Опытным путём было доказано, что масса ядра оказывается меньше, чем масса протонов и нейтронов, из которых состоит ядро. Разница между этими массами называется дефектом массы ядра.
Дефект массы ядра (
Δm
) — это разница между суммарной массой свободных нуклонов, из которых состоит ядро, и массой ядра.
Почему же масса нуклонов, связанных ядерными силами в ядро, оказывается меньше массы этих же нуклонов в свободном состоянии? Оказывается, что масса и энергия взаимосвязаны.
Всякое тело массой m обладает энергией, которая называется энергией покоя (
E0
):
, где c — скорость света в вакууме.
Впервые соотношение между энергией и массой вывел Альберт Эйнштейн, поэтому это выражение и получило название «уравнение Эйнштейна».
Уменьшение энергии покоя нуклонов в ядре вызвано наличием ядерных сил, которые удерживают протоны и нейтроны в ядре. Работа, которую необходимо совершить для разрыва ядерных сил и разъединения нуклонов, равна энергии, которая связывает нуклоны вместе. Эта энергия называется энергией связи (
Eсв
) ядра.
Энергия связи и дефект массы ядра связаны между собой уравнением Эйнштейна:
Удельной энергией связи ядра называют энергию связи, приходящуюся на (1) нуклон:
Удельная энергия равна средней энергии, необходимой для отрыва (1) нуклона от ядра.
Вычисления показали, что наибольшей удельной энергией связи обладают элементы, находящиеся в центре Периодической системы химических элементов. С увеличением порядкового номера начинает уменьшаться удельная энергия связи. Именно поэтому ядра элементов с порядковым номером больше (83) являются радиоактивными. Благодаря небольшой удельной энергии связи они способны самопроизвольно распадаться.
Единицы измерения энергии
В ядерной физике принято измерять энергию в мегаэлектронвольтах ((1) МэВ):
(1) МэВ (=)
106
эВ
≈1,6⋅10−13
Дж.
Для вычисления энергии связи удобно пользоваться переводным коэффициентом для массы и энергии.
Дефекту массы в (1) а. е. м. соответствует энергия, равная
кг
⋅(3⋅108
м/с
)2≈1,49⋅10−10
Дж
=931,5
МэВ.
Обрати внимание!
Для выражения изменения энергии системы в мегаэлектронвольтах нужно
изменение массы системы в атомных единицах массы умножить на переводной коэффициент (931,5) МэВ/а. е. м.
(1) а. е. м. (=) (931,5) МэВ.
Энергия связи ядра.
-
Ядерные силы.
-
Атомная единица массы.
-
Дефект массы и энергия связи.
-
Удельная энергия связи.
-
Насыщение ядерных сил.
Автор — профессиональный репетитор, автор учебных пособий для подготовки к ЕГЭ Игорь Вячеславович Яковлев.
Темы кодификатора ЕГЭ: энергия связи нуклонов в ядре, ядерные силы.
Атомное ядро, согласно нуклонной модели, состоит из нуклонов — протонов и нейтронов. Но какие силы удерживают нуклоны внутри ядра?
За счёт чего, например, держатся вместе два протона и два нейтрона внутри ядра атома гелия? Ведь протоны, отталкиваясь друг от друга электрическими силами, должны были бы разлететься в разные стороны! Может быть, это гравитационное притяжение нуклонов друг к другу не даёт ядру распасться?
Давайте проверим. Пусть два протона находятся на некотором расстоянии друг от друга. Найдём отношение силы их электрического отталкивания к силе их гравитационного притяжения:
Заряд протона Кл, масса протона кг, поэтому имеем:
Какое чудовищное превосходство электрической силы! Гравитационное притяжение протонов не то что не обеспечивает устойчивость ядра — оно вообще не заметно на фоне их взаимного электрического отталкивания.
Следовательно, существуют иные силы притяжения, которые скрепляют нуклоны внутри ядра и превосходят по величине силу электрического отталкивания протонов. Это — так называемые ядерные силы.
к оглавлению ▴
Ядерные силы.
До сих пор мы знали два типа взаимодействий в природе — гравитационные и электромагнитные. Ядерные силы служат проявлением нового, третьего по счёту типа взаимодействий — сильного взаимодействия. Мы не будем вдаваться в механизм возникновения ядерных сил, а лишь перечислим их наиболее важные свойства.
1. Ядерные силы действуют между любыми двумя нуклонами: протоном и протоном, протоном и нейтроном, нейтроном и нейтроном.
2. Ядерные силы притяжения протонов внутри ядра примерно в 100 раз превосходят силу электрического отталкивания протонов. Более мощных сил, чем ядерные, в природе не наблюдается.
3. Ядерные силы притяжения являются короткодействующими: радиус их действия составляет около м. Это и есть размер ядра — именно на таком расстоянии друг от друга нуклоны удерживаются ядерными силами. При увеличении расстояния ядерные силы очень быстро убывают; если расстояние между нуклонами станет равным м, ядерные силы почти полностью исчезнут.
На расстояниях, меньших м, ядерные силы становятся силами отталкивания.
Сильное взаимодействие относится к числу фундаментальных — его нельзя объяснить на основе каких-то других типов взаимодействий. Способность к сильным взаимодействиям оказалась свойственной не только протонам и нейтронам, но и некоторым другим элементарным частицам; все такие частицы получили название адронов. Электроны и фотоны к адронам не относятся — они в сильных взаимодействиях не участвуют.
к оглавлению ▴
Атомная единица массы.
Массы атомов и элементарных частиц чрезвычайно малы, и измерять их в килограммах неудобно. Поэтому в атомной и ядерной физике часто применяется куда более мелкая единица — так
называемая атомная единица массы (сокращённо а. е. м.).
По определению, атомная единица массы есть 1/12 массы атома углерода . Вот её значение с точностью до пяти знаков после запятой в стандартной записи:
а. е. м.кг г.
(Такая точность нам впоследствии понадобится для вычисления одной очень важной величины, постоянно применяющейся в расчётах энергии ядер и ядерных реакций.)
Оказывается, что 1 а. е. м., выраженная в граммах, численно равна величине, обратной к постоянной Авогадро моль:
моль.
Почему так получается? Вспомним, что число Авогадро есть число атомов в 12г углерода. Кроме того, масса атома углерода равна 12 а. е. м. Отсюда имеем:
г а. е. м.,
поэтому а. е. м.=г, что и требовалось.
Как вы помните, любое тело массы m обладает энергией покоя E, которая выражается формулой Эйнштейна:
. (1)
Выясним, какая энергия заключена в одной атомной единице массы. Нам надо будет провести вычисления с достаточно высокой точностью, поэтому берём скорость света с пятью знаками после запятой:
м/с.
Итак, для массы а. е. м. имеем соответствующую энергию покоя :
Дж. (2)
В случае малых частиц пользоваться джоулями неудобно — по той же причине, что и килограммами. Существует гораздо более мелкая единица измерения энергии — электронвольт (сокращённо эВ).
По определению, 1 эВ есть энергия, приобретаемая электроном при прохождении ускоряющей разности потенциалов 1 вольт:
эВ КлВ Дж. (3)
(вы помните, что в задачах достаточно использовать величину элементарного заряда в виде Кл, но здесь нам нужны более точные вычисления).
И вот теперь, наконец, мы готовы вычислить обещанную выше очень важную величину — энергетический эквивалент атомной единицы массы, выраженный в МэВ. Из (2) и (3) получаем:
эВ . (4)
Итак, запоминаем: энергия покоя одной а. е. м. равна 931,5 МэВ. Этот факт вам неоднократно встретится при решении задач.
В дальнейшем нам понадобятся массы и энергии покоя протона, нейтрона и электрона. Приведём их с точностью, достаточной для решения задач.
а. е. м., МэВ;
а. е. м., МэВ;
а. е. м., МэВ.
к оглавлению ▴
Дефект массы и энергия связи.
Мы привыкли, что масса тела равна сумме масс частей, из которых оно состоит. В ядерной физике от этой простой мысли приходится отвыкать.
Давайте начнём с примера и возьмём хорошо знакомую нам -частицу ядро . В таблице (например, в задачнике Рымкевича) имеется значение массы нейтрального атома гелия: она равна 4,00260 а. е. м. Для нахождения массы M ядра гелия нужно из массы нейтрального атома вычесть массу двух электронов, находящихся в атоме:
а. е. м.
В то же время, суммарная масса двух протонов и двух нейтронов, из которых состоит ядро гелия, равна:
а. е. м.
Мы видим, что сумма масс нуклонов, составляющих ядро, превышает массу ядра на
а. е. м.
Величина называется дефектом массы. В силу формулы Эйнштейна (1) дефекту массы отвечает изменение энергии:
МэВ:
Величина обозначается также и называется энергией связи ядра . Таким образом, энергия связи -частицы составляет приблизительно 28 МэВ.
Каков же физический смысл энергии связи (и, стало быть, дефекта масс)?
Чтобы расщепить ядро на составляющие его протоны и нейтроны, нужно совершить работу против действия ядерных сил. Эта работа не меньше определённой величины ; минимальная работа по разрушению ядра совершается в случае, когда высвободившиеся протоны и нейтроны покоятся.
Ну а если над системой совершается работа, то энергия системы возрастает на величину совершённой работы. Поэтому суммарная энергия покоя нуклонов, составляющих ядро и взятых по отдельности, оказывается больше энергии покоя ядра на величину .
Следовательно, и суммарная масса нуклонов, из которых состоит ядро, будет больше массы самого ядра. Вот почему возникает дефект массы.
В нашем примере с -частицей суммарная энергия покоя двух протонов и двух нейтронов больше энергии покоя ядра гелия на 28 МэВ. Это значит, что для расщепления ядра на составляющие его нуклоны нужно совершить работу, равную как минимум 28 МэВ. Эту величину мы и назвали энергией связи ядра.
Итак, энергия связи ядра — это минимальная работа, которую необходимо совершить для расщепления ядра на составляющие его нуклоны.
Энергия связи ядра есть разность энергий покоя нуклонов ядра, взятых по отдельности, и энергии покоя самого ядра. Если ядро массы состоит из протонов и нейтронов, то для энергии связи имеем:
.
Величина , как мы уже знаем, называется дефектом массы.
к оглавлению ▴
Удельная энергия связи.
Важной характеристикой прочности ядра является его удельная энергия связи, равная отношению энергии связи к числу нуклонов:
.
Удельная энергия связи есть энергия связи, приходящаяся на один нуклон, и имеет смысл средней работы, которую необходимо совершить для удаления нуклона из ядра.
На рис. 1 представлена зависимость удельной энергии связи естественных (то есть встречающихся в природе 1) изотопов химических элементов от массового числа A.
Рис. 1. Удельная энергия связи естественных изотопов
Элементы с массовыми числами 210–231, 233, 236, 237 в естественных условиях не встречаются. Этим объясняются пробелы в конце графика.
У лёгких элементов удельная энергия связи возрастает с ростом , достигая максимального значения 8,8 МэВ/нуклон в окрестности железа (то есть в диапазоне изменения примерно от 50 до 65). Затем она плавно убывает до величины 7,6 МэВ/нуклон у урана .
Такой характер зависимости удельной энергии связи от числа нуклонов объясняется совместным действием двух разнонаправленных факторов.
Первый фактор — поверхностные эффекты. Если нуклонов в ядре мало, то значительная их часть находится на поверхности ядра. Эти поверхностные нуклоны окружены меньшим числом соседей, чем внутренние нуклоны, и, соответственно, взаимодействуют с меньшим числом соседних нуклонов. При увеличении доля внутренних нуклонов растёт, а доля поверхностных нуклонов — падает; поэтому работа, которую нужно совершить для удаления одного нуклона из ядра, в среднем должна увеличиваться с ростом .
Однако с возрастанием числа нуклонов начинает проявляться второй фактор — кулоновское отталкивание протонов. Ведь чем больше протонов в ядре, тем большие электрические силы отталкивания стремятся разорвать ядро; иными словами, тем сильнее каждый протон отталкивается от остальных протонов. Поэтому работа, необходимая для удаления нуклона из ядра, в среднем должна уменьшаться с ростом .
Пока нуклонов мало, первый фактор доминирует над вторым, и потому удельная энергия связи возрастает.
В окрестности железа действия обоих факторов сравниваются друг с другом, в результате чего удельная энергия связи выходит на максимум. Это область наиболее устойчивых, прочных ядер.
Затем второй фактор начинает перевешивать, и под действием всё возрастающих сил кулоновского отталкивания, распирающих ядро, удельная энергия связи убывает.
к оглавлению ▴
Насыщение ядерных сил.
Тот факт, что второй фактор доминирует у тяжёлых ядер, говорит об одной интересной особенности ядерных сил: они обладают свойством насыщения. Это означает, что каждый нуклон в большом ядре связан ядерными силами не со всеми остальными нуклонами, а лишь с небольшим числом своих соседей, и число это не зависит от размеров ядра.
Действительно, если бы такого насыщения не было, удельная энергия связи продолжала бы возрастать с увеличением — ведь тогда каждый нуклон скреплялся бы ядерными силами со всё большим числом нуклонов ядра, так что первый фактор неизменно доминировал бы над вторым. У кулоновских сил отталкивания не было бы никаких шансов переломить ситуацию в свою пользу!
Спасибо за то, что пользуйтесь нашими статьями.
Информация на странице «Энергия связи ядра.» подготовлена нашими авторами специально, чтобы помочь вам в освоении предмета и подготовке к экзаменам.
Чтобы успешно сдать необходимые и поступить в ВУЗ или колледж нужно использовать все инструменты: учеба, контрольные, олимпиады, онлайн-лекции, видеоуроки, сборники заданий.
Также вы можете воспользоваться другими материалами из разделов нашего сайта.
Публикация обновлена:
08.05.2023
Энергия связи ядра
4
Средняя оценка: 4
Всего получено оценок: 98.
4
Средняя оценка: 4
Всего получено оценок: 98.
Важнейшим понятием ядерной физики является понятие энергии связи ядра. Рассмотрим его подробнее.
Ядерные силы
По современным представлением ядро атома состоит из частиц, называемых элементарными – протонов и нейтронов (общее название – нуклоны).
Нуклоны похожи, но протон имеет положительный заряд и стабилен. Нейтрон не имеет заряда и в свободном состоянии распадается (период полураспада ~ 10 мин).
Казалось бы, существование ядер, состоящих из многих нуклонов невозможно – протоны, обладающие одинаковым зарядом, должны разлетаться. Нестабильные нейтроны должны распадаться.
Однако, в реальности многие атомы стабильны. Это происходит в результате ядерного взаимодействия. Ядерные силы на два порядка сильнее кулоновских сил, и их с запасом хватает на преодоление отталкивания протонов.
Но, если переносчики кулоновского взаимодействия – фотоны – не имеют массы покоя, и переносят взаимодействие на неограниченное расстояние, переносчики ядерного взаимодействия – глюоны или составленные из них мезоны – имеют массу, и осуществляют перенос взаимодействие на очень малые расстояния. В результате стабильными должны быть только ядра с очень небольшим числом протонов без нейтронов.
Энергия связи нуклонов
Возможность существований ядер с большим количеством протонов, а также стабильность нейтрона в составе ядра объясняется уровнем энергии связи. Ядерные силы удерживают нуклоны в ядре, и чтобы «извлечь» их оттуда, необходимо затратить энергию. Оказывается, что система из отдельных нуклонов обладает большей энергией, чем система, где нуклоны связаны. Любые процессы в Природе идут в сторону уменьшения энергии системы, поэтому нейтрон в составе ядра не распадается – это энергетически невыгодно, энергия связи удерживает его от распада. Эта же энергия удерживает протоны вместе. Лишь когда число нуклонов слишком велико, энергии связи ядра оказывается недостаточно – в этом случае протоны могут разлететься, и нейтроны также теряют стабильность.
Энергия связи – это энергия, которая выделяется при образовании ядра из отдельных частиц. Как только частицы оказываются в зоне действия ядерных сил – они устремляются друг к другу с огромным ускорением, излучая энергию связи в виде γ-квантов. Для того, чтобы расщепить ядро, необходимо вновь затратить эту энергию.
Уровень энергии связи
Для оценки энергии используется формула Эйнштейна, связывающая массу и энергию:
$$Е=mc^2$$
Теперь, если измерить массу отдельных частиц, а потом общую массу ядра – можно оценить энергию связи. Измерения показывают, что для легких элементов масса ядра оказывается меньше, чем сумма масс входящих в него частиц. А значит, подставив эту разницу в формулу энергии, можно получить формулу энергию связи ядра:
$$Е_{св} = (Zm_p+(A-Z)m_n -М_я)c^2$$
где:
- $Е_{св}$ – энергия связи ядра;
- $Z$ – число протонов в ядре (порядковый номер элемента);
- $А$ – общее число нуклонов в ядре (массовое число).
- $m_p$ – масса протона;
- $m_n$ – масса нейтрона;
- $М_я$ – масса ядра;
- с – скорость света.
Удельная энергия связи
Таким образом, наиболее устойчивыми должны оказаться ядра со средним числом нуклонов в ядре. Объясняется это тем, что энергия связи, приходящаяся на каждый нуклон, называемая удельной энергией связи, в таких ядрах максимальна. Прямые измерения подтверждают это.
Можно построить график зависимости значения удельной энергии связи от числа нуклонов в ядре:
Если поглядеть на представленный график удельной энергии связи ядра, можно видеть, что реакции сливания ядер выгодны только для легких элементов вплоть до железа. Поэтому наиболее распространенными элементами в Природе (не считая простейшего водорода) являются Гелий-4 (дающий наибольший прирост удельной энергии связи при термоядерной реакции), и элементы с ядрами не тяжелее железа. Количество атомов даже стабильных, но более тяжелых элементов в Природе очень невелико.
Что мы узнали?
Частицы в ядре удерживаются ядерными силами. За счет энергии связи масса ядра получается меньше суммы масс входящих в него частиц. Наиболее стабильными являются ядра с максимальной удельной энергией связи.
Тест по теме
Доска почёта
Чтобы попасть сюда — пройдите тест.
Пока никого нет. Будьте первым!
Оценка доклада
4
Средняя оценка: 4
Всего получено оценок: 98.
А какая ваша оценка?
Энергия связи ядра
Нуклоны связаны в ядра благодаря ядерным силам, которые значительно превосходят силы электростатического отталкивания, действующие между протонами. Для расщепления ядра необходимо преодолеть эти силы, т. е. затратить энергию. Соединение нуклонов с образованием ядра, напротив, сопровождается высвобождением энергии, которую называют энергией связи ядра Eсв.
Под энергией связи ядра Eсв понимают энергию, которая высвобождается в процессе образования из нуклонов атомного ядра.
У различных ядер она имеет разное значение.
Особенно важную характеристику представляет собой энергия связи, приходящаяся на один нуклон. Как видно из рисунка, наибольшей энергией связи на нуклон обладают изотопы с массовым числом около 50. Очевидно, что выигрыш в ядерной энергии удается достичь только в тех случаях, когда в результате превращения средняя энергия связи на нуклон увеличивается.
Ядерная энергия может выделяться при слиянии легких ядер (реакция синтеза ядер) или расщеплении тяжелых (деление ядер), поскольку в этих процессах увеличивается средняя энергия связи на нуклон.
Взаимосвязь энергии связи ядра и дефекта массы вытекает из соотношения Эйнштейна между энергией и массой E = mc2.
Если
Eсв | энергия связи ядра, | Дж |
---|---|---|
Δm | дефект массы этого ядра, | кг |
c | скорость света в вакууме, 3 • 108 | м/с |
то
[ E_{св} = Δmc^{2} = (Zm_{п} + Nm_{н} — m_{я})c^{2} ]
Используя принятые в атомной физике единицы (атомную единицу массы, а. е. м., и единицу энергии МэВ), после подстановки численного значения для с получаем:
Дефекту массы, равному 1 а. е. м., отвечает энергия связи ядра, равная 931.5037 МэВ.
[ frac{E_{св}}{Δm} = c^{2}= 8.9876 cdot 10^{16} frac{Дж}{кг}= 931.5 frac{МэВ}{а. е. м.} ]
Энергия связи ядра |
стр. 740 |
---|
«Мы хотим не только знать, как устроена природа
(и как происходят природные явления), но и по
возможности достичь цели, может быть, утопической
и дерзкой на вид, — узнать, почему природа
является именно такой, а не другой»
Альберт Эйнштейн
Все
больше и больше углубляясь в физику атомного ядра, человечество приближается к
разгадкам величайших тайн природы.
В
прошлой теме говорилось о протонно-нейтронной моделью атомного ядра. Еще
в 1913 году Эрнест Резерфорд сделал предположение, что в ядра атомов всех
химических элементов входит ядро атома водорода, которое впоследствии стало
называться протоном. Только в 1919 году Резерфорду удалось доказать, что
его гипотеза верна. При бомбардировке ядер атомов азота a-частицами,
образовывались ядра атомов совсем других химических элементов: кислорода и
водорода. Однако очень скоро стало ясно, что в состав атомного ядра входят еще
какие-то частицы. В 1932 году Джеймсу Чедвику и его группе удалось зарегистрировать
частицу, которая выбивалась из ядра атома бериллия при бомбардировке a-частицами.
Выяснилось, что эта частица электрически нейтральна и обладает массой,
приблизительно равной массе протона. Такую частицу называли нейтроном.
После открытия протона и нейтрона была предложена протонно-нейтронная модель
атома, согласно которой, ядра атомов всех химических элементов состоят из
протонов и нейтронов. Тогда возник вопрос: каким образом, нуклоны
удерживаются в ядре, несмотря на электростатическое отталкивание между
протонами? Силы, действующие в пределах атомных ядер, называются ядерными
силами. Эти силы являются самыми мощными силами в природе. Ну а раз
в ядре действуют такие мощные силы, значит, там сосредоточена значительная
энергия. Эту энергию стали называть энергией связи. То есть, энергия
связи – это энергия, которая потребовалась бы, чтобы разделить ядро на
отдельные нуклоны. Известно, что в результате экспериментов были определены
массы протона и нейтрона. Но когда начали определять массу атомных ядер,
выяснилась очень интересная особенность: масса ядра атома всегда оказывалась
меньше, чем сумма масс, входящих в него частиц.
Для
примера рассмотрим ядро атома кислорода.
Порядковый
номер кислорода в таблице Менделеева – это 8, а массовое число – 16. Значит, в
ядре атома кислорода содержится 8 протонов и 8 нейтронов. Ядро атома данного
изотопа кислорода имеет массу, равную 15,9949. Поскольку масса протона, как и
масса нейтрона, чуть больше одной атомной единицы массы, ясно, что их суммарная
масса будет больше массы ядра атома кислорода. Такую разницу назвали дефектом
масс. То есть, дефект масс – это разность между суммарной массой
нуклонов, входящих в состав атомного ядра и массой самого ядра.
Но
куда же пропадает эта масса? Дело в том, что при
образовании ядра была затрачена некоторая энергия. В соответствии с известным
уравнением Эйнштейна, масса может превращаться в энергию, и, наоборот – энергия
– в массу.
Именно
таким образом можно определить энергию связи ядер. Для этого нужно дефект масс
умножить на скорость света в квадрате, и мы получим энергию в джоулях.
Но,
обратите внимание, что в данной формуле масса должна измеряться в килограммах,
а не в атомных единицах. Для удобства в атомной физике используют другую формулу:
дефект масс в атомных единицах умножают на 931,5, и получают энергию в
мегаэлектрон-вольтах.
Дело
в том, что
На
сегодняшний день известно, что дефект масс присутствует во всех ядрах, кроме
ядра протия, поскольку ядро протия состоит из одного протона.
Возьмем
произвольный элемент и обозначим его .
Число протонов в ядре атома данного элемента равно зарядовому числу (то есть, Z).
Число нейтронов в этом ядре равно разности между числом нуклонов и числом
протонов (т.е., ).
Тогда, дефект масс
Энергия
связи равна
Ещё
раз обратите внимание, что в данной формуле дефект масс должен быть выражен в
атомных единицах массы, а энергия получится в мегаэлектрон-вольтах (МэВ).
Ещё
одной очень важной величиной в атомной физике является удельная энергия
связи. Удельная энергия связи – это энергия связи, приходящаяся на один
нуклон ядра. Эта величина характеризует, насколько стабильны те или иные
ядра атомов.
На
рисунке представлен график зависимости удельной энергии связи от массового
числа. Как видно из графика, легкие ядра обладают довольно малой энергией связи
(за исключением гелия два четыре ).
К середине таблицы Менделеева энергия связи достигает максимального значения, а
к концу – снова начинает убывать. То есть, для получения ядерной энергии
разумно либо синтезировать легкие ядра, либо делить тяжелые ядра. Известно,
что на данный момент человечество использует деление тяжелых ядер. Во многих
ядерных реакторах происходит деление ядер урана. Синтез легких ядер происходит
на Солнце, в результате чего освобождается колоссальное количество энергии,
которое в частности передается Земле в виде света и тепла.
Разумеется,
физики стремятся найти способ контролировать такие процессы, то есть,
получить управляемую термоядерную реакцию. На сегодняшний день, эта цель
ещё не достигнута. Термоядерная реакция на данный момент, неуправляема и
реализована только при создании водородной бомбы (разумеется, если цель – это
создать взрыв, то управляемая реакция не нужна).
Тем
не менее, уже сегодня существуют установки, которые называются «Токамак» —
тороидальная камера с магнитными катушками.
В
этих установках с помощью магнитных полей удерживается плазма, с помощью
которой планируют осуществить управляемый термоядерный синтез. Поскольку плазма
– это ионизированный газ, она подвержена влиянию магнитных полей. Таким
образом, плазма скручивается в шнур и не касается стенок камеры, не принося ей
никакого вреда. Поэтому, есть основания полагать, что в скором времени люди
всё-таки научатся управлять термоядерными реакциями.
Упражнения.
Задача
1. Определите
энергию связи ядра Fe-56
в МэВ и найдите удельную энергию связи.
Задача
2. Найдите
массу урана 238, расходуемую АЭС для выделения того же количества энергии,
которое расходует ТЭС при сжигании 100 т нефти?
Основные
выводы:
–
Дефект масс – это разность между суммарной массой нуклонов, входящих в
состав ядра и массой самого ядра.
–
Дефект масс возникает из-за того, что на образование атомных ядер
затрачивается энергия – энергия связи. Эту энергию можно вычислить в
соответствии с формулой Эйнштейна, которая описывает взаимосвязь между энергией
и массой.
–
Для вычисления энергии связи в мегаэлектрон-вольтах можно воспользоваться более
простой формулой, с которой мы также познакомились на сегодняшнем уроке.
–
Удельная энергия связи – то есть энергия связи, приходящаяся на один
нуклон.
–
Основной задачей ядерной физики является получение управляемой термоядерной
реакции.