphantom{1^a}} = (1 + r)p frac{displaystyle N}{displaystyle tvphantom{1^a}} = (1 + r)  frac{displaystyle h nu}{displaystyle cvphantom{1^a}}  frac{displaystyle nSct}{displaystyle tvphantom{1^a}} = (1 + r)h nu nS.

Давление света есть отношение этой силы к площади освещаемой поверхности:

p_{CB} = frac{displaystyle F}{displaystyle Svphantom{1^a}} = (1 + r)h nu n. (6)

Выражение h nu n имеет простой физический смысл: будучи произведением энергии фотона на число фотонов в единице объёма, оно равно энергии света в единице объёма, то есть объёмной плотности энергии w. Тогда соотношение (6) приобретает вид:

p_{CB} = (1 + r)w.

Это и есть формула для давления света, теоретически выведенная Максвеллом (в рамках классической электродинамики) и экспериментально проверенная в опытах Лебедева.

к оглавлению ▴

Двойственная природа света

В результате рассмотрения всей совокупности оптических явлений возникает естественный вопрос: что же такое свет? Непрерывно распределённая в пространстве электромагнитная волна или поток отдельных частиц — фотонов? Теория и эксперименты приводят к заключению, что оба ответа должны быть утвердительными.

1. Явления интерференции и дифракции света, характерные для любых волновых процессов, не оставляют сомнений в том, что свет есть форма волнового движения материи.

Таким образом, мы должны признать: да, свет имеет волновую природу, свет — это электромагнитная волна.

2. Однако явления взаимодействия света и вещества (например, фотоэффект) указывают на то, что свет ведёт себя как поток отдельных частиц. Эти частицы — фотоны — ведут, так сказать, самостоятельный образ жизни, обладают энергией и импульсом, участвуют во взаимодействиях с атомами и электронами. Излучение света — это рождение фотонов.

Распространение света — это движение фотонов в пространстве. Отражение и поглощение света — это соответственно упругие и неупругие столковения фотонов с частицами вещества.

Все попытки истолковать указанные явления излучения и поглощения света в рамках волновых представлений классической физики окончились неудачей. Оставалось лишь согласиться с тем, что свет имеет корпускулярную природу (от латинского слова corpusculum — маленькое тельце, частица), свет — это совокупность фотонов, мчащихся в пространстве.

Таким образом, свет имеет двойственную, корпускулярно-волновую природу — он может проявлять себя то так, то эдак. В одних явлениях (интерференция, дифракция) на передний план выходит волновая природа, и свет ведёт себя в точности как волна. Но в других явлениях (фотоэффект) доминирует корпускулярная природа, и свет ведёт себя подобно потоку частиц.

Странно всё это, не правда ли? Но что поделать — так устроена природа. Мы, люди, живём среди макроскопических тел, и наше воображение оказалось не способным полноценно представить себе явления микромира.
Природа, однако, неизмеримо шире и богаче того, что может вместить в себя человеческое воображение. Признав это и руководствуясь не столько собственным воображением, сколько наблюдениями, результатами экспериментов и весьма изощрённой математикой, люди начали успешно создавать квантовую теорию микроскопических явлений и процессов.

О некоторых парадоксальных на первый взгляд — но тем не менее подтверждённых экспериментально! — выводах квантовой теории мы поговорим в следующем листке.

Спасибо за то, что пользуйтесь нашими материалами.
Информация на странице «Фотоны» подготовлена нашими авторами специально, чтобы помочь вам в освоении предмета и подготовке к экзаменам.
Чтобы успешно сдать необходимые и поступить в высшее учебное заведение или колледж нужно использовать все инструменты: учеба, контрольные, олимпиады, онлайн-лекции, видеоуроки, сборники заданий.
Также вы можете воспользоваться другими материалами из данного раздела.

Публикация обновлена:
07.05.2023

Энергия фотона — это энергия элементарной частицы (фотона), квант электромагнитного излучения (в узком смысле — света). Это безмассовая частица, способная существовать только двигаясь со скоростью света.

LARGE E=hnu = hfrac{c}{lambda }


Энергия фотона

Распространение света следует рассматривать не как непрерывный волновой процесс, а как поток локализованных в пространстве дискретных частиц, движущихся со скоростью равную скорости света в вакууме. В 1926 году эти частицы получили название фотонов. Фотоны обладают всеми свойствами частицы (корпускулы).

Таким образом энергия фотона увеличивается с ростом частоты (или с уменьшением длины волны), например, фотон фиолетового света (0.38 мкм) имеет большую энергию, чем фотон красного света (0.77 мкм).

Так же фотон имеет:

Массу фотона:  LARGE m=frac{hnu }{c^2}=frac{h}{clambda }=frac{homega }{2pi c^2}

Импульс фотона: LARGE p=frac{hv}{c}=frac{h}{lambda }

В формуле мы использовали :

E — Энергия фотона

h = 6,6*10^{-34} — Постоянная Планка

nu — Частота волны

 c= 3*10^8 — Скорость света в вакууме

lambda — Длина волны

 m — Масса фотона


Содержание:

Фотометрия и световой поток:

Вы все знаете, что без темных очков невозможно смотреть на полуденное солнце. Вместе с тем, мы можем долго любоваться звезд ным небом, и это не вызывает никаких неприятных ощущений. Почему это так? Ответить на эти вопросы нам поможет фотометрия (от греч. fotos — свет). Фотометрия — раздел оптики, в котором рассматриваются энергетические характеристики света в процессах его излучения, распространения и взаимодействия со средой.

Изучения энергетических характеристик света

Действие света может быть разным: от теплового, которое проявляется в нагревании тел, поглощающих свет, до электрического, химического и механического. Такое действие света становится возможным благодаря наличию у света энергии, поэтому очень важно знать об энергетических характеристиках света.

Различное действие света лежит в основе работы технических устройств. Например, системы охраны разнообразных объектов работают на чувствительных приемниках света — фотоэлементах. Тонкие пучки света, которые буквально пронизывают пространство вокруг охраняемого объекта, направлены на фотоэлементы (рис. 3.7), и если перекрыть один из таких лучей, то фотоэлемент перестанет получать световую энергию и немедленно «сообщит* об этом — прозвучит сигнал тревоги.

Фотометрия и световой поток в физике - определение с примерами

Другие технические устройства способны реагировать не только на факт наличия световой энергии, но и на ее количество. Так, освещение улиц больших городов (рис. 3.8) включается автоматически в момент, когда количество получаемой световой энергии Солнца уменьшается до определенного значения. Работа подобных устройств сориентирована на восприятие света человеческим глазом. Поэтому очевидной является важность рассмотрения энергетических характеристик света, основанных на непосредственном восприятии света глазом — на зрительном ощущении.

Фотометрия и световой поток в физике - определение с примерами

Различия светового потока и силы света

Зрительные ощущения являются очень субъективными. Как их оценить? Ваша мама зовет вас вечером: «Иди домой, уже темно!» А вам кажется, что для игр еще достаточно света. Кроме того, чувствительность глазу к свету разного цвета различна. Так, зрительные ощущения от зеленого цвета приблизительно в сто раз более сильные, чем от красного (например, зеленую лампу глаз воспринимает как более мощную, недели красную, при одинаковой мощности обеих ламп).

Чтобы все это выяснить, ученые провели сотни опытов и установили средние характеристики зрительных ощущений человека. На этой базе созданы приборы, способные измерять физические величины, характеризующие зрительные ощущения. Одну из таких величин называют световым потоком.

Что такое световой поток

Световой поток — это физическая величина, численно равная количеству оцениваемой по зрительным ощущениям световой энергии, падающей на поверхность за единицу времени.

Световой поток обозначается символом Ф и вычисляется по формуле:
Фотометрия и световой поток в физике - определение с примерами
где W — оцениваемая по зрительным ощущениям световая энергия, падающая на определенную поверхность; t — время падения световой энергии на эту поверхность.

За единицу светового потока принят люмен (лм) (от латин. lumen — свет). Оказалось, например, что световой поток от звездного неба, падающий на сетчатку глаза, — около 0,000000001 лм, световой поток от полуденного солнца — 8 лм. Именно поэтому мы не можем смотреть на яркое солнце невооруженным глазом.

В повседневной жизни в качестве источников света очень часто применяют электрические лампы накаливания, которые отличаются друг от друга мощностью (обозначается Р и измеряется в ваттах, Вт). Для определения полного светового потока некоторых ламп накаливания приводим соответствующую таблицу:
Фотометрия и световой поток в физике - определение с примерами

Световой поток создается источником света. Физическая величина, характеризующая свечение источника света в определенном направлении, называется силой света.

Если источник излучает видимый свет равномерно во все стороны, то сила света вычисляется по формуле:
Фотометрия и световой поток в физике - определение с примерами

где Ф — полный световой поток, испускаемый источником; Фотометрия и световой поток в физике - определение с примерами — постоянная величина, приблизительно равная 3,14.

За единицу силы света в Международной системе единиц (СИ) принята кандела (кд) (от латин. candela — свеча). Кандела — одна из основных единиц СИ.

Пример решения задачи:

Вычислите полный световой поток, излучаемый лампой накаливания, сила света которой равна 30 кд. Определите мощность лампы.

Дано:

I = 30 кд

Ф — ?

Р — ?
Анализ физической проблемы

Считаем, что лампа излучает свет равномерно во все стороны, поэтому полный световой поток мы можем найти из формулы для силы света. Мощность, потребляемую лампой, определим по таблице. Поиск математической модели, решение и анализ результатов

Воспользуемся формулойФотометрия и световой поток в физике - определение с примерами , откуда Фотометрия и световой поток в физике - определение с примерами

Определим значение искомой величины:Фотометрия и световой поток в физике - определение с примерами

Проанализируем результат: воспользовавшись таблицей, определим, что световой поток 376,8 лм =• 377 лм излучает лампа мощностью 40 Вт.

Ответ: Ф = 376,8 лм, Р = 40 Вт.

Итоги:

Раздел оптики, в котором рассматриваются энергетические характеристики света в процессе его испускания, распространения и взаимодействия со средой, называется фотометрией.

Световое излучение источника характеризуется световым потоком и силой света.

Физическая величина, численно равная количеству оцениваемой по зрительным ощущениям световой энергии W, падающей на поверхность за единицу времени t, называется световым потоком (Ф). Световой поток измеряется в люменах (лм).

Физическая величина, характеризующая свечение источника света в определенном направлении, называется силой света (I). Единица силы света — кандела (кд), одна из семи основных величин СИ.

Световой поток и световая сила

Действие света на глаза или другие принимающие устройства определяется энергией света, передаваемой этим принимающим устройствам. Поэтому ознакомимся с энергетическими величинами, связанными с энергией света. Раздел, изучающий эти вопросы, называется фотометрией.

Величины, используемые в фотометрии, принимаются в зависимости от световой энергии, которую регистрирует прибор (а не зрительное восприятие).

Поток световой энергии. Возьмем очень маленький источник света. Тогда можно рассмотреть точки вокруг него на определенном расстоянии, что составляет сферическую поверхность. Например, если 

лампа диаметром 10 см освещает площадь на расстоянии 100 м, то эту лампу можно рассматривать как точечный свет. Но если расстояние до освещаемой площади будет 50 см, то источник света рассматривать как точечный нельзя. Примером точечного света могут служить звезды. На определенной поверхности S за время t энергия падающего света будет W. Количество энергии, падающей на определенную поверхность за единицу времени, называется потоком световой энергии, или потоком излучения. Если его обозначим буквой Ф, то

Фотометрия и световой поток в физике - определение с примерами

здесь: t подразумевает намного больше времени относительно периода колебания света. Единицей измерения потока излучения в системе единиц СИ принят ватт (Вт).

Во многих измерениях (например, астрономических) значение имеет не только поток, но и поверхностная плотность потока излучения. Величина, измеряемая отношением потока излучения к площади, через которую проходит поток, называется поверхностной плотностью потока излучения:

Фотометрия и световой поток в физике - определение с примерами

Эту величину часто называют интенсивностью излучения. Ее единица измерения Фотометрия и световой поток в физике - определение с примерами.

Вспомните из курса геометрии понятие «телесный угол». Примером этого может служить угол на вершине конуса. Телесным углом называется величина, измеряемая отношением площади Фотометрия и световой поток в физике - определение с примерами к поверхности сегмента шара на квадрат радиуса Фотометрия и световой поток в физике - определение с примерами сферы, центр которой находится в конусе: Фотометрия и световой поток в физике - определение с примерами

Телесный угол измеряется в единицах — стерадиан (ср). 1 сртелесный угол с вершиной в центре сферы, вырезающий на поверхности сферы площадь, равную площади квадрата со стороной, равной радиусу этой сферы. Зная площадь поверхности сферы, можно определить полный телесный угол вокруг точки:

Фотометрия и световой поток в физике - определение с примерами

Рассмотрим зависимость интенсивности излучения от расстояния до источника и угла падения луча. Пусть точечные источники света будут

расположены в центре двух концентричных кругов с радиусами Фотометрия и световой поток в физике - определение с примерами, (рис. 4.29). Если свет не поглощается средой (например, в вакууме), полная энергия, прошедшая через первую сферу за единицу времени, проходит через площадь второй сферы. Фотометрия и световой поток в физике - определение с примерамиПоэтому Фотометрия и световой поток в физике - определение с примерами

отсюда:Фотометрия и световой поток в физике - определение с примерами

Значит, интенсивность излучения с увеличением расстояния уменьшается квадратичным образом. Для определения зависимости от угла наклона поверхности, на которую падает луч, рассмотрим случай, изображенный на рис. 4.30. При этом волна через площади Фотометрия и световой поток в физике - определение с примерами и S переносит одинаковую энергию. Поэтому Фотометрия и световой поток в физике - определение с примерами

Фотометрия и световой поток в физике - определение с примерами

Отношение их интенсивности: Фотометрия и световой поток в физике - определение с примерами

На практике вместе с энергетическими характеристиками излучения используют фотометрические величины, характеризующие видимые излучения. В фотометрии используют субъективную величину, непосредственно связанную с интенсивностью излучения, называемую световым потоком. Световой поток обозначается буквой Ф. В системе СИ единица измерения — люмен (лм).

  • Заказать решение задач по физике

Важной характеристикой любого источника света является сила света I. Она определяется отношением светового потока на телесный уголФотометрия и световой поток в физике - определение с примерами

Фотометрия и световой поток в физике - определение с примерами

Единица измерения силы света — кандела (кд) является основной единицей системы СИ. 1 кд — эта сила света, испускаемая с площади 1/600000 Фотометрия и световой поток в физике - определение с примерами сечения полного излучателя в перпендикулярном к этому

сечению направлении при температуре излучателя, равной температуре затвердевания платины, и давлении 101 325 Па. При приеме 1 кд использованная длина волны света в вакууме была равна 555 нм, и она приходится на максимальную чувствительность человеческого глаза.

Остальные все фотометрические единицы выражаются через кандсла. Например, 1 люмен равен световому потоку, испускаемому точечным источником в телесном угле 1 стерадиан при силе света 1 кандела.

Поток излучения, падающий на единицу площади, называется освещенностью:

сечению направлении при температуре излучателя, равной температуре затвердевания платины, и давлении 101 325 Па. При приеме 1 кд использованная длина волны света в вакууме была равна 555 нм, и она приходится на максимальную чувствительность человеческого глаза.

Остальные все фотометрические единицы выражаются через кандела. Например, 1 люмен равен световому потоку, испускаемому точечным источником в телесном угле 1 стерадиан при силе света 1 кандела.

Поток излучения, падающий на единицу площади, называется освещенностью:

Е=-1″.    (4-14)

Освещенность в системе СИ измеряется в люксах (лк). 1 люкс равен освещенности поверхности площадью Фотометрия и световой поток в физике - определение с примерамипри световом потоке падающего на нее излучения, равного 1 люмену.

Законы освещенности

Как было сказано, освещенность поверхности прямо пропорциональна силе света. Однако освещенность зависит не только от силы света, но и от расстояния до источника и освещаемой площади. Пусть источник света расположен в центре сферы (рис. 4.31).

Фотометрия и световой поток в физике - определение с примерами
Площадь поверхности сферы равна Фотометрия и световой поток в физике - определение с примерами

Тогда полный поток света будет равенФотометрия и световой поток в физике - определение с примерами Согласно этому:

Фотометрия и световой поток в физике - определение с примерами

Освещенность поверхности прямо пропорциональна силе света источника, обратно пропорциональна квадрату расстояния.

В большинстве случаев световой поток падает на поверхность под углом. Пусть световой поток падает на поверхность Фотометрия и световой поток в физике - определение с примерамипод углом ср.

Площадь Фотометрия и световой поток в физике - определение с примерамисвязана с площадью Фотометрия и световой поток в физике - определение с примерами следующим образом: Фотометрия и световой поток в физике - определение с примерами
Тогда телесный угол определяется какФотометрия и световой поток в физике - определение с примерами освещенность данной поверхности определяется

Фотометрия и световой поток в физике - определение с примерами
Освещенность поверхности прямо пропорциональна силе света источника и косинусу угла между перпендикуляром, проведенным на поверхности, куда падает луч света, и световым потоком, и обратно пропорциональна квадрату расстояния.

Если поверхность освещена несколькими источниками, общая освещенность равна сумме освещенности от каждого источника.

Яркость — еще одна из фотометрических величин.

Яркостью называется сила света, приходящаяся на единичную площадь, которая испускает свет: Фотометрия и световой поток в физике - определение с примерами

Единица яркости — Фотометрия и световой поток в физике - определение с примерами. Отсюда видно, что источник света излучает свет по всем направлениям одинаково.

Приведем некоторые сведения о яркости. В полдень яркость Солнца Фотометрия и световой поток в физике - определение с примерами когда Солнце дойдет до горизонта —Фотометрия и световой поток в физике - определение с примерами диск полной Луны —Фотометрия и световой поток в физике - определение с примерами безоблачное дневное небо — 1500 — 4000 Фотометрия и световой поток в физике - определение с примерами

Пример решения задачи:

Сила света точечного источника равна 100 кд. Найдите полный световой поток, выходящий из источника.

Дано:Фотометрия и световой поток в физике - определение с примерами  Найти:Фотометрия и световой поток в физике - определение с примерами

Формула:Фотометрия и световой поток в физике - определение с примерами

Решение:Фотометрия и световой поток в физике - определение с примерами

Итоги:

  • Гипотеза Максвелла :Любые изменения электрического поля создают в пространстве вокруг него вихревое магнитное поле.
  • Вибратор Герца:    Состоит из двух шариков или цилиндра диаметром 10-30 см, разделенных тонким слоем воздуха, используют для получения электромагнитной волны.
  • Открытый  колебательный  контур: Колебательный контур, в котором электромагнитные колебания полностью ‘: распространяются в пространстве.Фотометрия и световой поток в физике - определение с примерами
  • Отражение электромагнитных волн: Электромагнитные волны отражаются от металлических поверхностей. При этом выполняется закон отражения.
  • Преломление электромагнитных волн: Электромагнитные волны при переходе границы двух сред преломляются. При этом выполняются законы  преломления, Фотометрия и световой поток в физике - определение с примерами -диэлектрическая  проницаемость первой и второй среды соответственно.
     
  • Длина электромагнитной волны: Расстояние между двумя близко лежащими точками с  с  одинаковой фазой колебания. Фотометрия и световой поток в физике - определение с примерами.
  • Плотность потока излучения электромагнитной волны или интенсивность волны : Отношение электромагнитной энергии Щ проходящей через поверхность площадью S, расположенную перпендикулярно к направлению распространения  W  волны, за времяФотометрия и световой поток в физике - определение с примерами
  • Радиосвязь:  Обмен информацией с помощью электромагнитных волн.
  • Радиопередатчик: Передача информации с помощью электромагнитных волн.
  • Радиоприемник: Устройство для приема информации, поступающей с помощью электромагнитных волн.
  • Микрофон: Прибор для превращения звуковых колебаний в электрические колебания.
  • Модуляция: Передача с наложением на высокочастотные электрические колебания низкочастотных электрических колебаний.
  • Входной контур: Колебательный контур, с помощью которого нужный сигнал выделяется среди множества радиостанций.
  • Детектирование: Выделение из модулированных колебаний низкочастотных сигналов.
  • Видеокамера: Устройство для превращения световых сигналов (изображения) в электрические сигналы.
  • Когерентные волны: Волны с одинаковой частотой и постоянной разностью фаз.
  • Интерференция волн: Явление увеличения или уменьшения амплитуды  Я  результирующего колебания. При Фотометрия и световой поток в физике - определение с примерами условие шах, при Фотометрия и световой поток в физике - определение с примерами условие min.
  • Дифракция волн: Огибание волнами препятствий. При этом размеры препятствий должны быть меньше длины падающей волны. Дифракционная решетка    Набор многочисленных преград и щелей, где наблюдается дифракция света.
  • Явление дифракции в дифракционной решетке : Фотометрия и световой поток в физике - определение с примерами Фотометрия и световой поток в физике - определение с примерами-постоянная решетки; Фотометрия и световой поток в физике - определение с примерами-угол дифрагированной волны; Фотометрия и световой поток в физике - определение с примерами — порядок спектра; Фотометрия и световой поток в физике - определение с примерами — длина волны.
  • Дисперсия света : Разложение белого цвета на семь цветов при прохождении через призму: красный, оранжевый, желтый, зеленый, голубой, синий и фиолетовый. Зависимость показателя преломления света от длины волны света (частоты света).
  • Спектр: Набор цветных полос, который появляется при прохождении света через преломляющую среду.
  • Спектры испускания: Спектр, который излучает нагретые тела. Бывают непрерывные, полосатые и линейные спектры.
  • Спектр поглощения: Спектр, получаемый только при поглощении света, соответствующего свойству вещества.
  • Спектральный анализ: Определение состава вещества по спектрам поглощения или излучения.
  • Поляризация света: Упорядочение векторов напряженности электрических и магнитных полей при прохождении света через турмалиновую пластину.
  • Закон Малиуса :Фотометрия и световой поток в физике - определение с примерами. Интенсивность поляризованного света при прохождении анализатора.
  • Анализатор:  Прибор для определения поляризованности света.
  • Поляризатор:  Прибор для поляризации естественного света.
  • Инфракрасные лучи: Электромагнитные волны с длиной волны в вакууме в промежутке 700 нм — 1 мм.
  • Ультрафиолетовые лучи:  Электромагнитные волны с длиной волны в вакууме в промежутке 122 нм — 400 нм.
  • Рентгеновские лучи: Электромагнитные волны с длиной волны в вакууме в промежутке 0,005 нм — 100 нм.
  • Световой поток  (Поток  излучения) : Количество энергии, падающей за единицу времени  на определенную поверхность: Фотометрия и световой поток в физике - определение с примерами
  • Интенсивность излучения:  Отношение светового потока на площадь, на которую  падает светФотометрия и световой поток в физике - определение с примерами Единица измерения-Фотометрия и световой поток в физике - определение с примерами
  • Сила света:  Отношение светового потока Ф на телесный угол Фотометрия и световой поток в физике - определение с примерами, откуда происходит это излучение. Единица измерения силы света — кандела (кд). Является основной единицей системы СИ. 1 кд — эта сила света, испускаемого с площади 1/600000 Фотометрия и световой поток в физике - определение с примерами сечения полного излучателя в перпендикулярном к этому сечению направлении при температуре излучателя, равной температуре затвердевания платины, и давлении 101 325 Па.
  • Освещенность:  Световой поток, падающий на единицу площади.  /  Единица — люксФотометрия и световой поток в физике - определение с примерами — закон освещенности.
  • Яркость:  Сила света, приходящаяся на единичную площадь, которая излучает светФотометрия и световой поток в физике - определение с примерами Единица Фотометрия и световой поток в физике - определение с примерами
  • Освещенность в физике
  • Закон прямолинейного распространения света
  • Законы отражения света
  • Зеркальное и рассеянное отражение света
  • Оптика в физике
  • Волновая оптика в физике
  • Квантовая оптика в физике
  • Геометрическая оптика в физике

From Wikipedia, the free encyclopedia

Photon energy is the energy carried by a single photon. The amount of energy is directly proportional to the photon’s electromagnetic frequency and thus, equivalently, is inversely proportional to the wavelength. The higher the photon’s frequency, the higher its energy. Equivalently, the longer the photon’s wavelength, the lower its energy.

Photon energy can be expressed using any unit of energy. Among the units commonly used to denote photon energy are the electronvolt (eV) and the joule (as well as its multiples, such as the microjoule). As one joule equals 6.24 × 1018 eV, the larger units may be more useful in denoting the energy of photons with higher frequency and higher energy, such as gamma rays, as opposed to lower energy photons as in the optical and radio frequency regions of the electromagnetic spectrum.

Formulas[edit]

Physics[edit]

Photon energy is directly proportional to frequency.[1]

{displaystyle E=hf}

where

This equation is known as the Planck–Einstein relation.

Additionally,

{displaystyle E={frac {hc}{lambda }}}

where

  • E is photon energy
  • λ is the photon’s wavelength
  • c is the speed of light in vacuum
  • h is the Planck constant

The photon energy at 1 Hz is equal to 6.62607015 × 10−34 J

That is equal to 4.135667697 × 10−15 eV

Electronvolt[edit]

Energy is often measured in electronvolts.

To find the photon energy in electronvolts using the wavelength in micrometres, the equation is approximately

{displaystyle E{text{ (eV)}}={frac {1.2398}{lambda {text{ (μm)}}}}}

This equation only holds if the wavelength is measured in micrometers.

The photon energy of near infrared radiation at 1 μm wavelength is approximately 1.2398 eV.

Examples[edit]

An FM radio station transmitting at 100 MHz emits photons with an energy of about 4.1357 × 10−7 eV. This minuscule amount of energy is approximately 8 × 10−13 times the electron’s mass (via mass-energy equivalence).

Very-high-energy gamma rays have photon energies of 100 GeV to over 1 PeV (1011 to 1015 electronvolts) or 16 nanojoules to 160 microjoules.[2] This corresponds to frequencies of 2.42 × 1025 to 2.42 × 1029 Hz.

During photosynthesis, specific chlorophyll molecules absorb red-light photons at a wavelength of 700 nm in the photosystem I, corresponding to an energy of each photon of ≈ 2 eV ≈ 3 × 10−19 J ≈ 75 kBT, where kBT denotes the thermal energy. A minimum of 48 photons is needed for the synthesis of a single glucose molecule from CO2 and water (chemical potential difference 5 × 10−18 J) with a maximal energy conversion efficiency of 35%.

See also[edit]

  • Photon
  • Electromagnetic radiation
  • Electromagnetic spectrum
  • Planck constant
  • Planck–Einstein relation
  • Soft photon

References[edit]

  1. ^ «Energy of Photon». Photovoltaic Education Network, pveducation.org.
  2. ^ Sciences, Chinese Academy of. «Observatory discovers a dozen PeVatrons and photons exceeding 1 PeV, launches ultra-high-energy gamma astronomy era». phys.org. Retrieved 2021-11-25.

Понравилась статья? Поделить с друзьями:
  • Ошибка 0х800713ес азия как исправить
  • Книги по тому как найти свое призвание
  • Как найти площадь квадрата зная радиус вписанной
  • Как составить свой подробный гороскоп
  • Гробница духа как найти